数据仓库模型设计
数据仓库多维数据模型的设计

1、数据仓库基本概念1.1、主题(Subject)主题就是指我们所要分析的具体方面。
例如:某年某月某地区某机型某款App的安装情况。
主题有两个元素:一是各个分析角度(维度),如时间位置;二是要分析的具体量度,该量度一般通过数值体现,如App安装量。
1.2、维(Dimension)维是用于从不同角度描述事物特征的,一般维都会有多层(Level:级别),每个Level 都会包含一些共有的或特有的属性(Attribute),可以用下图来展示下维的结构和组成:以时间维为例,时间维一般会包含年、季、月、日这几个Level,每个Level一般都会有ID、NAME、DESCRIPTION这几个公共属性,这几个公共属性不仅适用于时间维,也同样表现在其它各种不同类型的维。
1.3、分层(Hierarchy)OLAP需要基于有层级的自上而下的钻取,或者自下而上地聚合。
所以我们一般会在维的基础上再次进行分层,维、分层、层级的关系如下图:每一级之间可能是附属关系(如市属于省、省属于国家),也可能是顺序关系(如天周年),如下图所示:1.4、量度量度就是我们要分析的具体的技术指标,诸如年销售额之类。
它们一般为数值型数据。
我们或者将该数据汇总,或者将该数据取次数、独立次数或取最大最小值等,这样的数据称为量度。
1.5、粒度数据的细分层度,例如按天分按小时分。
1.6、事实表和维表事实表是用来记录分析的内容的全量信息的,包含了每个事件的具体要素,以及具体发生的事情。
事实表中存储数字型ID以及度量信息。
维表则是对事实表中事件的要素的描述信息,就是你观察该事务的角度,是从哪个角度去观察这个内容的。
事实表和维表通过ID相关联,如图所示:1.7、星形/雪花形/事实星座这三者就是数据仓库多维数据模型建模的模式上图所示就是一个标准的星形模型。
雪花形就是在维度下面又细分出维度,这样切分是为了使表结构更加规范化。
雪花模式可以减少冗余,但是减少的那点空间和事实表的容量相比实在是微不足道,而且多个表联结操作会降低性能,所以一般不用雪花模式设计数据仓库。
数据仓库中的多维模型设计与实现研究

数据仓库中的多维模型设计与实现研究数据仓库在现代企业中扮演着重要的角色,它可以帮助企业从海量的数据中提取有价值的信息,为决策提供支持。
而多维模型作为数据仓库架构的核心组成部分,为数据分析与查询提供了有效的方式。
本文将探讨数据仓库中的多维模型设计与实现的研究。
一、多维模型概述多维模型是一种以多维思维方式组织数据的模型,它将数据组织成各种维度(Dimensions)和度量(Measures),并通过事实表(Fact Table)和维度表(Dimension Table)来建立关系。
多维模型的核心思想是以用户需要的方式组织数据,提供一种直观、灵活且高效的数据分析与查询方式。
二、多维模型的设计原则1. 精确建模:在进行多维模型设计时,要确保模型可以准确地反映业务需求。
这需要与业务人员密切合作,理解业务过程和数据要求,避免冗余和不必要的数据项。
2. 简单易用:多维模型应该具有直观的层次结构和易于理解的数据组织方式,以便用户可以轻松地进行数据分析和查询操作。
简化模型设计可以提高用户的可操作性和效率。
3. 可扩展性:多维模型应具备良好的可扩展性,能够适应企业数据规模和业务变化的需求。
当业务增长或更改时,应该能够方便地调整模型结构,以满足新的需求。
4. 性能优化:在多维模型设计时,考虑查询性能是至关重要的。
通过设计合适的索引、分区和聚合,可以提高查询的速度和效率,减少用户等待时间。
三、多维模型的实现步骤1. 数据源准备:在进行多维模型实现之前,首先需要对数据源进行准备。
这包括数据清洗、数据集成和数据转换等过程,以确保数据的质量和一致性。
2. 维度建模:在维度建模过程中,需要确定事实表和维度表的关系,并定义维度表中的维度属性。
同时,还需要确定事实表中的度量和细节级别,并定义度量的计算规则。
3. 模型设计:根据维度建模的结果,设计多维模型的结构。
这包括确定维度的层次结构、计算度量聚合和定义多维数据的面板结构等。
4. 模型实现:将设计好的多维模型实现到数据仓库中。
数据仓库中的多维数据模型设计与实现教程

数据仓库中的多维数据模型设计与实现教程在数据仓库中,多维数据模型设计与实现是一项关键任务。
它不仅可以帮助企业组织和分析庞大的数据量,还能提供决策支持和洞察力。
本文将介绍数据仓库中多维数据模型的概念、设计原则以及实现方法,帮助读者全面了解和掌握这一重要主题。
一、多维数据模型的概念多维数据模型是基于数据的特征和关联性来组织数据的一种模型。
它通过将数据按照不同的业务维度进行分组和分类,将数据以多维方式呈现,从而提供了更加直观和灵活的数据分析能力。
多维数据模型主要由维度、度量和层次结构组成。
1. 维度:维度是描述业务问题的属性,它可以是时间、地理位置、产品、客户等。
维度用来描述数据的特征,例如销售额可以按照时间、地理位置和产品维度进行分析。
2. 度量:度量是可以进行数值计算和分析的数据,例如销售额、利润、数量等。
度量用来描述数据的量度,便于进行各种统计分析。
3. 层次结构:层次结构是维度之间的关系,它描述了维度之间的层次结构和上下级关系。
例如时间维度可以由年、月、日等层次结构组成。
二、多维数据模型的设计原则在设计多维数据模型时,需要遵循一些原则,以确保模型的合理性和有效性。
1. 简单性:多维数据模型应该尽可能简单,避免过于复杂的维度和层次结构。
简单的模型易于理解和维护,提高数据分析效率。
2. 一致性:多维数据模型中的维度和度量应该保持一致性,避免冗余和重复。
一致的模型有助于提高查询效率和数据一致性。
3. 可扩展性:多维数据模型应该具有良好的扩展性,能够容纳未来的需求变化和数据增长。
设计时需要考虑到未来可能发生的维度扩展和度量变化。
4. 性能优化:多维数据模型的设计也要考虑到查询性能的优化。
根据实际需求和查询模式,合理设计维度的层次结构、聚集表和索引等,以提高查询效率。
三、多维数据模型的实现方法在实现多维数据模型时,需要选择合适的工具和技术来支持模型的构建和数据的加载。
1. 数据抽取和转换:多维数据模型的实现通常需要进行数据抽取和转换,将源系统的数据转化为可用于多维模型的格式。
数据仓库模型的设计

数据仓库模型的设计数据仓库模型的设计大体上可以分为以下三个层面的设计151:.概念模型设计;.逻辑模型设计;.物理模型设计;下面就从这三个层面分别介绍数据仓库模型的设计。
2.5.1概念模型设计进行概念模型设计所要完成的工作是:<1>界定系统边界<2>确定主要的主题域及其内容概念模型设计的成果是,在原有的数据库的基础上建立了一个较为稳固的概念模型。
因为数据仓库是对原有数据库系统中的数据进行集成和重组而形成的数据集合,所以数据仓库的概念模型设计,首先要对原有数据库系统加以分析理解,看在原有的数据库系统中“有什么”、“怎样组织的”和“如何分布的”等,然后再来考虑应当如何建立数据仓库系统的概念模型。
一方面,通过原有的数据库的设计文档以及在数据字典中的数据库关系模式,可以对企业现有的数据库中的内容有一个完整而清晰的认识;另一方面,数据仓库的概念模型是面向企业全局建立的,它为集成来自各个面向应用的数据库的数据提供了统一的概念视图。
概念模型的设计是在较高的抽象层次上的设计,因此建立概念模型时不用考虑具体技术条件的限制。
1.界定系统的边界数据仓库是面向决策分析的数据库,我们无法在数据仓库设计的最初就得到详细而明确的需求,但是一些基本的方向性的需求还是摆在了设计人员的面前:. 要做的决策类型有哪些?. 决策者感兴趣的是什么问题?. 这些问题需要什么样的信息?. 要得到这些信息需要包含原有数据库系统的哪些部分的数据?这样,我们可以划定一个当前的大致的系统边界,集中精力进行最需要的部分的开发。
因而,从某种意义上讲,界定系统边界的工作也可以看作是数据仓库系统设计的需求分析,因为它将决策者的数据分析的需求用系统边界的定义形式反映出来。
2,确定主要的主题域在这一步中,要确定系统所包含的主题域,然后对每个主题域的内容进行较明确数据仓库建模技术在电信行业中的应用的描述,描述的内容包括:. 主题域的公共码键;. 主题域之间的联系:. 充分代表主题的属性组。
数据仓库的数据模型设计和数据库系统的数据模型设计有什么不同

数据仓库的数据模型设计和数据库系统的数据模型设计
有什么不同
1.目的和应用:
数据仓库的数据模型设计主要用于支持分析和决策支持系统。
它的目标是将来自多个操作性数据库的数据集成在一个统一的存储中,以便于查询和分析。
数据库系统的数据模型设计主要用于支持业务应用系统的操作和事务处理。
2.数据结构:
3.数据粒度:
4.数据复杂性:
5.数据访问模式:
数据仓库的数据模型设计支持复杂的查询操作,如多维分析和数据挖掘等。
因此,数据仓库的数据模型设计通常需要进行优化,以提高查询性能和响应时间。
数据库系统的数据模型设计则更注重事务处理和并发控制等方面的性能优化。
总结起来,数据仓库的数据模型设计和数据库系统的数据模型设计主要在目的、数据结构、数据粒度、数据复杂性和数据访问模式等方面有所不同。
数据仓库的数据模型设计更注重于支持分析和决策支持系统,采用星型或雪花型的数据结构,关注大量和高层次的数据,需要复杂的数据转换和清洗过程,并进行查询性能优化。
数据库系统的数据模型设计更注重于支持业务应用系统的操作和事务处理,采用关系模型的结构,关注细节
和实时的操作数据,不需要涉及复杂的数据处理过程,并进行事务和并发性能的优化。
数据仓库的设计和构建

数据仓库的设计和构建数据仓库(Data Warehouse)是指将组织机构内部各种分散的、异构的数据整合起来,形成一个共享的、一致的、易于查询和分析的数据环境。
数据仓库的设计和构建是数据管理和分析的重要环节。
本文将结合实践经验,介绍数据仓库的设计与构建过程。
一、需求分析数据仓库的设计与构建首先需要进行需求分析。
在需求分析阶段,我们需要明确以下几个问题:1. 数据来源:确定数据仓库所需要的数据来源,包括内部系统和外部数据源。
2. 数据维度:确定数据仓库中需要关注的维度,如时间、地理位置、产品等。
3. 数据粒度:确定数据仓库中的数据粒度,即需要对数据进行何种程度的聚合。
4. 数据可用性:确定数据仓库中数据的更新频率和可用性要求。
5. 分析需求:明确数据仓库所需满足的分析需求,如报表查询、数据挖掘等。
二、数据模型设计在数据仓库设计过程中,数据模型的设计尤为重要。
常用的数据模型包括维度建模和星型模型。
维度建模是基于事实表和维度表构建的,通过定义事实和维度之间的关系,建立多维数据结构。
星型模型则将事实表和各个维度表之间的关系表示为星型结构,有助于提高查询效率。
根据具体需求和数据特点,选择合适的数据模型进行设计。
三、数据抽取与转换数据仓库的构建过程中,需要从各个数据源中抽取数据,并进行清洗和转换。
数据抽取常用的方法包括全量抽取和增量抽取。
全量抽取是指将数据源中的全部数据抽取到数据仓库中,适用于数据量较小或变动频率较低的情况。
增量抽取则是在全量抽取的基础上,只抽取发生变动的数据,提高了数据抽取的效率。
数据在抽取到数据仓库之前还需要进行清洗和转换。
清洗的目标是去除数据中的错误、冗余和不一致之处,保证数据的准确性和完整性。
转换的目标是将数据格式进行统一,并进行必要的计算和整合,以满足数据仓库的需求。
四、数据加载与存储数据加载是指将抽取、清洗和转换后的数据加载到数据仓库中的过程。
数据加载的方式可以分为批量加载和实时加载。
数据仓库设计与建模的流程与方法

数据仓库设计与建模的流程与方法数据仓库是一个用于集中存储、管理和分析企业中各类数据的系统。
它旨在帮助企业更好地理解和利用自己的数据资源,支持决策和战略制定。
数据仓库的设计与建模是数据仓库开发的关键步骤之一。
本文将介绍数据仓库设计与建模的流程与方法。
数据仓库设计与建模流程数据仓库设计与建模是一个迭代的过程,包括以下主要步骤:1.需求收集和分析在数据仓库设计与建模之前,首先需要与业务用户和决策者进行充分的沟通和需求收集。
了解用户的需求和业务流程对于数据仓库的设计和建模至关重要。
通过与用户的交流,收集到的需求可以被细化和明确以指导后续的工作。
2.数据源选择和数据抽取确定需要从哪些数据源抽取数据,并选择合适的数据抽取工具或技术。
根据需求收集和分析的结果,进行数据抽取和转换,将源系统的数据导入到数据仓库中。
这个步骤是数据仓库设计与建模中的重要部分,关系到数据质量和数据一致性。
3.物理数据模型设计在物理数据模型设计阶段,将逻辑数据模型转化为物理数据模型。
物理数据模型设计包括确定表、字段、索引、分区等物理数据库对象的详细定义。
需要考虑到性能和存储方面的因素,并根据数据仓库的查询需求进行优化设计。
4.维度建模维度建模是数据仓库设计与建模的核心技术之一。
它通过标识和定义业务过程中的关键业务概念,如事实表、维度表和维度属性,来描述业务应用中的事实和维度关系。
维度建模的目标是提供用户友好的数据表示,支持灵活且高效的数据查询和分析。
5.粒度定义和聚合设计决定数据仓库的数据粒度是数据仓库设计与建模的一个重要决策。
粗粒度数据更适合用于高层次的分析和决策,而细粒度数据则支持更详细的数据分析。
聚合设计是为了提高数据仓库的性能和查询响应时间而进行的,它通过预计算和存储汇总数据来减少复杂查询的计算量。
6.元数据管理元数据是指描述数据的数据,是数据仓库设计与建模过程中不可忽视的一部分。
元数据管理包括收集、维护和管理数据仓库中的元数据信息,为数据仓库开发、运维和使用提供支持。
EDW_(DM数据仓库数据建模)模型设计

大客户分析管理系统
企
运营报表 仪表盘
业
信
息 门 户 数据挖 掘引擎 数据挖 掘应用
保险数据模型
数据集市
元数据库
为什么需要企业模型?
数据集市之间数据一致性
包含全部历史的核心数据
一致的事实表和维度
EDW 数据模型在项目实施中的作用
DWM 数据仓库模型
业务量分析 数据集市
车险承保分析 通用承保分析
核心业务 财务系统 再保险系统 人意险系统 精算系统 aCRM 数据集市 客户关系 管理OCRM ALM 客户讯息 ECIF 财务分析 数据集市 外部数据 财务分析 应用 ALM应用 业务持续性 分析数据集市 风险管理 应用
监管报表
管理报表
“数据和信息集成平台” “统一的分析平台” “唯一的信息出口”
带anchor的实体
带status表的实体(Commercial agreement、Group agreement、Individual agreement、 Claim folder、Elementary claim) 不带status表的实体
除表的主键、type id、Partition key、Status、Status date、Status reason、 Valid from date、Valid to date、 Effective from date、Effective to date、 Population timestamp之外的所有字段 除表的主键、 type id、 Partition key、 Valid from date、Valid to date、Effective from date、Effective to date、 Population timestamp之外的所有字段