[推荐学习]2018届高三数学一轮复习第三章导数及其应用第一节变化率与导数导数的计算夯基提能

合集下载

高考数学一轮复习第3章导数及其应用1第1讲变化率与导数导数的计算教案理

高考数学一轮复习第3章导数及其应用1第1讲变化率与导数导数的计算教案理

第1讲 变化率与导数、导数的计算了解导数概念的实际背景,理解导数的几何意义.能根据导数定义求函数y =C (C 为常数),y =x ,y =x 2,y =x 3,y =1x,能利用基本初等函数的导数公式和导数的四则运算法则求简单函数 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数 会利用导数解决某些实际问题.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概 了解微积分基本定理的含义.1.导数的概念(1)函数y =f (x )在x =x 0处的导数 称函数y =f (x )在x =x 0处的瞬时变化率 limΔx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →0ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x=x 0,即f ′(x 0)=lim Δx →0Δy Δx = f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数 称函数f ′(x )=limΔx →0f (x +Δx )-f (x )Δx 为f (x )的导函数.2.基本初等函数的导数公式(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.判断正误(正确的打“√”,错误的打“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)×(教材习题改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B .y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x .(2018·开封市第一次模拟)已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-2 B .1 C .3D .4解析:选C .对于y =x 3+mx +n ,y ′=3x 2+m ,所以k =3+m ,又k +1=3,1+m +n =3,可解得n =3.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析:因为f ′(x )=a (l +ln x ), 所以f ′(1)=a =3. 答案:3(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为__________.解析:因为y =x 2+1x ,所以y ′=2x -1x2,所以y ′|x =1=2-1=1,所以所求切线方程为y-2=x -1,即x -y +1=0. 答案:x -y +1=0导数的计算[典例引领]求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =sin x2(1-2cos 2x4);(3)y =3x e x-2x +e ; (4)y =ln x x 2+1; (5)y =ln 2x -12x +1.【解】 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , 所以y ′=18x 2-10x -4.(2)因为y =sin x 2(-cos x 2)=-12sin x ,所以y ′=(-12sin x )′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x)′ =3x e x ln 3+3x e x -2xln 2 =(ln 3+1)·(3e)x -2xln 2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln xx (x 2+1)2.(5)y ′=(ln 2x -12x +1)′=[ln(2x -1)-ln(2x +1)]′=[ln(2x -1)]′-[ln(2x +1)]′=12x -1·(2x -1)′-12x +1·(2x +1)′=22x -1-22x +1=44x 2-1.[通关练习]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=3x 2+2x ·f ′(2),则f ′(5)=( ) A .2 B .4 C .6D .8解析:选C.f ′(x )=6x +2f ′(2), 令x =2,得f ′(2)=-12.再令x =5,得f ′(5)=6×5+2f ′(2)=30-24=6. 2.求下列函数的导数:(1)y =x n e x ;(2)y =cos x sin x ;(3)y =e xln x ;(4)y =(1+sin x )2. 解:(1)y ′=nxn -1e x+x n e x =xn -1e x(n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x . (3)y ′=e x ln x +e x·1x=e x ⎝ ⎛⎭⎪⎫1x +ln x .(4)y ′=2(1+sin x )·(1+sin x )′=2(1+sin x )·cos x .导数的几何意义(高频考点)导数的几何意义是每年高考的必考内容,考查题型既有选择题也有填空题,也常出现在解答题的第(1)问中,难度偏小.高考对导数几何意义的考查主要有以下三个命题角度: (1)求切线方程;(2)已知切线方程(或斜率)求切点坐标; (3)已知切线方程求参数值.[典例引领]角度一 求切线方程(1)(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.(2)曲线f (x )=x 3-2x 2+2(12≤x ≤52),过点P (2,0)的切线方程为________.【解析】 (1)因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x -1),令x =0,得y =1,即直线l 在y 轴上的截距为1.(2)因为f (2)=23-2×22+2=2≠0,所以点P (2,0)不在曲线f (x )=x 3-2x 2+2上. 设切点坐标为(x 0,y 0),则12≤x 0≤52.且⎩⎪⎨⎪⎧y 0=x 30-2x 20+2,0-y 02-x 0=f ′(x 0),所以⎩⎪⎨⎪⎧y 0=x 30-2x 20+2,-y 02-x 0=3x 20-4x 0,消去y ,整理得(x 0-1)(x 20-3x 0+1)=0,解得x 0=1或x 0=3+52(舍去)或x 0=3-52(舍去),所以y 0=1,f ′(x 0)=-1,所以所求的切线方程为y -1=-(x -1), 即y =-x +2.【答案】 (1)1 (2)y =-x +2角度二 已知切线方程(或斜率)求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率为k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为________.解析:设切点为(x 0,y 0), 因为y ′=ln x +1, 由题意,得ln x 0+1=1, 所以ln x 0=0,x 0=1, 即点P (1,0),所以切线方程为y =x -1, 即x -y -1=0. 答案:x -y -1=0角度三 已知切线方程求参数值(2016·高考全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线 y =ln(x +1)的切线,则b =________.【解析】 求得(ln x +2)′=1x , [ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2), 则 k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1,所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2. 【答案】 1-ln 2(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率; ②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0). (2)求曲线f (x ),g (x )的公切线l 的方程的步骤①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值; ③求切线方程,把所求参数的值代入曲线的切线方程中即可. (3)求曲线的切线方程需注意三点①当曲线y =f (x )在点P (x 0,f (x 0))处的切线垂直于x 轴(此时导数不存在)时,切线方程为x =x 0;②当切点坐标不知道时,应首先设出切点坐标,再求解;③应正确区分“求在曲线点P 处的切线方程”和“求过曲线点P 处的切线方程”.[通关练习]1.(2018·云南省第一次统一检测)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4. 答案:42.(2018·沈阳市教学质量检测(一))设函数f (x )=g (x2)+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为9x +y -1=0,则曲线y =f (x )在点(2,f (2))处的切线方程为________. 解析:由已知得 g ′(1)=-9,g (1)=-8,又f ′(x )=12 g ′(x 2)+2x ,所以f ′(2)=12g ′(1)+4=-92+4=-12,f (2)=g (1)+4=-4,所以所求切线方程为y +4=-12(x -2),即x+2y +6=0.答案:x +2y +6=03.若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.解析:设直线l 与曲线y =e x的切点为(x 0,e x0),直线l 与曲线y =-14x 2的切点为(x 1,-x 214),因为y =e x 在点(x 0,e x 0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点(x 1,-x 214)处的切线的斜率为y ′|x =x 1=(-x 2)|x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x0+e x 0或y=-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x=-x 12,-x 0e x 0+e x=x214,所以e x0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1. 答案:y =x +1导数的几何意义与其他知识交汇[典例引领]抛物线y =x 2在x =1处的切线与两坐标轴围成的三角形区域为D (包含三角形内部与边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是________. 【解析】 由于y ′=2x ,所以抛物线在x =1处的切线方程为y -1=2(x -1),即y =2x -1.画出可行域(如图).设x +2y =z ,则y =-12x +12z ,可知当直线y =-12x +12z 经过点A ⎝ ⎛⎭⎪⎫12,0,B (0,-1)时,z 分别取到最大值和最小值,此时最大值z ma x =12,最小值z min =-2,故取值范围是⎣⎢⎡⎦⎥⎤-2,12.【答案】 ⎣⎢⎡⎦⎥⎤-2,12(1)本题以y =x 2在x =1处的切线问题为条件,利用导数的几何意义求得切线方程,构造出求x +2y 的取值范围的可行域,充分体现了导数与线性规划的交汇. (2)利用导函数的特性,在求解有关奇(偶)函数问题中,发挥出奇妙的作用. (3)导数还可以与数列、向量、解析几何等交汇.[通关练习]1.曲线f (x )=-x 3+3x 2在点(1,f (1))处的切线截圆x 2+(y +1)2=4所得的弦长为( ) A .4 B .2 2 C .2D. 2解析:选A.因为f ′(x )=-3x 2+6x ,则在点(1,f (1))处的切线的斜率k =6-3=3,又f (1)=2,故切线方程为y -2=3(x -1),即3x -y -1=0. 因为圆心C (0,-1)到直线3x -y -1=0的距离d =0,所以直线3x -y -1=0截圆x 2+(y +1)2=4所得的弦长就是该圆的直径4,故选A . 2.对正整数n ,设曲线y =(2-x )x n 在x =3处的切线与y 轴交点的纵坐标为a n ,则数列{a nn +2}的前n 项和等于________. 解析:因为y ′=2nxn -1-(n +1)x n.所以曲线y =(2-x )x n 在x =3处的切线的斜率为(-13n -1)3n .所以切线方程为y =(-13n -1)3n (x -3)-3n.令x =0,得a n =(n +2)·3n,所以a nn +2=3n. 所以数列{a nn +2}的前n 项和为31+32+33+ (3)=3(1-3n)1-3=3n +1-32.答案:3n +1-32导数运算的技巧(1)要准确地把函数分割为基本函数的和、差、积、商及其复合运算的形式,再利用运算法则求导数.(2)对于不具备求导法则结构形式的,要适当恒等变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误.对数函数的真数是根式或者分式时,可用对数的运算性质将真数转化为有理式或整式,然后再求解比较方便;当函 数表达式含有三角函数时,可优先考虑利用三角公式进行化简后再求导.易误防范(1)利用公式求导时要特别注意不要将幂函数的求导公式(x n)′=nxn -1与指数函数的求导公式(a x )′=a xln a 混淆.(2)求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.1.(2018·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( ) A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2解析:选A.因为y =f (x )=x sin x ,所以f ′(x )=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sin π+πcos π=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.2.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B .f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.3. 函数g (x )=x 3+52x 2+3ln x +b (b ∈R )在x =1处的切线过点(0,-5),则b 的值为( )A.72B.52C.32D.12解析:选B.当x =1时,g (1)=1+52+b =72+b ,又g ′(x )=3x 2+5x +3x,所以切线斜率k =g ′(1)=3+5+3=11, 从而切线方程为y =11x -5,由于点⎝ ⎛⎭⎪⎫1,72+b 在切线上,所以72+b =11-5, 解之得b =52.故选B.4.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .3D .4解析:选B.由题图可知曲线y =f (x )在x =3处切线的斜率为-13,即f ′(3)=-13,又g (x )=xf (x ),g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.5.(2018·广州市综合测试(一))设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A .(0,0) B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D.由题易知,f ′(x )=3x 2+2ax ,所以曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率为f ′(x 0)=3x 2+2ax 0,又切线方程为x +y =0,所以x 0≠0,且⎩⎪⎨⎪⎧3x 20+2ax 0=-1x 0+x 30+ax 20=0,解得a =±2,x 0=-a2.所以当⎩⎪⎨⎪⎧x 0=1a =-2时,点P的坐标为(1,-1);当⎩⎪⎨⎪⎧x 0=-1a =2时,点P 的坐标为(-1,1),故选D.6.若f (x )=(x 2+2x -1)e2-x,则f ′(x )=________.解析:f ′(x )=(x 2+2x -1)′e 2-x+(x 2+2x -1)(e2-x)′=(2x +2)e 2-x+(x 2+2x -1)·(-e 2-x)=(3-x 2)e2-x.答案:(3-x 2)e2-x7.(2018·昆明市教学质量检测)若函数f (x )=2cos(ωx +π4)的图象在x =0处的切线方程为y =-3x +1,则ω=________.解析:由题意,得f ′(x )=-2ωsin(ωx +π4),所以f ′(0)=-2ωsin π4=-ω=-3,所以ω=3. 答案:38.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a=-13x 3(x >0),故a ∈(-∞,0).答案:(-∞,0) 9.求下列函数的导数: (1)y =(3x 3-4x )(2x +1); (2)y =x +cos xx +sin x;(3)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2; (4)y =ln (2x +3)x 2+1.解:(1)法一:因为y =(3x 3-4x )(2x +1)=6x 4+3x 3-8x 2-4x ,所以y ′=24x 3+9x 2-16x -4.法二:y ′=(3x 3-4x )′(2x +1)+(3x 3-4x )(2x +1)′=(9x 2-4)(2x +1)+(3x 3-4x )·2=24x 3+9x 2-16x -4.(2)y ′=(x +cos x )′(x +sin x )-(x +cos x )(x +sin x )′(x +sin x )2=(1-sin x )(x +sin x )-(x +cos x )(1+cos x )(x +sin x )2=-x cos x -x sin x +sin x -cos x -1(x +sin x )2. (3)因为y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2 =12x sin(4x +π)=-12x sin 4x , 所以y ′=-12sin 4x -12x ·4·cos 4x=-12sin 4x -2x cos 4x .(4)y ′=[ln (2x +3)]′(x 2+1)-(x 2+1)′ln (2x +3)(x 2+1)2=(2x +3)′2x +3·(x 2+1)-2x ln (2x +3)(x 2+1)2=2(x 2+1)-2x (2x +3)ln (2x +3)(2x +3)(x 2+1)2. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.1.(2018·成都市第二次诊断性检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( ) A .(-12,+∞)B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).2.过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条D .0条解析:选A.由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,利用点斜式方程可知切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令z =2x 30-6x 20+7,则z ′=6x 20-12x 0.由z ′=0得x 0=0或x 0=2.当x 0=0时,z =7>0;x 0=2时,z =-1<0.所以方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条.3.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则过切点且与该切线垂直的直线方程为__________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ). 则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1. 解得x 0=-1,a =-12,切点坐标为(-1,0).所以过切点且与该切线垂直的直线方程为y =-1·(x +1),即x +y +1=0.答案:x +y +1=04.(2018·山东青岛自主诊断)函数y =f (x )图象上不同两点A (x 1,y 1),B (x 2,y 2)处的切线的斜率分别是k A ,k B ,规定K (A ,B )=|k A -k B ||AB |(|AB |为线段AB 的长度)叫作曲线y =f (x )在点A 与点B 之间的“近似曲率”.设曲线y =1x上两点A ⎝ ⎛⎭⎪⎫a ,1a ,B ⎝ ⎛⎭⎪⎫1a ,a (a >0且a ≠1),若m ·K (A ,B )>1恒成立,则实数m 的取值范围是______.解析:因为y ′=-1x2,所以k A =-1a2,k B =-a 2.又|AB |=⎝ ⎛⎭⎪⎫a -1a 2+⎝ ⎛⎭⎪⎫1a -a 2=2⎪⎪⎪⎪⎪⎪1a -a , 所以K (A ,B )=|k A -k B ||AB |=|a 2-1a 2|2|1a-a |=1a +a 2,因为a >0且a ≠1,所以a +1a >2a ·1a =2,即1K (A ,B )<22.由m ·K (A ,B )>1恒成立得,m >1K (A ,B ),即m ≥22.答案:⎣⎢⎡⎭⎪⎫22,+∞ 5.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值. 解:对于C 1:y =x 2-2x +2,有y ′=2x -2,对于C 2:y =-x 2+ax +b ,有y ′=-2x +a , 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直. 所以(2x 0-2)·(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0,① 又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b , ⇒2x 20-(a +2)x 0+2-b =0.②由①②消去x 0,可得a +b =52.6.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)设点P 的坐标为(x 1,y 1), 则y 1=kx 1,①y 1=-x 21+92x 1-4,②①代入②得,x 21+⎝ ⎛⎭⎪⎫k -92x 1+4=0.因为P 为切点,所以Δ=⎝ ⎛⎭⎪⎫k -922-16=0,得k =172或k =12. 当k =172时,x 1=-2,y 1=-17.当k =12时,x 1=2,y 1=1.因为P 在第一象限, 所以所求的斜率k =12.(2)过P 点作切线的垂线, 其方程为y =-2x +5.③ 将③代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4.精美句子1、善思则能“从无字句处读书”。

2018高考一轮复习导数:第一节 变化率与导数、导数的计算

2018高考一轮复习导数:第一节  变化率与导数、导数的计算

( 5三 ) 角形式:先利用三角函数公式转化为和或差 式,再求导.
( 6复 ) 合函数:确定复合关系,由外向内逐层求导
突 破 点 一 突 破 点 二 课时达标检测
变化率与导数、导数的计算


导数运算的应用
[例 2] (1)( 2 0 1济 6· 宁二模 )已 知 函 数 f(x)=x( 2 0 + 17 l n x), ( C.l n 2 D.e )
变化率与导数、导数的计算


第三章 导数及其应用
第一节 变化率与导数、 导 数的计算
本节主要包2 括 个知识点: 1导 . 数的运算 ; 2导 . 数的几何意 .义









课时达标检测
变化率与导数、导数ຫໍສະໝຸດ 计算结束突破点(一)
基础联通
导数的运算
抓 主 干 知 识“ 的 源” 与“ 流”
原函数 sin x cos x a (a> 0 ) e
x x
loa gx(a> 0 , 且a≠1)
l nx
x - s i n x a ln_a_ _ _ex 导函数 cos x _ _ _ _ _ __ __
1 1 l_ na _x _ _ _ _ _x ___








课时达标检测
变化率与导数、导数的计算
1.函数y=f(x)在x=x0处 的 导 数
lim Δy x→ 称函数 y=f(x)在x=x0处 的 瞬 时 变 化 lim 率 Δx=_ Δ _ _0 _ _ _ _ Δx→0 fx0+Δx-fx0 Δ_ x_ _ _ _为 _____ _ _函 __ 数 y _=f(x)在x=x0处 的 导 数 , 记 f′ 作 (x0)或

2018届高三数学一轮复习:第三章 导数及其应用 第一节 变化率与导数、导数的计算

2018届高三数学一轮复习:第三章 导数及其应用 第一节 变化率与导数、导数的计算

第一节变化率与导数、导数的计算A组基础题组1.已知函数f(x)=cosx,则f(π)+f'=()A.-B.-C.-D.-2.已知f(x)=x(2016+lnx),若f'(x0)=2017,则x0等于()A.e2B.1C.ln2D.e3.(2016济宁模拟)曲线y=xe x+2x-1在点(0,-1)的切线方程为()A.y=3x-1B.y=-3x-1C.y=3x+1D.y=-3x-14.(2016贵州贵阳一模,6)曲线y=xe x在点(1,e)处的切线与直线ax+by+c=0垂直,则的值为()A.-B.-C.D.5.(2016重庆适应性测试)若直线y=ax是曲线y=2lnx+1的一条切线,则实数a=()A. B.2 C. D.26.(2014江西,11,5分)若曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,则点P的坐标是.7.已知f(x)=3lnx-2xf'(1),则曲线y=f(x)在点A(1,m)处的切线方程为.8.曲线y=alnx(a>0)在x=1处的切线与两坐标轴所围成的三角形的面积为4,则a=.9.求下列函数的导数:(1)y=x·tanx;(2)y=(x+1)(x+2)(x+3);(3)y=.10.已知函数f(x)=x-,g(x)=a(2-lnx).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a 的值,并判断两切线是否为同一条直线.B组提升题组11.(2017河南郑州二中期末)下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(-1)=()A. B.- C. D.-或12.已知f(x)=lnx,g(x)=x2+mx+(m<0),直线l与函数f(x),g(x)的图象都相切,且与f(x)图象的切点为(1,f(1)),则m的值为()A.-1B.-3C.-4D.-213.若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x-2的最小距离为.14.函数f(x)=的图象在点(-1,2)处的切线与坐标轴围成的三角形的面积等于.15.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.16.设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.答案全解全析A组基础题组1.C∵f(x)=cosx,∴f'(x)=-cosx+·(-sinx),∴f(π)+f'=-+·(-1)=-.2.B f'(x)=2016+lnx+x×=2017+lnx,由f'(x0)=2017,得2017+lnx0=2017,则lnx0=0,解得x0=1.3.A由题意得y'=(x+1)e x+2,则曲线y=xe x+2x-1在点(0,-1)处的切线的斜率为(0+1)e0+2=3,故曲线y=xe x+2x-1在点(0,-1)处的切线方程为y+1=3x,即y=3x-1.4.D y'=e x+xe x,则y'|x=1=2e,∵切线与直线ax+by+c=0垂直,∴-=-,∴=,故选D.5.B依题意,设直线y=ax与曲线y=2lnx+1的切点的横坐标为x0,对于y=2lnx+1,易知y'=,则有y'=,于是有解得x 0=,a=2,选B.6.答案(e,e)解析令f(x)=xlnx,则f'(x)=lnx+1,设P(x0,y0),则f'(x0)=lnx0+1=2,∴x0=e,此时y0=x0lnx0=elne=e,∴点P的坐标为(e,e).7.答案x-y-3=0解析由题意得f'(x)=-2f'(1),所以f'(1)=3-2f'(1),即f'(1)=1.∴m=f(1)=-2f'(1)=-2,所以所求切线方程为y+2=x-1,即x-y-3=0.8.答案8解析令f(x)=y=alnx,则f'(x)=,∴在x=1处的切线的斜率为a,∵f(1)=aln1=0,故切点为(1,0),∴切线方程为y=a(x-1),令y=0,得x=1;令x=0,得y=-a,∵a>0,∴所围成的三角形的面积为×a×1=4,∴a=8.9.解析(1)y'=(x·tanx)'=x'tanx+x(tanx)'=tanx+x·'=tanx+x·=tanx+.(2)y'=(x+1)(x+2)]'(x+3)+(x+1)(x+2)(x+3)'=(x+1)'(x+2)+(x+1)(x+2)'](x+3)+(x+1)(x+2)=(x+2+x+1)(x+3)+(x+1)(x+2)=(2x+3)(x+3)+(x+1)(x+2)=3x2+12x+11.(3)因为y===e x+e-x-=e x+e-x-,所以y'=(e x)'+(e-x)'-'=e x-e-x-.10.解析易知:曲线y=f(x)在x=1处的切线斜率为f'(1)=3,曲线y=g(x)在x=1处的切线斜率为g'(1)=-a.又f'(1)=g'(1),所以a=-3.因为曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1),得y+1=3(x-1),即切线方程为3x-y-4=0;曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),得y+6=3(x-1),即切线方程为3x-y-9=0,所以两切线不是同一条直线.B组提升题组11.D∵f'(x)=x2+2ax+a2-1,∴f'(x)的图象开口向上,则排除②④.若f'(x)的图象为①,则a=0,f(-1)=; 若f'(x)的图象为③,则a2-1=0,且-a>0,∴a=-1,∴f(-1)=-.综上知选D.12.D∵f'(x)=,∴直线l的斜率k=f'(1)=1,又f(1)=0,∴切线l的方程为y=x-1.g'(x)=x+m,设直线l与g(x)的图象的切点为(x0,y0),则有x0+m=1,y0=x0-1,y0=+mx0+(m<0),由此可解得m=-2.13.答案解析由y=x2-lnx,得y'=2x-(x>0),设点P 0(x0,y0)是曲线y=x2-lnx上到直线y=x-2的距离最小的点,则y'=2x0-=1,解得x0=1或x0=-(舍).∴点P0的坐标为(1,1).∴所求的最小距离==.14.答案解析f'(x)==,则f'(-1)=-4,故切线方程为y=-4x-2,切线在x,y轴上的截距分别为-,-2,故所求三角形的面积为.15.解析f'(x)=3x2+2(1-a)x-a(a+2).(1)由题意得解得b=0,a=-3或a=1.(2)因为曲线y=f(x)存在两条垂直于y轴的切线,所以关于x的方程3x2+2(1-a)x-a(a+2)=0有两个不相等的实数根,所以Δ=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,所以a≠-.所以a的取值范围为∪.16.解析(1)方程7x-4y-12=0可化为y=x-3,当x=2时,y=,故2a-=.又因为f'(x)=a+,则有a+=,所以a=1,b=3.故f(x)=x-.(2)设P(x0,y0)为曲线上任一点,由(1)知,f'(x)=1+,则曲线在点P(x0,y0)处的切线方程为y-y0=(x-x0),即y-=(x-x0).令x=0,得y=-,从而得切线与直线x=0的交点坐标为.令y=x,得x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以曲线y=f(x)在点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,此定值为6.。

课标通用2018届高考数学一轮复习第三章导数及其应用第1节变化率与导数导数的计算课件理201709023115

课标通用2018届高考数学一轮复习第三章导数及其应用第1节变化率与导数导数的计算课件理201709023115

(2)曲线的切线不一定与曲线只有一个公共点.(
(3) 与 曲 线 只 有 一 个 公 共 点 的 直 线 一 定 是 曲 线 的 切 线.( )
(4)[f(ax+b)]′=f ′(ax+b).(
2
) )
1 (5)若 f(x)=f ′(a)x +lnx(a>0), 则 f ′(x)=2x f ′(a)+ x .(
1 3 4 y-3x0+3=x2 0(x-x0),
2 3 4 2 y=x0·x- x0+ . 3 3
∵点
2 3 4 2 P(2,4)在切线上,∴4=2x0- x0+ , 3 3
2 3 2 2 即 x3 - 3 x + 4 = 0 ,∴ x + x - 4 x 0 0 0 0 0+4=0,
x 1 x (2)由题可得:y=sin -cos2 =- sinx, 2 2
1 1 1 ∴y′= -2sinx ′=- (sinx)′=- cosx. 2 2
1+ x+1- x 1 1 2 (3)y= + = = , 1- x 1+ x (1- x)(1+ x) 1-x
f(x)=ex f(x)=logax (a>0 且 a≠1) f(x)=lnx
f ′(x)=ex
1 f ′(x)=xlna(a>0,且 a≠1)
1 f ′(x)=x
4.导数运算法则
f (x)±g′(x) ; (1)[f(x)± g(x)]′=____________
f ′(x)g(x)+f(x)g′(x) ; (2)[f(x)·g(x)]′=__________________ f ′(x)g(x)-f(x)g′(x) f (x) 2 [ g ( x )] (3) ′=___________________ (g(x)≠0). g(x)

高考数学一轮复习 第三章 导数及其应用 第1讲 变化率与导数、导数的运算 理(2021年最新整理)

高考数学一轮复习 第三章 导数及其应用 第1讲 变化率与导数、导数的运算 理(2021年最新整理)

2018版高考数学一轮复习第三章导数及其应用第1讲变化率与导数、导数的运算理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第三章导数及其应用第1讲变化率与导数、导数的运算理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第三章导数及其应用第1讲变化率与导数、导数的运算理的全部内容。

第三章导数及其应用第1讲变化率与导数、导数的运算一、选择题1.设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为( )A.-错误! B.0 C.错误! D.5解析因为f(x)是R上的可导偶函数,所以f(x)的图象关于y轴对称,所以f(x)在x=0处取得极值,即f′(0)=0,又f(x)的周期为5,所以f′(5)=0,即曲线y=f(x)在x=5处的切线的斜率为0,选B。

答案 B2.函数f(x)是定义在(0,+∞)上的可导函数,且满足f(x)〉0,xf′(x)+f(x)〈0,则对任意正数a,b,若a>b,则必有( ).A.af(b)<bf(a)B.bf(a)<af(b)C.af(a)〈f(b) D.bf(b)〈f(a)解析构造函数F(x)=错误!(x>0),F′(x)=错误!,由条件知F′(x)〈0,∴函数F(x)=错误!在(0,+∞)上单调递减,又a〉b〉0,∴错误!〈错误!,即bf(a)〈af(b).答案B3.已知函数f(x)=x3+2ax2+错误!x(a〉0),则f(2)的最小值为( ).A.12错误!B.12+8a+错误!C.8+8a+错误!D.16解析f(2)=8+8a+错误!,令g(a)=8+8a+错误!,则g′(a)=8-错误!,由g′(a)〉0得a>错误!,由g′(a)<0得0<a〈错误!,∴a=错误!时f(2)有最小值.f(2)的最小值为8+8×错误!+错误!=16.故选D.答案D4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=().A.-e B.-1 C.1 D.e解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+错误!,∴f′(1)=2f′(1)+1,则f′(1)=-1。

最新-2018届高考数学一轮复习 导数的应用 导数变化率与导数调研课件 文 新人教A版 精品

最新-2018届高考数学一轮复习 导数的应用 导数变化率与导数调研课件 文 新人教A版 精品

(lnx)′ (x2+ 1)- lnx· (x2+ 1)′
(4)y′=
(x2+ 1)2
1
x·(x2+1)-lnx·2x x2+1-2x2·lnx

(x2+ 1)2

x(x2+ 1)2
• 探究2 (1)由本例要求熟记初等函数导数公式及法则. • (2)求导数时应先化简函数为初等函数的和差.
探究2 (1)由本例要求熟记初等函数导数公式及法则.
1)+(3x3-4x)·2 • (2)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx. • (3)y′=(3xex)′-(2x)′+e′ • =(3x)′ex+3x(ex)′-(2x)′ • =3xln3·ex+3xex-2xln2 • =(ln3+1)·(3e)x-2xln2.
则l2的方程为y= (2b+1)x- b2-2.
1
2
因为l1⊥l2,则有2b+1=-3,b=-3,
1 22 所以直线 l2的方程为y=-3x- 9 .
y= 3x- 3
x=16
②解方程y=-13x-292
,得
5
y=-2
.
1
5
所以直线 l1和 l2的交点的坐标为 (6,-2).
22 l1、 l2与 x轴交点的坐标分别为 (1,0)、 (- 3 , 0).
1 25
5 125
所以所求的三角形的面积为S=2× 3 × |-2|= 12 .
(2)求 过 点 (1, - 1)的曲线 y= x3- 2x的 切线方 程. 【解析】 设P(x0,y0)为切点,则切线的斜率为 f′ (x0)= 3x20- 2, 故 切线方程 为 y- y0= (3x20- 2)(x- x0), 即 y- (x30- 2x0)= (3x20- 2)(x- x0), 又知切线过点(1,-1),代入上述方程,

2018版高考数学一轮复习 第三章 导数及其应用 3.1 变化率与导数、导数的计算真题演练集训 理

2018版高考数学一轮复习 第三章 导数及其应用 3.1 变化率与导数、导数的计算真题演练集训 理

2018版高考数学一轮复习 第三章 导数及其应用 3.1 变化率与导数、导数的计算真题演练集训 理 新人教A 版1.[2014·大纲全国卷]曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1答案:C 解析:y ′=ex -1+x ex -1=(x +1)ex -1,故曲线在点(1,1)处的切线斜率为y ′|x =1=2.2.[2014·新课标全国卷Ⅱ]设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3答案:D 解析:y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 3.[2016·新课标全国卷Ⅲ]已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.答案:y =-2x -1解析:由题意可得,当x >0时,f (x )=ln x -3x ,则f ′(x )=1x-3,f ′(1)=-2,则在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.4.[2016·新课标全国卷Ⅱ]若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.答案:1-ln 2解析:设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)),则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2), 化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,得⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=-x2x 2+1+x 2+,解得x 1=12,从而b =ln x 1+1=1-ln 2.5.[2015·陕西卷]设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.答案:(1,1)解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).课外拓展阅读求解导数问题最有效的两种解题方法方法一 公式法利用导数公式和运算法则求导数的方法为公式法,其基本的解题步骤是: 第一步,用公式,运用导数公式和运算法则对所给函数进行求导; 第二步,得结论; 第三步,解后反思.[典例1] [改编题]求函数y =sin 2⎝ ⎛⎭⎪⎫2x +π3的导数. [思路分析][解] 解法一:y ′=2sin ⎝ ⎛⎭⎪⎫2x +π3⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x +π3′=2sin ⎝ ⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′=4sin ⎝ ⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3 =2sin ⎝⎛⎭⎪⎫4x +2π3.解法二:设y =u 2,u =sin v ,v =2x +π3,则y ′=y u ′·u v ′·v x ′ =2u ·cos v ·2 =4sin v cos v=4sin ⎝ ⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3 =2sin ⎝ ⎛⎭⎪⎫4x +2π3. 温馨提示当函数中既有复合函数求导,又有函数的四则运算时,要根据题中给出的表达式决定是先用四则运算还是先用复合函数求导法则,同时需要注意,复合函数的求导原则是从外层到内层进行,不要遗漏.方法二 构造法有些与函数有关的问题无法直接用导数来处理的,需要构造新的函数进行解决,这样的方法称为构造法,其基本的解题步骤是:第一步,构造函数,对要求的函数进行变形,或构造一个新的函数;第二步,运用公式,对变形后的函数或新构造的函数运用导数公式和运算法则进行求导; 第三步,得出结论.[典例2] 证明:当x >1时,有ln 2(x +1)>ln x · ln(x +2). [思路分析][证明] 构造辅助函数f (x )=x +ln x(x >1),于是有f ′(x )=x ln x -x +x +x x +2x.因为1<x <x +1,所以0<ln x <ln(x +1), 即x ln x <(x +1)ln(x +1). 则在(1,+∞)内恒有f ′(x )<0, 故f (x )在(1,+∞)内单调递减. 又1<x <x +1, 则f (x )>f (x +1), 即x +ln x>x +x +,所以ln 2(x +1)>ln x ·ln(x +2). 技巧点拨要证明f (x )>g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )>0,则F (x )在(a ,b )内是增函数,同时F (a )≥0,则有x ∈(a ,b )时,F (x )>0,即证明了f (x )>g (x ).同理可证明f (x )<g (x ).但要注意,此法中所构造的函数F (x )在给定区间内应是单调的.混淆“在某点处的切线”与“过某点的切线”致误[典例3] 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a =( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[易错分析] 没有对点(1,0)是否为切点进行分析,误认为是切点而出错. [解析] 因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20, 所以切线方程为y -x 30=3x 20(x -x 0), 即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.[答案] A易错提醒1.对于曲线切线方程问题的求解,对曲线的求导是一个关键点,因此求导公式、求导法则及导数的计算原则要熟练掌握.2.对于已知的点,应先确定其是否为曲线的切点,进而选择相应的方法求解.。

高考数学一轮复习 第三篇 导数及其应用第1讲 变化率与导数、导数的运算课件 理

高考数学一轮复习 第三篇 导数及其应用第1讲 变化率与导数、导数的运算课件 理

求解切线问题的关键是切点坐标,无论是已知切线 斜率还是切线经过某一点,切点坐标都是化解难点的关键所 在.
单击此处进入 活页限时训练
即 y=3x20x-2x30,由yy= =x33x,20x-2x30, 得(x-x0)2(x+2x0)=0,解得 x=x0,x=-2x0. 若 x0≠0,则交点坐标为(x0,x30),(-2x0,-8x30); 若 x0=0,则交点坐标为(0,0).
利用定义求导数的一般过程是:(1)求函数的增量 Δy; (2)求平均变化率ΔΔyx;(3)求极限
5.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标
分别为(0,4),(2,0),(6,4),则f(f(0))=______;li
Δxm→0
f1+ΔΔxx-f1=________(用数字作答).
答案 2 -2
考向一 导数的定义 【例1】►利用导数的定义求函数f(x)=x3在x=x0处的导数,并 求曲线f(x)=x3在x=x0处切线与曲线f(x)=x3的交点. [审题视点] 正确理解导数的定义是求解的关键.
【示例】►(本题满分12分)(2010·山东)已知函数f(x)=ln x-ax+ 1-x a-1(a∈R). (1)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)当a≤12时,讨论f(x)的单调性.
(1)求出在点(2,f(2))处的斜率及f(2),由点斜式写出 切线方程; (2)求f′(x),再对a分类讨论.
规范解答6——如何求曲线上某一点的切线方程
【问题研究】 利用导数的几何意义求函数在某一点的坐标或 某一点处的切线方程是高考常常涉及的问题.这类问题最容易 出现的错误就是分不清楚所求切线所过的点是不是切点而导致 错误. 【解决方案】 解这类问题的关键就是抓住切点.看准题目所求 的是“在曲线上某点处的切线方程”还是“过某点的切线方 程”,然后求某点处的斜率,用点斜式写出切线方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节变化率与导数、导数的计算
A组基础题组
1.已知函数f(x)=cos x,则f(π)+f '=( )
A.-
B.-
C.-
D.-
2.已知f(x)=x(2 016+ln x),若f '(x0)=2 017,则x0等于( )
A.e2
B.1
C.ln 2
D.e
3.(2016济宁模拟)曲线y=xe x+2x-1在点(0,-1)的切线方程为( )
A.y=3x-1
B.y=-3x-1
C.y=3x+1
D.y=-3x-1
4.(2016贵州贵阳一模,6)曲线y=xe x在点(1,e)处的切线与直线ax+by+c=0垂直,则的值为( )
A.-
B.-
C.
D.
5.(2016重庆适应性测试)若直线y=ax是曲线y=2ln x+1的一条切线,则实数a=( )
A.-
B.2-
C.
D.2
6.(2014江西,11,5分)若曲线y=xln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是.
7.已知f(x)=3ln x-2xf '(1),则曲线y=f(x)在点A(1,m)处的切线方程为.
8.曲线y=aln x(a>0)在x=1处的切线与两坐标轴所围成的三角形的面积为4,则a= .
9.求下列函数的导数:
(1)y=x·tan x;
(2)y=(x+1)(x+2)(x+3);
(3)y=-
-
.
10.已知函数f(x)=x-,g(x)=a(2-ln x).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两切线是否为同一条直线.
B组提升题组
11.(2017河南郑州二中期末)下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f '(x)的图象,则 f(-1)=( )
A. B.-C. D.-或
12.已知f(x)=ln x,g(x)=x2+mx+(m<0),直线l与函数f(x),g(x)的图象都相切,且与f(x)图象的切点为(1, f(1)),则m的值为( )
A.-1
B.-3
C.-4
D.-2
13.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小距离为.
14.函数f(x)=-的图象在点(-1,2)处的切线与坐标轴围成的三角形的面积等于.
15.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;
(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.
16.设函数f(x)=ax-,曲线y=f(x)在点(2, f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.
答案全解全析
A组基础题组
1.C ∵f(x)=cos x,∴f '(x)=-cos x+·(-sin x),∴f(π)+f '=-+·(-1)=-.
2.B f '(x)=2 016+ln x+x×=2 017+ln x,由f '(x0)=2 017,得2 017+ln x0=2 017,则ln x0=0,解得
x0=1.
3.A 由题意得y'=(x+1)e x+2,则曲线y=xe x+2x-1在点(0,-1)处的切线的斜率为(0+1)e0+2=3,故曲线
y=xe x+2x-1在点(0,-1)处的切线方程为y+1=3x,即y=3x-1.
4.D y'=e x+xe x,则y'|x=1=2e,∵切线与直线ax+by+c=0垂直,∴-=-,∴=,故选D.
5.B 依题意,设直线y=ax与曲线y=2ln x+1的切点的横坐标为x0,对于y=2ln x+1,易知y'=,则有
y'=,于是有解得x0=,a=2-,选B.
6.答案(e,e)
解析令f(x)=xln x,则f '(x)=ln x+1,设P(x
0,y0),则f '(x0)=ln x0+1=2,∴x0=e,此时y0=x0ln x0=eln e=e,∴点P的坐标为(e,e).
7.答案x-y-3=0
解析由题意得f '(x)=
-2f '(1),所以f '(1)=3-2f '(1),即f '(1)=1.∴m=f(1)=-2f '(1)=-2,所以所求切线方程为y+2=x-1,即x-y-3=0.
8.答案8
解析令f(x)=y=aln x,则f '(x)=
,∴在x=1处的切线的斜率为a,∵f(1)=aln 1=0,故切点为(1,0),∴切线方程为y=a(x-1),令y=0,得x=1;令x=0,得y=-a,∵a>0,∴所围成的三角形的面积为
×a×1=4,∴a=8.
9.解析(1)y'=(x·tan x)'=x'tan x+x(tan x)'
=tan x+x·'=tan x+x·
=tan x+.
(2)y'=[(x+1)(x+2)]'(x+3)+(x+1)(x+2)(x+3)'=[(x+1)'(x+2)+(x+1)(x+2)'](x+3)+(x+1)(x+2)=(x+2+ x+1)(x+3)+(x+1)(x+2)=(2x+3)(x+3)+(x+1)(x+2)=3x2+12x+11.
(3)因为y=-
-
=
--
-
=e x+e-x-
-
=e x+e-x-,
所以y'=(e x)'+(e-x)'-'
=e x-e-x--.
10.解析易知:曲线y=f(x)在x=1处的切线斜率为f '(1)=3,曲线y=g(x)在x=1处的切线斜率为
g'(1)=-a.又f '(1)=g'(1),所以a=-3.因为曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1),得
y+1=3(x-1),即切线方程为3x-y-4=0;曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),得y+6=3(x-1),即切线方程为3x-y-9=0,所以两切线不是同一条直线.
B组提升题组
11.D ∵f '(x)=x2+2ax+a2-1,∴f '(x)的图象开口向上,则排除②④.若f '(x)的图象为①,则a=0,
f(-1)=;
若f '(x)的图象为③,则a2-1=0,且-a>0,∴a=-1,∴f(-1)=-.综上知选D.
12.D ∵f '(x)=,∴直线l的斜率k=f '(1)=1,又f(1)=0,∴切线l的方程为y=x-1.
g'(x)=x+m,设直线l与g(x)的图象的切点为(x0,y0),则有x0+m=1,y0=x0-1,y0=+mx0+(m<0),由此可解得m=-2.
13.答案
解析由y=x2-ln x,得y'=2x-
(x>0),
设点P0(x0,y0)是曲线y=x2-ln x上到直线y=x-2的距离最小的点,则y'=2x0-=1,解得x0=1或
x0=-(舍).
∴点P0的坐标为(1,1).
∴所求的最小距离==.
14.答案
解析 f '(x)
=
---
=--
,
则f '(-1)=-4,故切线方程为y=-4x-2,切线在x,y轴上的截距分别为-,-2,故所求三角形的面积为.
15.解析 f '(x)=3x2+2(1-a)x-a(a+2).
(1)由题意得
--
解得b=0,a=-3或a=1.
(2)因为曲线y=f(x)存在两条垂直于y轴的切线,所以关于x的方程3x2+2(1-a)x-a(a+2)=0有两个不相等的实数根,所以Δ=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,所以a≠-.所以a的取值范围为
--∪-.
16.解析(1)方程7x-4y-12=0可化为y=x-3,当x=2时,y=,故2a-=.
又因为f '(x)=a+,则有a+=,所以a=1,b=3.故f(x)=x-.
(2)设P(x0,y0)为曲线上任一点,由(1)知, f '(x)=1+,则曲线在点P(x0,y0)处的切线方程为y-y0=
(x-x0),
即y--=(x-x0).
令x=0,得y=-,从而得切线与直线x=0的交点坐标为-.
令y=x,得x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).
所以曲线y=f(x)在点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为-|2x0|=6.
故曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,此定值为6.。

相关文档
最新文档