2020-2021学年高三数学一轮复习知识点专题3-1导数的概念带运算、定积分【带答案】
2020-2021学年高三数学一轮复习知识点专题3-1 导数的概念及运算、定积分

2020-2021学年高考数学一轮复习专题3.1 导数的概念及运算、定积分 (精讲)【考情分析】1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数;5.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;6.了解微积分基本定理的含义。
【重点知识梳理】 知识点1.导数的概念(1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li mΔx →0 ΔyΔx=li mΔx →0 f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx。
【特别提醒】函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”。
(2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0)。
【特别提醒】曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线。
(3)函数f (x )的导函数:称函数f ′(x )=li mΔx →0 f (x +Δx )-f (x )Δx为f (x )的导函数。
2020版高考数学一轮总复习 第三单元导数及其应用 教案全集 含解析

导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。
高三一轮复习 课件 3.1 导数的概念及运算

-5-
3.基本初等函数的导数公式
原函数 f(x)=c(c 为常数) f(x)=xα(α∈Q,α≠0) f(x)=sin x f(x)=cos x f(x)=ax f(x)=ex f(x)=logax f(x)=ln x
导函数 f'(x)=0 f'(x)=αxα-1 f'(x)=cos x f'(x)=-sin x f'(x)=axln a(a>0,且 a≠1) f'(x)=ex f'(x)= f'(x)=
3.1
导数的概念及运算
-3-
-4-
1.导数与导函数的概念
(1)函数 y=f(x)在 x=x0 处的瞬时变化率是 lim
������(������0 +Δ������)-������(������0) ������������������ ,称其为函数 y=f(x)在 x=x0 处的导数,记作 f'(x0)或 Δ������ ������x →0 Δ������ ������(������0 +Δ������)-������(������0 ) y'|������ =������ .即 f'(x0)= lim = lim . 0 Δ������ Δ������ Δ������ →0 Δ������ →0
2 2
D
于是解得 m=-2, 故选 D.
解析
关闭
答案
-19考点1 考点2 知识方法 易错易混
思考:已知切线方程(或斜率)求参数的值关键一步是什么? 解题心得:1.求切线方程时,注意区分曲线在某点处的切线和曲线 过某点的切线,曲线y=f(x)在点P(x0,f(x0))处的切线方程是yf(x0)=f'(x0)(x-x0);求过某点的切线方程,需先设出切点坐标,再依据已 知点在切线上求解. 2.已知切线方程(或斜率)求切点的一般思路是先求函数的导数, 然后让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代 入函数解析式求出切点的纵坐标. 3.已知切线方程(或斜率)求参数值的关键就是列出函数的导数等 于切线斜率的方程.
高三数学导数的复习知识点

高三数学导数的复习知识点导数是高中数学中的一个重要知识点,它不仅在数学中有广泛的应用,还在其他科学领域中有着重要的作用。
本文将对高三数学导数的复习知识点进行详细介绍,帮助同学们巩固和加深对导数的理解。
一、导数的概念和定义导数是函数在某一点上的变化率,表示函数曲线在该点上的切线斜率。
导数的定义是函数在一点处的极限值,用极限的方式来表示变化率。
在数学符号上,函数f(x)在x=a处的导数记作f'(a),可以用极限的形式表示为:f'(a)=lim(x→a) (f(x)-f(a))/(x-a)二、导数的基本性质1. 常数函数的导数为0。
即若f(x)=c,其中c为常数,则f'(x)=0。
2. 幂函数的导数。
若f(x)=x^n,其中n为正整数,则f'(x)=n*x^(n-1)。
3. 指数函数的导数。
若f(x)=e^x,其中e为自然对数的底,则f'(x)=e^x。
4. 对数函数的导数。
若f(x)=ln(x),则f'(x)=1/x。
5. 三角函数的导数。
- sin(x)的导数为cos(x)。
- cos(x)的导数为-sin(x)。
- tan(x)的导数为sec^2(x)。
三、导数的运算法则1. 常数倍法则。
若f(x)可导,c为常数,则(cf(x))' = cf'(x)。
2. 和差法则。
若f(x)和g(x)都可导,则(f(x)+g(x))' = f'(x) + g'(x)。
3. 乘法法则。
若f(x)和g(x)都可导,则(f(x)*g(x))' = f'(x)*g(x) +f(x)*g'(x)。
4. 商法则。
若f(x)和g(x)都可导,且g(x)≠0,则(f(x)/g(x))' =(f'(x)*g(x) - f(x)*g'(x))/(g(x))^2。
5. 复合函数法则。
若y=f(g(x)),其中f(u)和g(x)都可导,则y'=f'(g(x)) * g'(x)。
高三数学一轮复习导数知识点

高三数学一轮复习导数知识点在高三数学的学习中,导数是一个非常重要的概念。
导数是微积分的基础,它在计算函数变化率、解析几何、最值问题等方面起着至关重要的作用。
本文将围绕高三数学一轮复习导数知识点展开讨论,帮助同学们更好地理解和掌握这一内容。
一、导数的定义导数描述了一个函数在某一点上的变化率。
对于函数y=f(x),在给定点x=a处,函数的导数可以定义为:f'(a)=lim(x→a) (f(x)-f(a))/(x-a)其中lim代表极限的概念。
简单来说,导数是通过求函数在某点邻近的两点间的斜率的极限值来描述函数在该点上的变化情况。
二、求导法则在高三数学中,导数的求法十分重要。
掌握了合适的求导法则,可以帮助我们更加便捷地求解复杂的导数函数。
下面是一些常见的求导法则:1. 常数法则:若c为常数,则有(d/dx)(c)=0。
2. 幂法则:若y=x^n,则有(d/dx)(x^n)=nx^(n-1),其中n为任意实数。
3. 乘法法则:若y=u(x)v(x),则有(d/dx)(u(x)v(x))=u'(x)v(x)+u(x)v'(x)。
4. 除法法则:若y=u(x)/v(x),则有(d/dx)(u(x)/v(x))=(u'(x)v(x)-u(x)v'(x))/[v(x)]^2。
5. 链式法则:若y=f(g(x)),则有(d/dx)(f(g(x)))=f'(g(x))g'(x)。
6. 指数函数和对数函数的导数:若y=a^x,则有(d/dx)(a^x)=a^xln(a),其中a为常数。
通过掌握这些求导法则,我们可以在计算导数时灵活运用,提高效率。
三、导数的应用导数不仅仅是一个数学概念,同时也具有重要的应用价值。
在实际问题中,导数可以帮助我们求解最值问题、判断函数的增减性、描述函数的曲线形状等。
下面是一些常见的导数应用:1. 最值问题:导数可用于求解函数的最大值和最小值。
高考数学一轮复习 3-1 导数的概念及其运算 理

的导数的乘积.
诊断自测
1.思考辨析(请在括号中打“√”或“×”)
(1)f′(x0)与(f(x0))′表示的意义相同. ×
()
√
(2) 曲 线 的 切 线 不 一 定 与 曲 线 只 有 一 个×公 共
点. ( )
×
(3)若f(x)=a3+2ax-x2,则f′(x)=3a2+2x.
()
(4)[f(ax+b)]′=f′(ax+b).
ΔΔyx=Δlixm→0
[3x2+3x·Δx+(Δx)2]=3x2.
规律方法 定义法求函数的导数的三个步骤 一差:求函数的改变量 Δy=f(x+Δx)-f(x). 二比:求平均变化率ΔΔxy=fx+ΔΔxx-fx. 三极限:取极限,得导数 y′=f′(x)=Δlixm→0ΔΔxy.
【训练 1】 函数 y=x+1x在[x,x+Δx]上的平均变化率ΔΔyx= ________;该函数在 x=1 处的导数是________. 答案 1-xx+1 Δx 0
考点一 利用定义求函数的导数
【例1】 利用导数的定义求函数f(x)=x3的导 数解.Δy=f(x+Δx)-f(x)=(x+Δx)3-x3
=x3+3x·(Δx)2+3x2·Δx+(Δx)3-x3
=Δx[3x2+3x·Δx+(Δx)2],
∴ΔΔxy=3x2+3x·Δx+(Δx)2,
∴f′(x)= lim Δx→0
考点二 导数的计算 【例2】 分别求下列函数的导数:
(1)y=ex·cos x;(2)y=xx2+1x+x13; (3)y=x-sin 2xcos 2x;(4)y=ln 1+x2.
解 (1)y′=(ex)′cos x+ex(cos x)′=excos x-exsin x.
高考数学一轮复习必备 导数导数的概念及运算.doc

第95课时:第十三章 导数——导数的概念及运算课题:{导数的概念及运算 一.复习目标:理解导数的概念和导数的几何意义,会求简单的函数的导数和曲线在一点处的切线方程. 二.知识要点:1.导数的概念:0()f x '= ; ()f x '= . 2.求导数的步骤是 3.导数的几何意义是 . 三.课前预习:1.函数22(21)y x =+的导数是 ( C )()A 32164x x + ()B 348x x + ()C 3168x x + ()D 3164x x +2.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可( A )()A )1(3)1()(2-+-=x x x f ()B )1(2)(-=x x f()C 2)1(2)(-=x x f ()D 1)(-=x x f3.曲线24y x x =-上两点(4,0),(2,4)A B ,若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标为 ( B )()A (1,3)()B (3,3) ()C (6,12)- ()D (2,4)4.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象是( A )5.已知曲线()y f x =在2x =-处的切线的倾斜角为34π,则(2)f '-=1-,[(2)]f '-=0. 6.曲线2122y x =-与3124y x =-在交点处的切线的夹角是4π. 四.例题分析:例1.(1)设函数2()(31)(23)f x x x x =+++,求(),(1)f x f ''-; (2)设函数32()25f x x x x =-++,若()0f x '=,求x 的值. (3)设函数()(2)nf x x a =-,求()f x '.解:(1)32()61153f x x x x =+++,∴2()18225f x x x '=++(2)∵32()25f x x x x =-++,∴2()341f x x x '=-+ 由()0f x '=得:203410x x -+=,解得:01x =或013x =(3)0(22)(2)()lim n nx x a x x a f x x∆→-+∆--'=∆112210lim[(2)24(2)2()]n n n nn n n n x C x a C x x a C x ---∆→=-⋅+∆-++∆12(2)n n x a -=-例2.物体在地球上作自由落体运动时,下落距离212S gt =其中t 为经历的时间,29.8/g m s =,若 0(1)(1)limt S t S V t∆→+∆-=∆9.8/m s =,则下列说法正确的是( C )(A )0~1s 时间段内的速率为9.8/m s(B )在1~1+△ts 时间段内的速率为9.8/m s (C )在1s 末的速率为9.8/m s(D )若△t >0,则9.8/m s 是1~1+△ts 时段的速率;若△t <0,则9.8/m s 是1+△ts ~1时段的速率.小结:本例旨在强化对导数意义的理解,0lim →∆t t S t S ∆-∆+)1()1(中的△t 可正可负例3.(1)曲线C :32y ax bx cx d =+++在(0,1)点处的切线为1:1l y x =+ 在(3,4)点处的切线为2:210l y x =-+,求曲线C 的方程;(2)求曲线3:2S y x x =-的过点(1,1)A 的切线方程. 解:(1)已知两点均在曲线C 上. ∴⎩⎨⎧=+++=439271d c b a d∵232y ax bx c '=++ /(0)f c = /(3)276f a b c =++∴12762c a b c =⎧⎨++=-⎩, 可求出11,1,,13d c a b ===-=∴曲线C :32113y x x x =-+++(2)设切点为3000(,2)P x x x -,则斜率200()23k f x x '==-,过切点的切线方程为:3200002(23)()y x x x x x -+=--,∵过点(1,1)A ,∴32000012(23)(1)x x x x -+=--解得:01x =或012x =-,当01x =时,切点为(1,1),切线方程为:20x y +-= 当012x =-时,切点为17(,)28--,切线方程为:5410x y --=例4.设函数1()1,0f x x x=->(1)证明:当0a b <<且()()f a f b =时,1ab >; (2)点00(,)P x y (0<x 0<1)在曲线()y f x =上,求曲线上在点P 处的切线与x 轴,y 轴正向所围成的三角形面积的表达式.(用0x 表示) 解:(1)∵()()f a f b =,∴11|1||1|a b -=-,两边平方得:22121211a a b b+-=+- 即:111111()()2()a b ab a b -+=-,∵0a b <<,∴110a b -≠,∴112,2a b ab a b+=+=2ab a b ⇒=+>∴1ab >(2)当01x <<时,11()11f x x x=-=-,00201()(01)f x x x '=-<<曲线()y f x =在点P 处的切线方程为:00201()y y x x x -=--, 即:02002x x y x x -=-+ ∴切线与与x 轴,y 轴正向的交点为20002(2,0),(0,)x x x x -- ∴所求三角形的面积为22000000211()(2)(2)22x A x x x x x -=-⋅=- 例5.求函数42y x x =+- 图象上的点到直线4y x =-的距离的最小值及相应点的坐标.解:首先由⎩⎨⎧-=-+=424x y x x y 得420x += 知,两曲线无交点.341y x '=+,要与已知直线平行,须3411x +=,0x =故切点:(0 , -2). d ==2.五.课后作业:1.曲线3231y x x =-+在点(1,1)-处的切线方程为( )()A 34y x =- ()B 32y x =-+ ()C 43y x =-+ ()D 45y x =-2.已知质点运动的方程为24105s t t =++,则该质点在4t =时的瞬时速度为( )()A 60 ()B 1 ()C 80 ()D 503.设点P 是曲线335y x =-+上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是 ( )()A 2[0,]3π ()B 2[0,][,)23πππ ()C 2(,]23ππ ()D 2[,]33ππ 4.若0()2f x '=,则00()()lim 2k f x k f x k→∞--=5.设函数()f x 的导数为()f x ',且2()2(1)f x x xf '=+,则(2)f '=6.已知曲线3:2S y x x =-(1)求曲线S 在点(1,1)A 处的切线方程;(2)求过点(2,0)B 并与曲线S 相切的直线方程.7.设曲线S :3266y x x x =---,S 在哪一点处的切线斜率最小?设此点为00(,)P x y 求证:曲线S 关于P 点中心对称.8.已知函数22(),()f x x ax b g x x cx d =++=++. 若(21)4()f x g x +=,且()()f x g x ''=,(5)30f =,求(4)g .9..曲线(1)(2)y x x x =+-上有一点P ,它的坐标均为整数,且过P 点的切线斜率为正数,求此点坐标及相应的切线方程.10.已知函数32y x ax bx c ==++的图像过点(1,2)P .过P 点的切线与图象仅P 点一个公共点,又知切线斜率的最小值为2,求()f x 的解析式。
2023年高考数学一轮总复习第14讲:导数的概念与运算

2023年高考数学一轮总复习第14讲:导数的概念与运算【教材回扣】1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是li m Δx→0ΔyΔx =li m Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作________,即f ′(x 0)=li m Δx →0Δy Δx=li m Δx →0f (x 0+Δx )-f (x 0)Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数,记作f ′(x )或y ′.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =________.3.基本初等函数的导数运算基本初等函数导函数f (x )=c (c 为常数)f ′(x )=________f (x )=x α(α∈Q *)f ′(x )=________f (x )=sin x f ′(x )=________f (x )=cos x f ′(x )=________f (x )=e x f ′(x )=________f (x )=a x (a >0,a ≠1)f ′(x )=________f (x )=ln x f ′(x )=________f (x )=log a x (a >0,a ≠1)f ′(x )=□10________4.导数的运算法则若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′=□11________________;(2)[f (x )g (x )]′=□12________________;(3)f (x )g (x )′=□13________________(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =□14________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.直线与曲线相切,则直线与已知曲线只有一个公共点.()2.导函数f ′(x )的定义域与函数f (x )的定义域相同.()3.曲线f (x )=x 3在原点(0,0)处的切线方程为y =0.()4.函数f (x )=ln(1-x )的导数是f ′(x )=11-x.()题组二教材改编1.(多选题)下列导数运算正确的是()A .(x n e x )′=nx n -1e x +x n e x′=2x +1-x22x +12x +1=3x +22(2x +1)2x +1′=cos x (sin x +cos x )-sin x (cos x +sin x )(sin x +cos x )2=cos x -sin x sin x +cos xD .[(3x +1)2ln(3x )]′=[(3x +1)2]′ln(3x )+(3x +1)2·(ln 3x )′=6(3x +1)ln(3x )+(3x +1)2x2.曲线y =x 2+3x在点(1,4)处的切线方程为________.3.已知函数f (x )满足f (x )=f x -cos x ,则f ________.题组三易错自纠1.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是()2.已知函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于()A.193 B.163C.133 D.1033.(一题两空)已知函数f (x )=(bx -1)e x +a (a ,b ∈R ).若曲线y =f (x )在点(0,f (0))处的切线方程为y =x ,则a ,b 的值分别为a =________,b =________.题型一导数的运算[例1](1)函数f (x )=2x +1的导函数f ′(x )=()A .22x +1 B.22x +1C.122x +1D.12x +1(2)已知函数f (x )的导函数f ′(x ),f (x )=2x 2-3xf ′(2)+ln x ,则f ′(2)等于()A.92B.94C.174D.178(3)[2021·山东师大附中模拟]设f (x )=a e x +b ln x ,且f ′(1)=e ,f ′(-1)=1e,则a +b =________.[听课记录]类题通法(1)求导之前,应利用代数运算、三角恒等式等对函数进行化简,然后求导,尽量避免不必要的求导,这样可以减少运算,提高运算速度减少差错.(2)①若函数为根式形式,可先化为分数指数幂,再求导.②复合函数求导,应由外到内逐层求导,必要时可进行换元.巩固训练1:(1)已知f (x )=-2cos f ′(x )=________.(2)设f ′(x )是函数f (x )=cos xex +x 的导函数,则f ′(0)的值为________.(3)若函数f (x )=e ax+ln(x +1),f ′(0)=4,则a =________.题型二导数的几何意义高频考点角度|求切线方程[例2][2021·山东新高考质量测评联考]设函数f (x )=x 3+ax 2+(a -1)x ,(x ∈R )为奇函数,则曲线y =f (x )x2在点(1,0)处的切线方程为()A .y =-2x +2B .y =-x +1C .y =2x -2D .y =x -1[听课记录]类题通法求曲线在点P (x 0,y 0)处的切线,则表明P 点是切点,只需求出函数在P 处的导数,然后利用点斜式写出切线方程,若在该点P 处的导数不存在,则切线垂直于x 轴,切线方程为x =x 0.巩固训练2:[2020·全国卷Ⅰ]函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为()A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1角度|求切点坐标[例3]设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为()A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)[听课记录]类题通法求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式,求出切点的纵坐标.巩固训练3:设a ∈R ,函数f (x )=e x +aex 的导数是f ′(x ),且f ′(x )是偶函数.若曲线y=f (x )的一条切线的斜率是52,则切点的横坐标为________.角度|求参数的值(或范围)[例4]函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是()A .(-∞,-2]B .(-∞,2)C .(2,+∞)D .(0,+∞)[听课记录]类题通法利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.[提醒](1)注意曲线上横坐标的取值范围;(2)切点既在切线上,又在曲线上.巩固训练4:直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于()A .2B .-1C .1D .-2角度|两曲线的公切线问题[例5]若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.[听课记录]类题通法解决公切线问题的思路分别设出两切线的切点坐标,然后求导得到切线的斜率,则求得两条切线方程,接着让两切线方程的斜率和截距分别相等,得到两个关于切点的方程组,解方程组即可.巩固训练5:已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为________.[预测1]核心素养——逻辑推理若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是()-12,+∞ B.-12,+∞C ,+∞D .[0,+∞)[预测2]新题型——一题两空已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x 3-3x 2+a ,则f (-2)=________;曲线y =f (x )在点(-2,f (-2))处的切线方程为________________.状元笔记明晰求切线方程中“在”与“过”的不同求曲线的切线问题时,要明晰所运算的对象(切线)涉及的点是“在”还是“过”,然后利用求切线方程的方法进行求解.(1)“在”曲线上一点处的切线问题,先对函数求导,代入点的横坐标得到斜率.(2)“过”曲线上一点的切线问题,此时该点未必是切点,应先设切点,求切点坐标.[典例]若存在过点O(0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值为________.【解析】易知点O(0,0)在曲线y =x 3-3x 2+2x 上.(1)当O(0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x.=2x =x 2+a得x 2-2x +a =0.依题意,Δ=4-4a =0,得a =1.(2)当O(0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P(x 0,y 0),则y 0=x 30-3x 20+2x 0,k =y ′|x =x 0=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x.=-14x ,=x 2+a得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.【答案】1或1642023年高考数学一轮总复习第14讲:导数的概念与运算答案[教材回扣]□1f ′(x 0)或y ′|x =x 0□2f ′(x 0)□30□4αx α-1□5cos x □6-sin x □7e x □8a x ln a □91x□101x ln a□11f ′(x )±g ′(x )□12f ′(x )g (x )+f (x )g ′(x )□13f ′(x )g (x )-f (x )g ′(x )[g (x )]2□14y ′u ·u ′x [题组练透]题组一1.× 2.× 3.√ 4.×题组二1.答案:AD2.解析:∵y ′=2x -3x 2,∴y ′|x =1=2-3=-1.∴所求切线方程为:y -4=-(x -1),即x +y -5=0.答案:x +y -5=03.解析:∵f (x )=fsin x -cos x ,∴f ′(x )=fcos x +sin x ,∴f=fcos π4+sinπ4,即f=22,∴f=221-22=2+1.答案:2+1题组三1.解析:由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C ;又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B ,故选D.答案:D2.解析:f ′(x )=3ax 2+6x ,又f ′(-1)=4,∴f ′(-1)=3a -6=4,∴a =103.故选D.答案:D3.解析:∵f (x )=(bx -1)e x +a ∴f ′(x )=e x (bx +b -1)又f ′(0)=1,f (0)=0∴f ′(0)=b -1=1,-1+a =0解得a =1,b =2.答案:12课堂题型讲解题型一例1解析:(1)∵f (x )=2x +1=(2x +1)12,∴f ′(x )=12(2x +1)-12×2=(2x +1)-12=12x +1.故选D.(2)f ′(x )=4x -3f ′(2)+1x ,∴f ′(2)=4×2-3f ′(2)+12,∴f ′(2)=178.故选D.(3)f ′(x )=a e x +b x,(1)=a e +b =e ,(-1)=a e -1-b =1e ,=1,=0,∴a +b =1.答案:(1)D (2)D (3)1巩固训练1解析:(1)f (x )=sin x2cos=-sin x 2cos x 2=-12sin x ,∴f ′(x )=-12cos x .(2)f ′(x )=(-sin x )e x -cos x ·e x(e x )2+1=-sin x -cos xe x+1,∴f ′(0)=-1+1=0.(3)f ′(x )=a e ax +1x +1,∴f ′(0)=a +1=4,∴a =3.答案:(1)-12cos x (2)0(3)3题型二例2解析:由题意知a =0,∴y =f (x )x 2=x 3-x x2=x -1x ,∴y ′=1+1x 2,∴y ′|x =1=2,故所求切线方程为y -0=2(x -1),即y =2x -2.故选C.答案:C巩固训练2解析:f ′(x )=4x 3-6x 2,则f ′(1)=-2,易知f (1)=-1,由点斜式可得函数f (x )的图象在(1,f (1))处的切线方程为y -(-1)=-2(x -1),即y =-2x +1.故选B.答案:B例3解析:f ′(x )=(x 3+ax 2)′=3x 2+2ax ,由题意得f ′(x 0)=-1,x 0+f (x 0)=0,x 20+2ax 0=-1,①0+x 30+ax 20=0,②由①知x 0≠0,故②可化为1+x 20+ax 0=0,所以ax 0=-1-x 20代入①得3x 20+2(-1-x 20)=-1,即x 20=1,解得x 0=±1.当x 0=1时,a =-2,f (x 0)=x 30+ax 20=-1;当x 0=-1时,a =2,f (x 0)=x 30+ax 20=1,所以点P 的坐标为(1,-1)或(-1,1).故选D.答案:D巩固训练3解析:∵f ′(x )=e x -a e x ,且f ′(x )是偶函数,∴e -x -a e-x =e x -a e x ,得a =-1.设切点为(x 0,y 0),则f ′(x 0)=e x 0+1e x 0=52,解得x 0=ln 2或x 0=-ln 2.答案:±ln 2例4解析:函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x+a =2在(0,+∞)上有解,则a =2-1x.因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2).故选B.答案:B巩固训练4解析:依题意知y ′=3x 2+a 3+a +b =3,×12+a =k ,+1=3,=-1,=3,=2.所以2a+b =1,故选C.答案:C例5解析:设y =kx +b 与y =ln x +2和y =ln (x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln (x 2+1)).则切线方程分别为y -ln x 1-2=1x 1(x -x 1),y -ln (x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln (x 2+1),依题意,=1x 2+1,x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln 2.答案:1-ln 2巩固训练5解析:设l 与f (x )=e x 的切点为(x 1,e x 1),与g (x )=ln x +2的切点为(x 2,ln x 2+2).因f ′(x )=e x ,g ′(x )=1x ,所以l :y =e x 1·x -x 1·e x 1+e x 1y =1x 2·x +ln x 2+1.x 1=1x 21-x 1)e x 1=ln x 2+11=0,2=1,1=1,2=1e.∴切线方程为y =x +1或y =e x .答案:y =e x 或y =x +1高考命题预测预测1解析:f′(x)=1x+2ax=2ax2+1x(x>0),根据题意有f′(x)≥0(x>0)恒成立,所以2ax2+1≥0(x>0)恒成立,即2a≥-1x2(x>0)恒成立,所以a≥0,故实数a的取值范围为[0,+∞).故选D.答案:D预测2解析:f(x)是定义在R上的奇函数,则f(0)=a=0,故a=0,f(-2)=-f(2)=-(16-12)=-4,当x<0时,-x>0,故f(-x)=-2x3-3x2.f(x)=-f(-x)=2x3+3x2,f′(x)=6x2+6x,f′(-2)=12,故切线方程为:y=12(x+2)-4,即12x-y+20=0.答案:-412x-y+20=0。