大学物理课程标准

合集下载

大学物理课程标准的建设内容

大学物理课程标准的建设内容

大学物理课程标准的建设内容1.课程标准的设计原则为了为学习“大学物理”的学生制定适用的课程标准,有必要根据课程目标和学习内容对其进行优化,以突出高质量的教学并加强所应用的教学概念。

大学物理课程标准的设计思想是基于社会对应用型人才的需求,大学物理课程的特征和实施对象的特征,并着重培养健康,完整的学生。

知识和技能,过程和方法,态度和情感价值等,目的是培养学生,开发学生的潜力和创新意识,并进一步提高学生的科学素质,提高他们分析和解决实际问题的能力。

2.典型课程结构的主要内容(1)课程目标。

我们的最终目标是专注于基础知识,加强应用程序,提高质量,开发技术应用程序的人才以及增强学生在工程实践中的技能。

“大学物理”专业的学生掌握物理学的基本原理,定理和定律,掌握物理学的思维和研究方法,学会将物理学原理运用到解决实际工程问题中,为将来的工程和工程工作奠定基础,在教育和培训中予以加强。

参加创新,企业家精神和科学技术竞赛的学生会产生工程应用感,并增强了他们对探索未知领域的信心,并提高了他们分析和解决问题,寻找解决方案的能力。

此外,有必要发展学生独立学习的能力并建立知识网络,以便为他们一生的发展打下坚实的基础。

(2)课程内容。

该课程的内容是教育思想和观念的具体体现。

在所申请的许可证课程“大学物理”的内容中,应注意保留物理学的系统性质以及与相关学科的联系,并应注意物理原理在物理学领域的应用。

可以将一些高科技发明引入课堂,并将与物理相关的材料结合到日常生活中,以帮助学生了解物理与我们的生活紧密相关。

着重于告知学生关于他们不断发展的知识和技能的最重要和最有利的方面,根据各个专业的实际需求选择古典物理学的内容,开发适当的现代和现代物理学知识的方式,以达到与知识的极限相联系的目的。

物理,场所的社会活动,并加强科学技术发展问题,与社会和技术发展保持同步,并反映该计划的最新动态,加强工程学的应用,扩大物理学在跨学科和工程学领域的应用,从而使大学的物理课程的内容与学生的应用型人才的教育目标相对应:“现代物理与科学技术”,“物理与选修课”的内容建设例如“人类文明”,使学生能够了解物理在高科技中的应用,了解物理定律的发现过程和每种方法的人文基础,了解物理学的进化史以及著名物理学家的生平轶事,以及引导学生正确看待生活和价值观,培养他们的研究精神和创新精神,以及维护真理的决心和意愿,并对古老的传统观念提出质疑。

《普通物理学》课程标准

《普通物理学》课程标准

《普通物理学》课程标准一、课程简介普通物理学是一门基础性学科,旨在为学生提供有关自然界中物质的基本规律和原理。

本课程主要涉及力学、热学、电磁学、光学、量子力学等方面的知识,旨在培养学生的科学素养和思维能力。

二、教学目标1. 掌握物理学的基本概念、原理和定律,能够运用所学知识解决实际问题。

2. 培养学生的观察能力、实验能力和思维能力,提高分析问题和解决问题的能力。

3. 培养学生热爱科学、勇于探索的精神,树立科学的人生观和价值观。

三、教学内容本课程的教学内容包括:1. 力学:包括质点运动学、牛顿运动定律、动量守恒定律、角动量守恒定律等。

2. 热学:包括气体动理论和热力学定律等。

3. 电磁学:包括静电学、恒定电流和磁场等。

4. 光学:包括波动光学和几何光学等。

5. 量子力学:包括波粒二象性、测不准原理和能级等。

此外,本课程还将涉及物理学在生活中的应用,如材料科学、能源技术、航天技术等。

四、教学方法本课程将采用多种教学方法,包括讲授、讨论、实验等。

在教学过程中,注重启发式教学,引导学生思考问题、分析问题和解决问题。

同时,注重理论联系实际,通过实验和实践教学,加深学生对理论知识的理解和掌握。

五、考核方式本课程的考核方式包括平时成绩和期末考试。

平时成绩包括出勤率、作业完成情况、课堂表现等,占总评成绩的30%。

期末考试采用闭卷形式,主要考察学生对知识的掌握程度和应用能力,占总评成绩的70%。

六、教材使用本课程将使用由学校统一指定的普通物理学教材,该教材内容丰富、体系完整、难度适中,适合作为本科生的教材。

在教学过程中,教师将根据教学大纲的要求,对教材内容进行适当的取舍和补充。

七、教学安排本课程的教学安排为每周4个学时,共36周。

在第一学期,主要进行基础理论的教学,在第二学期进行实验和实践教学。

在教学过程中,将根据学生的学习情况和反馈,及时调整教学进度和难度。

八、师资力量本课程的教师队伍由多名具有丰富教学经验和学术背景的老师组成。

大学物理课程大纲

大学物理课程大纲

大学物理课程大纲一、课程简介本课程旨在帮助学生建立坚实的物理基础,培养其科学思维和问题解决能力。

通过理论探索和实验操作,学生将深入了解物理学的基本原理、概念和实践应用。

二、课程目标1. 理解物理学在科学领域中的重要性,认识其对社会发展的贡献。

2. 掌握基本物理概念和原理,并能运用它们解释和预测自然现象。

3. 培养实验观察、数据分析和问题解决的能力,以及科学实践中的安全意识。

4. 培养逻辑思维和数学思维,提高科学素养和创新能力。

三、课程内容1. 物理学的介绍- 物理学的定义和研究对象- 物理学在科学发展中的地位和作用2. 运动学- 一维和二维运动- 速度、加速度和位移的关系- 等加速度运动3. 动力学- 牛顿运动定律- 动量和冲量的概念- 质点系统的平衡和运动4. 物体静力学- 弹力、重力和摩擦力- 物体的平衡和不平衡状态5. 能量与功- 功的定义和计算- 功与能量的关系- 动能和势能的概念6. 振动与波动- 简谐振动- 波的基本性质- 声波和光波的特征7. 电磁学基础- 静电场和电荷- 电场的力学作用和能量转换- 电流和磁场的相互作用8. 热学基础- 热与温度的概念- 理想气体定律- 热传导、热辐射和热对流四、教学方法1. 理论授课:通过讲解、演示和示意图,向学生介绍物理概念和原理。

2. 实验操作:提供实验环节,让学生亲自操作仪器,观察现象,并记录数据和分析结果。

3. 讨论和解答:引导学生对课堂内容进行思考和讨论,解答学生的疑问,并激发学生的探索欲望。

4. 小组活动:组织学生分小组进行小实验或小项目,培养合作能力和实践动手能力。

五、考核方式1. 平时表现:包括参与课堂讨论、实验操作和小组活动的积极程度。

2. 作业:布置相关问题和练习,要求学生独立完成,并按时提交。

3. 实验报告:要求学生根据实验结果撰写实验报告,包括实验目的、方法、数据分析和结论。

4. 期末考试:通过笔试形式,对学生对于物理学的理解和应用能力进行综合考核。

《大学物理学》课程标准(教学大纲)

《大学物理学》课程标准(教学大纲)

《大学物理学》课程标准(教学大纲)《大学物理学》课程标准(教学大纲)课程名称:《大学物理学》课程性质:职业能力必修课学分:4分计划学时:160学时适用专业:电气自动化专业选用教材:《大学物理学》1.前沿1.1课程定位大学物理学是生物医学工程专业重要的核心基础课。

定位于为培养创新型人才打好物理基础,以“培养创新型人才”的现代教育理念和新的课程标准。

它是研究物质世界最普通、最基本的运动形式及其规律的科学。

它是自然科学和工程技术的基础。

本课程的教学目的是使学生深入系统地加强物理基础理论、基本知识和基本技能的学习,从而为其它专业课程的学习和将来从事本专业的工作,特别是进一步学习新理论、新技术,不断更新知识奠定必要的基础。

与创新能力。

在教学目标的设置和组织上,与学校建设国际先进的研究型军医大学的定位相匹配,坚持学生为主体,教员为主导的教学理念。

在教学方法上要突出启发式教学,灵活利用讨论式教学、案例式教学、问题式教学等先进的教学方法,运用视频录像、课件、网络课程等多种现代化教学手段,提高学生学习兴趣、调动学生的积极主动性。

1.2设计思路《大学物理学》课程标准是在充分理解总参军训和兵种部印发的《军队院校制定课程标准的基本要求》精神的前提下,结合国家教委工科物理课程教学指导委员会审定通过的《高等工业学校物理课程教学基本要求》以及外校生物医学工程专业的培养目标,并结合我校实际情况以及教研室多年的教学经验,在进一步调查、研究的基础上形成的。

(1)课程标准符合《军队院校制定课程标准的基本要求》精神,体现“创新思维”,“以人为本”,“为军服务”的现代教育观念。

(2)课程标准力求构建我校新的大学物理学课程体系,更新、拓展课程内容和最新研究成果。

不局限于课堂基本理论教学,而是把实验教学、前沿专题讲座、读书报告、课外科研活动等内容纳入课程体系教学中,丰富大学物理学课程的内涵。

(3)课程标准在全面贯彻《军队院校制定课程标准的基本要求》精神下,结合我校学生状况、教学资源等实际,力求使课程达到既有前瞻性、科学性又实事求是。

《大学物理》实验教学课程标准

《大学物理》实验教学课程标准

《大学物理》实验教学课程标准一、课程简介课程类别:基础课适用专业:理工科各专业实验教学总目标:《大学物理实验》是高等职业院校理工科《大学物理》课程重要的实践课。

物理学从本质上讲是一门实验科学。

物理规律的发现和物理理论的建立,都必须以严格的物理实验为基础,并受到实验的检验。

大学物理实验的一项重要任务是培养学生理论与实践相结合的科学态度;认真仔细,一丝不苟的工作作风;严密观察,勤于思考,寻求规律的探求精神。

通过对实验现象的观察、分析和对物理量测量,学习物理实验知识,加深对物理原理的理解,学习常用物理仪器的使用,学习实验数据的处理方法,对实验结果进行综合分析。

培养和提高学生的科学实验能力和科学实验素养。

二、实验项目明细表三、各实验项目的实验目的及实验教学的内容和任务实验一:误差理论(一)实验目的1.熟悉物理实验课基本程序和实验室规则。

2.掌握实验测量结果的表示,测量误差原因和误差计算方法。

3.掌握有效数字的概念和运算。

(二)实验教学内容与任务1.熟悉物理实验课基本程序和实验室规则。

2.掌握实验测量结果的表示,测量误差的分类和误差计算方法。

3.掌握有效数字的概念和运算。

4.掌握基本的数据处理方法。

5.了解实验的基本方法。

实验二:固体密度的测量(一)实验目的1.学习测量固体密度的实验方法。

2.学会物理天平的使用方法。

3.熟练掌握按有效数字规则读取和记录测量数据。

(二)实验教学内容与任务1.学习游标卡尺的测量原理和测量方法。

2.用游标卡尺测量圆柱体的高度和直径。

3.学习物理天平的测量原理、基本构造、使用方法。

4.物理天平测量圆柱体的质量。

5.计算圆柱体的密度和测量误差。

实验三:单摆测重力加速度(一)实验目的1.学习千分尺的测量原理,掌握使用方法。

2.学习用单摆测量重力加速度的方法。

3.用测量值计算重力加速度和传递方法求误差。

4.了解系统误差的来源。

(二)实验教学内容与任务1.学习千分尺(螺旋测微计)的测量原理,基本构造,掌握正确使用方法和读数方法。

大学物理课程标准

大学物理课程标准

《大学物理》课程标准课程代码:课程名称 : 大学物理英文名称: College Physics课程类型:专业必修课总学时: 144授课学时:108实践学时:36学分: 8适用对象:机械类及相近专业本科学生一、课程概述大学物理是高等院校非物理类理工科本科各专业学生一门重要的通识性必修基础课。

物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。

它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。

课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备的。

该课程在培养学生的探索精神和创新意识等方面,具有其他课程不能替代的重要作用。

二、课程目标通过本课程的学习,使学生逐步掌握物理学研究问题的思路和方法,在获取知识的同时,学生建立物理模型的能力,定性分析,估算与定量计算的能力,独立获取知识的能力,理论联系实际的能力获得同步提高与发展。

开阔思路,激发探索和创新精神,增强适应能力,提升其科学技术的整体素养。

同时,使学生掌握科学的学习方法和形成良好的学习习惯,养成辩证唯物主义的世界观和方法论。

三、课程的内容与要求(一)教学基本要求与内容第一部分力学.第1章运动学1.1 质点运动的描述1.2 加速度为恒矢量时的质点运动1.3 圆周运动1.4 相对运动基本要求:1.深入地理解质点、位移、速度和加速度等重要概念,深入理解质点的运动。

2.分析加速度为恒矢量时的质点运动方程。

3.明确圆周运动中角位移、角速度、切向加速度、法向加速度的关系。

重点与难点 :1.加速度为恒矢量时质点运动方程的描写。

2.质点圆周运动的分析。

第2章牛顿定律2.1 牛顿定律2.2 物理量的单位和量纲2.3 几种常见的力2.4 惯性参考系力学相对性原理基本要求:1.清晰的理解牛顿第一定律、牛顿第二定律和牛顿第三定律。

2.熟练掌握几种常见力。

3.掌握物理量的单位和量纲。

物理学科内容课程标准

物理学科内容课程标准

物理学科内容课程标准
物理学科内容课程标准主要包括以下几个方面:
物理观念:物理观念是对物质、能量、运动和相互作用的基本认识,是物理概念和规律等在头脑中的提炼和升华,是从物理学视角形成的关于物质、运动与相互作用、能量等的基本认识,是物理核心素养的重要组成部分。

科学思维:科学思维是从物理学视角对客观事物的本质属性、内在规律及相互关系的认识方式,是基于经验事实建构理想模型的抽象概括过程;是分析综合、推理论证等方法在科学领域的具体运用;是对科学本质和科学研究方法的深刻理解和应用。

科学探究:科学探究是指基于观察和实验提出物理问题、形成猜想和假设、设计实验与制订方案、获取和处理信息、基于证据得出结论并作出解释,以及对科学探究过程和结果进行交流、评估、反思的能力。

科学态度与责任:科学态度与责任是指在认识科学本质,理解科学、技术、社会、环境关系的基础上,逐渐形成的对科学和技术应有的正确态度和责任感。

在物理教学中,应重视这四个方面的培养,以提高学生的物理核心素养。

同时,也应注重物理与生活的联系,让学生在生活中学习物理,用物理知识解决生活中的问题。

大学物理-(含多场景)

大学物理-(含多场景)

大学物理是一门以经典物理学为基础,旨在为学生提供广泛物理学知识、方法和思维方式的课程。

它是自然科学的基础学科之一,对于培养学生的科学素养、创新能力和实践能力具有重要意义。

本文将从大学物理的课程设置、教学方法、实践环节和考核评价等方面进行详细阐述。

一、课程设置大学物理课程设置分为两个层次:基础物理和进阶物理。

基础物理主要包括力学、热学、电磁学、光学和原子物理学等内容,为学生奠定物理学的基本理论和实验技能。

进阶物理则包括量子力学、电动力学、统计物理学、固体物理学等,使学生能够深入理解物理学的前沿领域和发展趋势。

在课程设置上,大学物理注重理论与实践相结合,强调学科交叉和综合能力的培养。

通过学习大学物理,学生可以掌握物理学的基本概念、原理和方法,培养科学思维和创新能力,为后续专业课程的学习和研究打下坚实基础。

二、教学方法大学物理的教学方法丰富多样,包括课堂讲授、实验教学、小组讨论、学术报告等。

课堂讲授是大学物理教学的主要形式,教师通过讲解、演示、案例分析等手段,使学生掌握物理学的理论知识。

实验教学是培养学生实践能力和创新精神的重要途径,学生通过实验操作、数据分析和实验报告撰写,加深对物理学原理的理解。

小组讨论和学术报告有助于培养学生的团队协作能力和学术交流能力。

在小组讨论中,学生针对某一物理问题进行深入探讨,相互启发,共同解决问题。

学术报告则要求学生对自己感兴趣的研究领域进行文献查阅、综述撰写和口头报告,提高学生的学术素养和表达能力。

三、实践环节大学物理的实践环节包括实验教学、课程设计和科研训练等。

实验教学是实践环节的重要组成部分,学生通过实验操作和数据分析,加深对物理学原理的理解。

课程设计要求学生运用所学知识解决实际问题,培养学生的创新能力和实践能力。

科研训练则为学生提供参与科研项目的机会,使学生了解科研过程,提高科研素养。

四、考核评价大学物理的考核评价体系注重过程评价和综合能力考核。

平时成绩主要包括课堂表现、作业完成情况和实验报告等,旨在引导学生注重学习过程,培养良好的学习习惯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理》课程标准课程代码:课程名称:大学物理英文名称:College Physics课程类型:专业必修课总学时:144 授课学时:108 实践学时: 36学分:8适用对象:机械类及相近专业本科学生一、课程概述大学物理是高等院校非物理类理工科本科各专业学生一门重要的通识性必修基础课。

物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。

它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。

课程所教授的基本概念、基本理论和基本方法是构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备的。

该课程在培养学生的探索精神和创新意识等方面,具有其他课程不能替代的重要作用。

二、课程目标通过本课程的学习,使学生逐步掌握物理学研究问题的思路和方法,在获取知识的同时,学生建立的能力,定性分析,估算与定量计算的能力,独立获取知识的能力,理论联系实际的能力获得同步提高与发展。

开阔思路,激发探索和创新精神,增强适应能力,提升其科学技术的整体素养。

同时,使学生掌握科学的学习方法和形成良好的学习习惯,养成辩证唯物主义的世界观和方法论。

三、课程的内容与要求(一)教学基本要求与内容第一部分力学.第1章运动学1.1质点运动的描述1.2加速度为恒矢量时的质点运动1.3圆周运动1.4相对运动基本要求:1.深入地理解质点、位移、速度和加速度等重要概念,深入理解质点的运动。

2.分析加速度为恒矢量时的质点运动方程。

3.明确圆周运动中角位移、角速度、切向加速度、法向加速度的关系。

重点与难点:1.加速度为恒矢量时质点运动方程的描写。

2.质点圆周运动的分析。

第2章牛顿定律2.1牛顿定律2.2物理量的单位和量纲2.3几种常见的力2.4惯性参考系力学相对性原理基本要求:1.清晰的理解牛顿第一定律、牛顿第二定律和牛顿第三定律。

2.熟练掌握几种常见力。

3.掌握物理量的单位和量纲。

4.理解惯性参考系和力学相对性原理,能列举出牛顿定律应用的例子。

重点与难点:1.牛顿三定律的应用。

2.参考系的选择。

第3章动量守恒定律和能量守恒定律3.1质点和质点系的动量定理3.2动量守恒定律3.3动能定理3.4保守力与非保守力势能3.5功能原理机械能守恒定律3.6完全弹性碰撞完全非弹性碰撞3.7能量守恒定律基本要求:1.掌握质点和质点系的动量定理。

2.熟练掌握动量守恒定律和动能定理。

3.掌握功能原理和机械能守恒定律。

4.清晰分辩出完全弹性碰撞和完全非弹性碰撞。

重点与难点:1.质点系动量定理、动能定理、功能原理、机械能守恒定律的应用。

2.完全弹性碰撞和完全非弹性碰撞的区别。

第4章刚体的转动4.1刚体的定轴转动4.2力矩、转动定律、转动惯量4.3角动量、角动量守恒定律4.4力矩做功基本要求:1.掌握刚体定轴转动的角速度和角加速度,正确写出匀变速转动公式。

2.熟练掌握力矩、转动定律和转动惯量。

3.熟练掌握点和刚体定轴转动的角动量定理和角动量守恒定律。

4.掌握力矩做功和功率。

重点与难点:1.刚体定轴转动分析。

2.角动量定理和角动量守恒定律的应用。

第二部分热学第5章气体动理论5.1物质的微观模型统计规律性5.2理想气体的压强公式5.3理想气体分子的平均平动动能与温度的关系5.4能量均分定理理想气体内能5.5麦克斯韦气体分子速率分布律5.6玻耳兹曼能量分布律5.7分子平均碰撞次数和平均自由程5.8热力学第二定律的统计意义基本要求:1.掌握理想气体的微观模型和压强公式。

2.能量按自由度均分原理、理想气体的内能和摩尔热容。

3.熟练掌握气体分子速率分布、麦克斯韦分布律和玻耳兹曼分布。

4.掌握分子平均碰撞次数和平均自由程。

重点与难点:1.理想气体的模型分析及压强公式。

2.麦克斯韦气体分子速率分布律和玻耳兹曼能量分布律的应用。

第6章热力学基础6.1气体物态参量平衡态理想气体物态方程6.2准静态过程功热量6.3内能热力学第一定律6.4理想气体的等体过程和等压过程摩尔热容6.5理想气体的等温过程和绝热过程6.6循环过程卡诺循环6.7热力学第二定律的表述卡诺定理6.8熵熵增加原理基本要求:1.掌握系统的内能、功和热量、气体的摩尔热容。

2.熟练掌握热力学第一定律及其对理想气体等值过程和绝热过程的应用。

3.熟练掌握循环过程、卡诺循环、热机效率。

4.掌握热力学第二定律及其统计意义。

重点与难点:1.理想气体的物态参量及其物态方程。

2.热力学第一定律和热力学第二定律的应用。

第三部分振动和波第7章机械振动7.1简谐运动7.2简谐运动中的振幅周期频率和相位7.3旋转矢量7.4单摆和复摆7.5简谐运动的能量7.6简谐运动的合成7.7阻尼振动受迫振动共振*基本要求:1.简谐运动中的振幅、周期、频率和相位的确定。

2.熟练掌握简谐振动的旋转矢量法。

3.熟练掌握简谐运动的合成。

4.区分阻尼振动、受迫振动和共振。

重点与难点:1.简谐振动运动学中振幅、周期、频率、相位和动力学方程的确定。

2.同方向同频率、多个同方向同频率、相互垂直方向以及两个相互垂直的不同频率简谐运动的合成。

第8章机械波8.1机械波的几个概念8.2平面简谐波的波函数8.3波的能量8.4惠更斯原理波的衍射、反射和折射8.5波的干涉8.6驻波8.7多普勒效应基本要求:1.掌握机械波的形成、分类及传播。

2.熟练掌握平面简谐波的波函数的物理含义和表达式。

3.熟练掌握波动能量的传播,能流和能流密度。

4.掌握惠更斯原理、波的叠加原理及波的干涉、衍射、反射和折射。

5.驻波的产生、驻波方程、能量和半波损失。

重点与难点:1.波的产生和传播中波速、波频与波长的关系确定。

2.利用惠更斯原理、波的叠加原理分析波的干涉、衍射、反射和折射。

第四部分光学第9章几何光学9.1几何光学基本定律9.2光在平面上的反射和折射9.3光在球面上的反射和折射9.4薄透镜9.5显微镜、望远镜、照相机*基本要求:1.掌握几何光学的几个基本定律。

2.熟练掌握光在平面和球面上的反射和折射。

3.理解薄透镜、显微镜、望远镜的几何光学原理。

重点与难点:1.几何光学基本定律的应用。

2.光在球面上的反射和折射。

第10章波动光学10.1相干光10.2杨氏双缝干涉实验双镜劳埃德镜10.3光程薄膜干涉10.4劈尖牛顿环10.5迈克耳孙干涉仪时间相干性10.6光的衍射10.7单缝衍射10.8圆孔衍射光学仪器的分辨率10.9衍射光栅10.10X射线的衍射*10.11光的偏振性马吕斯定律10.12反射光和折射光的偏振10.13双折射10.14偏振光的干涉基本要求:1.掌握光的单色性和相干性、相干光的获得。

2.熟练掌握光程、光程差和相位差之间的关系。

3.熟练掌握杨氏双缝干涉、薄膜干涉、等倾干涉、等厚干涉以及迈克耳逊干涉仪的原理分析。

4.掌握惠更斯-菲涅耳原理以及菲涅耳衍射、夫琅禾费衍射。

5.熟练掌握单缝衍射、圆孔衍射和光学仪器分辨率。

6.掌握自然光和偏振光、马吕斯定律和布儒斯特定律。

7. 熟练掌握1/4波片和半波片、光的双折射和偏振光干涉。

重点与难点:1.杨氏双缝干涉实验中的光强分布、缝宽对干涉条纹的影响。

2.迈克耳逊干涉仪的原理分析。

3.光栅衍射条纹的形成、衍射光谱。

4.惠更斯原理对双折射现象的解释。

5.椭圆偏振光、圆偏振光以及偏振光的干涉。

第五部分电磁学第11章静电场11.1电荷的量子化电荷守恒定律11.2库仑定律11.3电场强度11.4电场强度通量高斯定理11.5密立根测定电子电荷的实验*11.6静电场的环路定理电势能11.7电势11.8电场强度与电势梯度11.9静电场中的电偶极子基本要求:1.掌握电荷守恒定律和库仑定律。

2.熟练掌握静电场、电场强度及其计算。

3.熟练掌握电场线、电场强度通量和真空中的高斯定理4.掌握电场力的功、静电场的环路定律、电势能、电势及其计算。

5.熟练掌握等势面、电场强度与电势梯度的关系。

6.掌握外电场对电偶极子的力矩和取向作用、电偶极子在电场中的电势能和平衡位置。

重点与难点:1.电荷守恒定律和库仑定律的应用。

2.点电荷电场强度和电偶极子的电场强度的计算。

3.高斯定理及其应用举例。

4.静电场力所作的功以及静电场的环路定理。

5.等势面的划分、电场强度与电势梯度的确定。

第12章静电场中的导体与电介质12.1静电场中的导体12.2电容、电容器12.3静电场中的电介质12.4电位移有电介质时的高斯定理12.5静电场的能量能量密度基本要求:1.掌握导体的静电感应、平衡条件以及静电屏蔽。

2.熟练掌握电容器的电容及其简单计算。

3.熟练掌握电介质的极化、极化强度、电位移矢量和电介质中的高斯定理。

4.掌握电场能量、电场能量密度。

重点与难点:1.静电平衡条件、平衡时导体上电荷的分布。

2.电容器的并联和串联。

3.电介质对电容的影响、电介质的极化、极化强度以及电介质中电场强度的计算。

4.静电场的能量、能量密度的计算。

第13章稳恒电流13.1电流电流密度13.2电阻率欧姆定律的微分形式13.3电源电动势13.4全电路欧姆定律13.5基尔霍夫定律13.6电容器的充放电基本要求:1.掌握电流、电流密度以及电流的连续性方程。

2.熟练掌握全电路欧姆定律、基尔霍夫第一定律和基尔霍夫第二定律。

3.熟练掌握电容的充放电过程。

重点与难点:1.欧姆定律的微分形式。

2.利用基尔霍夫第一定律和基尔霍夫第二定律分析电路。

3.电容充电及放电过程分析。

第14章稳恒磁场14.1磁场磁感强度14.2毕奥—萨伐尔定律14.3磁通量磁场的高斯定理14.4安培环路定理14.5带电粒子在电场和磁场中的运动14.6载流导线在磁场中所受的力14.7磁场对载流线圈的作用基本要求:1.掌握磁场、磁感强度、磁通量以及磁场的高斯定理。

2.熟练掌握毕奥—萨伐尔定律、安培环路定理。

3.熟练掌握带电粒子在电场和磁场中的运动。

4.掌握安培定律、载流线圈的磁力矩以及磁场对载流线圈的作用重点与难点:1.磁感强度、磁通量的计算。

2.毕奥—萨伐尔定律、安培环路定理的应用举例。

3.洛仑兹力、带电粒子在电磁场中的运动。

第15章磁场中的磁介质15.1磁介质磁化强度15.2磁介质中的安培环路定理磁场强度基本要求:1.掌握物质的磁化、磁介质、磁化强度。

2.熟练掌握介质中的高斯定理和安培环路定理。

重点与难点:1. 磁介质中的安培环路定理的应用。

第16章电磁感应与电磁场16.1电磁感应定律16.2动生电动势和感生电动势16.3自感和互感16.4磁场的能量磁场能量密度16.5位移电流电磁场基本方程的积分形式基本要求:1.掌握电磁感应定律和楞次定律。

2.熟练掌握动生电动势和感生电动势。

3.熟练掌握自感电动势、自感、互感电动势和互感。

4.掌握位移电流、麦克斯韦方程组的积分形式。

重点与难点:1.电磁感应定律和楞次定律的应用。

相关文档
最新文档