人教版勾股定理说课稿

合集下载

关于勾股定理说课稿汇编7篇

关于勾股定理说课稿汇编7篇

关于勾股定理说课稿汇编7篇勾股定理说课稿篇1一、教材分析教材所处的地位与作用“探索勾股定理”是人教版八年级《数学》下册内容。

“勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在几何学中占有非常重要的位置。

同时勾股定理在生产、生活中也有很大的用途。

二、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:1、知识目标知道勾股定理的由来,初步理解割补拼接的面积证法。

掌握勾股定理,通过动手操作利用等积法理解勾股定理的证明过程。

2、能力目标在探索勾股定理的过程中,让学生经历“观察——合理猜想——归纳——验证”的数学思想,并体会数形结合以及由特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力。

3、情感目标通过观察、猜想、拼图、证明等操作,使学生深刻感受到数学知识的发生、发展过程。

介绍“赵爽弦图”,让学生感受到中国古代在勾股定理研究方面所取得的伟大成就,激发学生的数学激情及爱国情感。

三、教学重难点本课重点是掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系。

由于八年级学生构造能力较低以及对面积证法的不熟悉,因此本课的难点便是勾股定理的证明。

四、教学问题诊断本节主要攻克的问题就是本节的难点:勾股定理的证明。

我打算采用面积法来讲解,但这种借助于图形的面积来探索、验证数学结论的数形结合思想,对于学生来说,有些陌生,难以理解,又加之数学课本身的课程特征,在讲解时,没有文科那么深动形象,所以针对这一现状,我在教法和学法上都进行了改进。

五、教法与学法分析[教学方法与手段] 针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,并利用多媒体进行教学。

[学法分析] 在教师组织引导下,采用自主探索、合作交流的方式,让学生自己实验,自己获取知识,并感悟学习方法,借此培养学生动手、动口、动脑能力,使学生真正成为学习的主体。

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)

《勾股定理》说课稿(精选5篇)作为一名教职工,通常需要用到说课稿来辅助教学,说课稿有利于教学水平的提高,有助于教研活动的开展。

怎么样才能写出优秀的说课稿呢?为了让您对于勾股定理说课稿的写作了解的更为全面,下面作者给大家分享了5篇《勾股定理》说课稿,希望可以给予您一定的参考与启发。

《勾股定理》说课稿篇一教材分析《勾股定理》是人教版新课标八年级数学第十八章一节一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。

它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。

勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

教学目标根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法。

能够灵活地运用勾股定理及其计算。

过程与方法:让学生经历观察-猜想-归纳-验证的数学过程,并从中体会数形结合及从特殊到一般的数学思想。

培养学生观察、比较、分析、推理的能力。

情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感在探索问题的过程中,培养学生的合作交流意识和探索精神。

(三)本节课的重点:是勾股定理的发现、验证和应用。

难点:是用拼图方法、面积法证明勾股定理教法和学法教法指导:数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程,针对八年级学生的知识结构和心理特征,本节课采取自主探究发现式教学,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。

让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

使学生得到获得新知的成功感受,从而激发学生钻研新知。

关于勾股定理说课稿范文集合6篇

关于勾股定理说课稿范文集合6篇

关于勾股定理说课稿范文集合6篇勾股定理说课稿篇1课题:“勾股定理”第一课时内容:教材分析、教学过程设计、设计说明一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。

2、会初步运用勾股定理进行简单的计算和实际运用。

3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。

二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。

人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿

人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿

人教版数学八年级下册17.1《勾股定理》(第1课时)说课稿一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是中学数学中一个非常重要的定理。

勾股定理揭示了直角三角形三边之间的数量关系,即直角边的平方和等于斜边的平方。

这一定理在我国古代就已经被发现,并有详细的证明。

在本节课中,学生将通过探究和证明来理解和掌握勾股定理,并能够运用它解决实际问题。

二. 学情分析在进入本节课的学习之前,学生已经学习了平面几何的基本概念,对三角形、直角三角形等有一定的了解。

同时,他们已经学习了平方根的概念,能够进行简单的平方运算。

但是,对于勾股定理的证明和应用,他们可能还存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,引导他们通过探究和思考来理解和掌握勾股定理。

三. 说教学目标1.知识与技能目标:学生能够理解勾股定理的内容,并能够进行简单的证明。

2.过程与方法目标:学生通过探究和证明,培养逻辑思维能力和空间想象能力。

3.情感态度与价值观目标:学生体验到数学的趣味性和魅力,增强对数学学习的兴趣。

四. 说教学重难点1.教学重点:学生能够理解和掌握勾股定理的内容。

2.教学难点:学生能够进行勾股定理的证明,并能够运用它解决实际问题。

五.说教学方法与手段在本节课的教学中,我将采用探究式教学法和启发式教学法。

通过引导学生进行自主探究和思考,激发他们的学习兴趣和动力。

同时,我将运用多媒体教学手段,如PPT、几何画板等,为学生提供直观的学习材料,帮助他们更好地理解和掌握勾股定理。

六.说教学过程1.导入:通过一个实际问题,引导学生思考直角三角形三边之间的关系。

2.探究:引导学生进行小组讨论,鼓励他们用自己的方法来证明勾股定理。

3.讲解:对学生的探究结果进行点评,并给出标准的证明过程。

4.练习:为学生提供一些练习题,帮助他们巩固所学内容。

5.应用:引导学生运用勾股定理解决实际问题,如测量物体的高度等。

七.说板书设计板书设计如下:直角三角形两直角边的平方和等于斜边的平方。

人教版八年级数学下册第17章勾股定理小结和复习说课稿

人教版八年级数学下册第17章勾股定理小结和复习说课稿
(二)教学反思
在教学过程中,我预见到以下可能出现的问题或挑战:
1.部分学生对勾股定理的理解不够深入,可能在应用时出现错误。
2.学生在小组合作过程中可能出现分工不均、讨论效率低下等问题。
应对策略:
1.针对学生理解不足的问题,及时进行个别辅导,强化勾股定理的知识点。
2.在小组合作中,加强组织和引导,确保每个学生都能积极参与。
(三)学习动机
为了激发学生的学习兴趣和动机,我将在教学中采取以下策略或活动:
1.创设生活情境,让学生感受勾股定理在实际生活中的应用,提高学生的学习兴趣。
2.设计有趣的数学游戏和小组竞赛,激发学生的学习积极性,培养学生的合作意识。
3.鼓励学生主动参与课堂讨论,引导学生发现勾股定理的规律,提高学生的自主学习能力。
(二)学习障碍
学生在学习本节课之前,具备的前置知识有:勾股定理的基本概念、证明方法以及一些简单的应用。可能存在的学习障碍有:
1.对勾股定理的理解不够深入,无法灵活运用勾股定理解决问题。
2.勾股数的辨识能力较弱,容易与其他三角形的三边关系混淆。
3.在解决实际问题时,不能将问题转化为数学模型,运用勾股定理进行求解。
4.创设问题情境,引导学生通过探究、合作交流等方式解决问题,让学生在解决问题中体验成功,增强学习信心。
5.结合学生的年龄特点和兴趣,运用多媒体教学手段,直观展示勾股定理的图形和实例,提高学生的学习兴趣和动机。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括:启发式教学法、探究式教学法和小组合作学习法。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:教师提问,学生回答;教师引导学生进行探究,给予指导和反馈。

关于勾股定理说课稿四篇

关于勾股定理说课稿四篇

关于勾股定理说课稿四篇篇一:勾股定理的引入大家好!今天我要给大家讲解的是数学中的一个重要定理——勾股定理。

勾股定理是数学中的一条基本定理,也是我们学习几何的基础。

它的发现和应用可以追溯到古代中国和古希腊时期。

勾股定理的证明方法有很多,其中一种最常见的方法是利用几何图形进行证明。

下面我将为大家介绍勾股定理的定义、历史背景以及一个简单的证明方法。

首先,我们来看一下勾股定理的定义。

勾股定理是指在直角三角形中,直角边的平方等于另外两条边的平方和。

换句话说,设直角三角形的两条直角边分别为a和b,斜边为c,则有a² + b² = c²。

这就是勾股定理的数学表达式。

接下来,我们了解一下勾股定理的历史背景。

勾股定理最早可以追溯到古代中国的《周髀算经》和《九章算术》中。

在中国,勾股定理被称为“勾股数学”,并被广泛应用于农业、建筑和天文学等领域。

而在古希腊,勾股定理被归功于毕达哥拉斯学派的数学家毕达哥拉斯。

他将勾股定理应用于几何学,并给出了一个简单的证明方法。

最后,我们来看一下勾股定理的证明方法。

一个简单的证明方法是通过几何图形进行证明。

我们可以画一个直角三角形,并在每条边上标出相应的长度。

然后,根据勾股定理的定义,我们可以计算出每条边的平方和,验证它们是否相等。

如果相等,那么我们就证明了勾股定理的正确性。

总结一下,勾股定理是数学中的一条基本定理,它在几何学中有着广泛的应用。

它的定义是直角三角形的直角边的平方等于另外两条边的平方和。

勾股定理的历史可以追溯到古代中国和古希腊时期。

证明勾股定理的方法有很多,其中一种常见的方法是通过几何图形进行证明。

希望通过今天的讲解,大家对勾股定理有了更深入的了解。

篇二:勾股定理的应用大家好!今天我要给大家讲解的是勾股定理的应用。

勾股定理是数学中的一条基本定理,它不仅在几何学中有着广泛的应用,还可以用于解决实际问题。

下面我将为大家介绍勾股定理在几何学和实际问题中的应用。

《勾股定理》说课稿(通用6篇)精选全文

《勾股定理》说课稿(通用6篇)精选全文

可编辑修改精选全文完整版《勾股定理》说课稿(通用6篇)《勾股定理》篇1尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。

今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。

一、教材分析:(一) 教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。

其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

二、教学与学法分析教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。

”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。

(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

人教版数学八年级下册17.1《勾股定理》说课稿4

人教版数学八年级下册17.1《勾股定理》说课稿4

人教版数学八年级下册17.1《勾股定理》说课稿4一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是初中的重要几何定理之一。

本节课的主要内容是让学生通过探究、发现并证明勾股定理,理解并掌握勾股定理的内容和应用。

教材通过丰富的情境和实例,引导学生从实际问题中发现勾股定理,并通过几何画板等工具进行验证。

教材还提供了多种证明方法,让学生了解勾股定理的不同证明思路,培养学生的逻辑思维能力和创新意识。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、三角形的内角和定理等知识,具备了一定的几何基础。

但是,对于证明方法的掌握和运用还需要进一步的培养。

此外,学生对于抽象的几何证明可能还存在一定的困难,因此需要教师在教学中给予适当的引导和帮助。

三. 说教学目标1.知识与技能目标:让学生掌握勾股定理的内容和证明方法,能够运用勾股定理解决实际问题。

2.过程与方法目标:通过观察、操作、探究等活动,培养学生的几何直观能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。

四. 说教学重难点1.教学重点:让学生掌握勾股定理的内容和证明方法。

2.教学难点:让学生理解和运用勾股定理的证明方法,解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、几何画板等工具,帮助学生直观地理解勾股定理的证明过程。

六. 说教学过程1.导入:通过展示直角三角形的实例,引导学生发现直角三角形边长之间的关系,激发学生的兴趣。

2.探究:让学生分组讨论,每组选择一种证明方法,利用几何画板等工具进行验证,并展示汇报。

3.证明:引导学生总结勾股定理的证明过程,理解证明方法的本质。

4.应用:让学生运用勾股定理解决实际问题,巩固所学知识。

5.总结:对本节课的内容进行总结,强调勾股定理的重要性和应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理说课稿
各位评委老师,上午好:
今天我说课得题目就是《勾股定理》,所选教材为人教版八年级数学下册。

我将遵循幸福课堂四步教学法,从说教材,说学情,说教法说学法,以及说流程几方面进行。

一、教材得地位与作用
勾股定理就是几何中重要定理之一,在数学得发展中起着重要得作用。

一方面就是对直角三角形中三边数量关系得深入与拓展,另一方面又为九年级学习三角函数奠定了基础。

鉴于这种理解,我认为本节课不仅有着广泛得实际应用,而且有着承前启后得作用。

二、说学情
八年级学生思维活跃,参与意识强,对事物充满好奇心。

经过七年级得学习,以储备相应得知识基础,初步具备基本得数形知识,归纳信息得能力;但由于生活经验少,在综合分析事物时,考虑问题可能不会很全面,需要教师引导。

根据新课标得要求与教材内容以及学生得基础认知水平,我确定以下三个维度得教学目标:
1、【知识与能力目标】
通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理得能力。

2、【过程与方法目标】
让学生经历“观察-猜想-归纳-验证”得数学思想,并体会数形结合与从特殊到一般得思想方法。

3、【情感态度与价值观】激发学生热爱祖国悠久文化得思想感情,培养学生得民族自豪感与钻研精神。

结合新课标对本课得要求,我将本节课得重点确定为:勾股定理得证明与运用
难点确定为:用面积法等方法证明勾股定理
三、教法与学法分析
为了讲清教材得重难点,使学生能够达到本课设定得教学目标,我再从教法与学法上说说。

根据教学有法,教无定法得原则与郭思乐教授得生本教育理念,我决定采用“定向----自学 ----交流---提升”得模式,以倡导学生自学,增加尝试探究,强化检测提升,
增强成功体验为特点得四环节幸福课堂教学模式,强化师生得课堂幸福感受。

教就是手段,学就是中心,学会就是目得,为实现人人学有价数学得教学理念,我抓住八年级学生思维活跃注意力易分散与爱“自我表现”得心理特点,创造条件,指导学生,学会探究,学会合作,学会归纳。

四,教学流程
我按照课标要求,结合教材内容与学生得生活体验,创造性得使用教材,重新整合教学资源,将学习内容分成三大教学板块。

第一板块:我设计了“瞧动画、大挑战”“赏图片,知荣辱”两个环节,为突出重点,在“瞧动画、大挑战”环节,我利用多媒体课件演示FLASH小动画片:消防队员楼房救火,能否进入三楼灭火得问题情境,这一环节设计得目得就是激发学生得探究欲望,这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学就是为更好“服务于生活”。

“赏图片,知荣辱”环节,安排了学生资料展示活动,展示内容就是学生课前通过各种途径搜集到得有关得勾股定理资料,资料形式可以不拘一格,目得就是调动学生学习得积极性与主动性,满足学生“自我表现”得欲望,培养学生搜集、整理信息得能力,体现“学习生活中有用价值得数学”得理念。

第二板块:我设计了“集广义、达共识”得环节,为了突破重难点,根据课标要求与学生得认知能力,采用学生动手操作,小组合作、探究,验证猜想,各小组班前展示得形式,教师鼓励学生产生质疑与分歧,再进一步辩论后,达成共识。

教师做总结性得板书。

这一活动得设计,培养学生发现问题,分析问题,解决问题得能力,实现了在共建中共享,共享中共建。

第三板块学以致用拓展延伸
基础题,情境题,探索题、
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生得个体差异,关注学生得个性发展、知识得运用得到升华、
基础题: 直角三角形得一直角边长为3,斜边为5,另一直角边长为X,您可以根据条件提出多少个数学问题?您能解决所提出得问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.
情境题:北购店庆小明妈妈买了一部29英寸(74厘米)得电视机、小明量了电视机得屏幕后,发现屏幕只有58厘米长与46厘米宽,她觉得一定就是售货员搞错了、您同意她得想法吗?
设计意图:增加学生得生活常识,也体现了数学源于生活,并用于生活。

探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米得木箱,一根长为70厘米得木棒能否放入,为什么?试用今天学过得知识说明。

设计意图:探索题得难度相对大了些,但教师利用教学模型与学生合作交流得方式,拓展学生得思维、发展空间想象能力、
总之,本环节目得就是鼓励学生运用所学知识解决生活实际问题,渗透“学习对终身发展有用数学”得理念。

四、作业超市, 各显神通
以作业得巩固性与发展性为出发点,我设计了作业超市:分为必做题与选做题,必做题就是对本节课内容得一个反馈,选做题就是对本节课内容得一个延伸,目得就是实现了数学应面向全体得理念。

五、课堂效果预设
各位评委,本节课,我根据八年级学生得心里特征及其认知规律,采用问题引领下得小组合作探究形式,以教师为主导,学生为主体,导学案为抓手,完成教学。

教师得导立足于学生得学 ,放手让学生自主探究,合作交流,使她们主动得参与到知识形成得思维过程中,在积极愉快得氛围中实现人人都能获得必需得数学,与不同人在数学上得到不同程度得发展得教学理念。

我得说课完毕,谢谢!。

相关文档
最新文档