滚动轴承的振动测量和简易诊断
滚动轴承故障诊断实例

滚动轴承故障诊断实例
滚动轴承故障诊断实例可以包括以下几种情况:
1. 声音异常:当滚动轴承出现故障时,可能会出现异常的噪音,如嘶嘶声、刮擦声或者咔咔声等。
这种情况下,可以通过听觉判断故障的类型和位置。
噪音一般源于滚珠或滚道表面的损伤或者磨损。
2. 振动异常:故障的滚动轴承会导致轴承运行不稳定,产生过大的振动。
可以通过振动传感器来检测振动的频率和幅度,进而判断故障的严重程度和位置。
振动异常可能是由于轴承内部松动、滚子损伤或滚道不平整等问题引起的。
3. 温度异常:滚动轴承运行时,由于磨擦和摩擦产生的热量,轴承温度会有所上升。
但是,如果滚动轴承的温度明显高于正常值,可能表明存在故障。
可以通过红外测温仪或接触式温度计来测量轴承的温度,判断是否存在异常。
4. 润滑问题:滚动轴承需要得到正确的润滑以保持正常运行。
如果滚动轴承出现故障,润滑不足或者污染等问题,会导致滚动轴承的寿命缩短。
可以通过观察润滑脂或润滑油的颜色、黏度以及滚动轴承周围是否有渗漏等来判断润滑是否正常。
上述实例中的故障诊断需要依靠专业的设备和工具,同时需要具备相应的专业知识和经验,建议请专业人士进行诊断和修复。
轴承故障检测、诊断、分析技巧

为了尽可能长时间地以良好状态维持轴承本来的性能,必须保养、检测、检修、以求防事故于未然,确保运转的可靠性,提高生产性、经济性。
对长期运行中的设备来讲,平时的检测跟踪尤为重要,检测项目包括轴承的旋转音、振动、温度、润滑剂的状态等,根据检测结果,设备维护人员可以准确地判断设备的问题点,提早作出预防和解决方案。
一、异常旋转音分析诊断异常旋转音检测分析是采用听诊法对轴承工作状态进行监测的分析方法,常用工具是木柄长螺钉旋具,也可以使用外径为20mm左右的硬塑料管。
相对而言,使用电子听诊器进行监测,更有利于提高监测的可靠性。
轴承处于正常工作状态时,运转平稳、轻快,无停滞现象,发生的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,或者较低的“轰轰”声。
异常声响所反映的轴承故障如下:1、轴承发出均匀而连续的“咝咝”声,这种声音由滚动体在内外圈中旋转而产生,包含有与转速无关的不规则的金属振动声响。
一般表现为轴承内加脂量不足,应进行补充。
若设备停机时间过长,特别是在冬季的低温情况下,轴承运转中有时会发出“咝咝沙沙”的声音,这与轴承径向间隙变小、润滑脂工作针入度变小有关。
应适当调整轴承间隙,更换针入度大一点的新润滑脂。
2、轴承在连续的“哗哗”声中发出均匀的周期性“嗬罗”声,这种声音是由于滚动体和内外圈滚道出现伤痕、沟槽、锈蚀斑而引起的。
声响的周期与轴承的转速成正比。
应对轴承进行更换。
3、轴承发出不规律、不均匀的“嚓嚓”声,这种声音是由于轴承内落入铁屑、砂粒等杂质而引起的。
声响强度较小,与转数没有联系。
应对轴承进行清洗,重新加脂或换油。
4、轴承发出连续而不规则的“沙沙”声,这种声音一般与轴承的内圈与轴配合过松或者外圈与轴承孔配合过松有关系。
声响强度较大时,应对轴承的配合关系进行检查,发现问题及时修理。
二、振动信号分析诊断轴承振动对轴承的损伤很敏感,例如剥落、压痕、锈蚀、裂纹、磨损等都会在轴承及振动测量中反映出来。
所以,通过采用特殊的轴承振动测量器(频率分析器等)可测量出振动的大小,通过频率分布可推断出异常的具体情况。
滚动轴承故障及其诊断方法

而一旦有了压痕,压痕引起的冲击载荷会进一步引起附近 表面的剥落。
这样,载荷的累积作用或短时超载就有可能引起轴承塑性 变形。
1滚动轴承异常的基本形式
(4).腐蚀
润滑油、水或空气水分引起表 面锈蚀(化学腐蚀)
轴承内部有较大的电流通过造 成的电腐蚀
2.3 滚动轴承的振动及其故障特征
2. 幅值域中的概率密度特征 滚动轴承正常时和
发生剥落损伤时的轴 承振动信号的幅值概 率密度分布如图。
轴承振动的概率密度分布
从图中可以看出,轴承发生剥落时,幅值分布的幅 度广,这是由于存在剥落的冲击振动。这样,从概率 密度分布的形状,就可以进行异常诊断。
3 滚动轴承故障诊断方法
2.2 滚动轴承的特征频率
➢ 为分析轴承各部运动参数,先做如下假设: (1)滚道与滚动体之间无相对滑动; (2)每个滚道体直径相同,且均匀分布在内外滚道之间 (3)承受径向、轴向载荷时各部分无变形;
方法: 研究出不承受轴向力时轴承缺陷特征频率,进而,推导出 承受轴向力时轴承缺陷特征频率
1. 不承受轴向力时 轴承缺陷特征频率
d Dm
)
fr
滚动轴承的特征频率
➢ (3) 轴承内外环有缺陷时的特征频率:
➢ 如果内环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fi
f Bi Z
1 (1 2
d Dm
) frZ
➢ 如果外环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fo
f Bo Z
1 (1 2
d Dm
)
f
r
Z
➢ (4) 单个滚动体有缺陷时的特征频率:如果单个有缺陷的 滚动体每自传一周只冲击外环滚道(或外环)一次,则其 相对于外环的转动频率为
滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述引言:滚动轴承作为机械设备中常用的零部件之一,承担着支撑和传递载荷的重要作用。
然而,由于使用环境的恶劣和工作条件的复杂性,滚动轴承往往容易出现各种故障。
因此,为了保证机械设备的正常运行和延长轴承寿命,对滚动轴承的故障进行准确诊断非常重要。
一、故障诊断方法1. 观察法观察法是最常用的故障诊断方法之一。
通过观察滚动轴承的外观和运行状态来判断是否存在故障。
例如,如果发现滚动轴承有异常噪声、温度升高、润滑油泡沫、振动加剧等现象,很可能是轴承出现了故障。
2. 振动诊断法振动诊断法是一种先进的故障诊断方法,可以通过检测轴承的振动信号来判断轴承是否存在故障。
通过分析振动信号的频谱图,可以确定轴承故障的类型和位置。
常用的振动诊断方法包括时域分析、频域分析和小波分析等。
3. 声音诊断法声音诊断法是一种通过听觉判断轴承故障的方法。
通过专业人员对轴承产生的声音进行听觉分析,可以判断轴承是否存在异常。
常见的轴承故障声音包括金属碰撞声、摩擦声和振动声等。
4. 热诊断法热诊断法是一种通过测量轴承的温度来判断轴承故障的方法。
由于轴承在故障状态下会产生摩擦热,因此轴承的温度可以间接反映轴承的工作状态。
通过测量轴承的温度分布,可以判断轴承是否存在异常。
二、故障诊断技术1. 模式识别技术模式识别技术是一种基于机器学习的故障诊断技术,可以根据轴承的振动信号和声音信号等特征,通过训练模型来识别轴承的故障类型。
常用的模式识别技术包括支持向量机、神经网络和决策树等。
2. 图像诊断技术图像诊断技术是一种通过图像处理和分析来判断轴承故障的技术。
通过对轴承的外观图像进行特征提取和分类,可以实现对轴承故障的自动诊断。
常用的图像诊断技术包括边缘检测、纹理分析和目标识别等。
3. 声音信号处理技术声音信号处理技术是一种通过对轴承声音信号进行滤波、频谱分析和特征提取等处理,来判断轴承故障的技术。
通过对声音信号的频谱图和时域图进行分析,可以判断轴承故障的类型和位置。
使用便携式测振仪对滚动轴承故障的简易诊断

实践表 明现场动平衡技术在转动设 备中的应用效果比静平 衡和离线动平衡校验效果好 , 调整 作量小 , 是解决动不平衡故
障 的 首选 方 法 。 W0 . 一 2 81 2 O
种 由于 电机转 子热不平衡 引起 的不 平衡量 只在 电机热 态下才 能表 现出来 .并且这种不 平衡量在 电机达 到热稳定状 态后不
,
1 1 (一
・ Z
( ) 动 体 3滚
=
2
11 d _ l (
1 1 (- )
1 D r 』
力 的破 坏经 常 发生 在 高频 振 动 。 频 振 动的 隐 患大 多具 有 隐蔽 性 高 和 突发 性 , 以在 振 动 位 移 和速 度 增 大 不 明 显 的情 况 下 , 生 突 可 发
d ——滚动体直径 ,l I t m 动后一段时间的振动值升高的现象 。
五、 结论
() 1 当设 备新 更换轴 承运 行 3 4天后 , 测振仪测 量设 备 ~ 用 平衡 问题 。热不平衡 问题只能在现场通过现场动平衡 的方法 , 在 电 机 工 作 状 态 下 电机 达 到 热 稳 定 状 态 时 通 过 动 平 衡 调 整 解
时, 频率 越 高振 动 加速 度 就越 大 。 高频 振 动时 , 然振 动 幅值 可 在 虽 能很 小 , 由于 振 动加 速 度 是振 动 位移 的 6 倍 , 以振 动频 率 的 但 0 所
轻 微 上 升 , 会 导 致 系 统 加速 度 的大 幅 度 升 高 , 起零 部 件 惯 性 就 引
再 产 生 变 化 ,在 电 机 达 到 热 稳 定 状 态 下 很 容 易 做 现 场 动 平 衡 调整 , 以实 现 电机 在 热 稳 定 状 态 下 的平 稳 运 行 。冷 态 下 对 电机 转 子 做 的 低 速 或 高 速 不 平 衡 调 整 不 能 解 决 随 况 变 化 的 热 不
滚动轴承的故障诊断PPT演示课件

诊断
磨屑
好 有 无 好 好 好 有 好 有 有 不可
方法
轴承间隙
无 无 无 好 好 有 无 无 无 无 不可
油膜电阻
无 无 无 好 好 好 好 有 无 无 可
滚动轴承故障诊断
15
各种诊断方法的灵敏度
故
障
信
号 强 度
振
动
缺 陷 故 障 界
分 析 灵 敏 度
限
噪 声
灵 敏 度
测 温 分 析
分
缺
析
陷
灵
灾
轴承内部有锈蚀
滚动轴承故障诊断
7
轴承失效形式—点蚀
▪ 现象: 滚道面或滚动体表面 上有小坑和片状剥落
▪ 原因: 载荷过大 润滑不良 预载过大 间隙过小
滚动轴承故障诊断
8
轴承失效形式—压痕
▪ 现象: 滚道面上有滚动体的压痕
▪ 原因: 装配不当 静载荷过大 冲击载荷过大 异物侵入
滚动轴承故障诊断
9
轴承失效形式—烧伤、胶合
定义
Sf
xrm s x
Cf
xm ax xrm s
If
xm ax x
CL f
xm a x xr
Kv xr4ms
敏感性
差 一般 较好 好 好
稳定性
好 一般 一般 一般 差
表中:x -平均幅值, xr-方根幅值, -峭度
滚动轴承故障诊断
25
峰值指标用于轴承诊断
峰值指标Cf不受振动信号绝对大小的影响,适用于检测 滚动面剥落与裂纹等故障,但不适于检测磨损。
▪ 现象: 滚道面变色、软化、 熔合
▪ 原因: 转速过高 润滑不良 装配不当
滚动轴承故障诊断
滚动轴承 振动(速度)测量及数据的研究

—71—《装备维修技术》2021年第5期引言为了保证轴承生产各工序的正常进行和产品的质量要求,滚动轴承质量检测十分重要,它是保证成品轴承达到各种等级标准的手段。
减少由滚动轴承质量引起的设备故障产生的维修成本,从而需要轴承检测结果的准确性,因此滚动轴承检测方法的使用尤为重要。
目前国内出口欧洲的轴承、我国军方和航天工业均按照该方法进行轴承振动检测,为采购成品轴承的验收工作提供指导依据。
1.基本概念 1.1轴承振动:轴承内圈端面紧靠芯轴轴肩,并以某一恒定的转速旋转,外圈不转,承受一定的径向或轴向载荷时,其滚道中心的截面与外圈外圆柱面(最高点)相交处的轴承外圈的径向振动速度。
1.2轴承振动(速度)值:在一定转速和测试载荷下,选取轴承外圈外圆柱面圆周方向大致等距的三点进行测试,其低、中、高三个频带的振动速度的算术平均值即为该轴承在对应频带的振动(速度)值。
如果轴承需要正反两面测试,则取各频带(三点平均值)较高值为轴承在该频带的振动(速度)值。
1.3物理量和单位:被测轴承的振动物理量为轴承外圈的径向振动速度,单位为μm/s 。
2.测量和评定方法 将被测轴承安装到心轴上,使其内圈端面紧靠轴肩,若是圆柱滚子轴承,则应使内、外圈的两端面保持在同一平面内。
深沟球轴承,应分别进行正反两面测试。
N 型和Nu 型圆柱滚子轴承,将基准面朝心轴轴肩方向安装测试,在测试过程中应保证套圈不产生轴向位移。
在轴承外圈上施加一定的轴向或径向载荷,其载荷大小按GB/T24610标准的规定。
轴承振动(速度)的评定方法:在50~10000Hz 频率范围内,轴承振动(速度)的三个测量频带详细规定见GB/T24610标准的其他部分。
时间平均方法:每一测点振动速度信号的测量时间应不少于0.5s ,待指针稳定后读数。
如果信号有波动,则取波动范围的中间值。
3.轴承质量等级的选用以检测轴承振动速度来划分轴承的质量等级。
从低到高分为V 、V1、V2、V3、V4五个质量等级;滚子轴承(圆柱、圆锥)质量等级从低到高为V 、V1、V2、V3四个质量等级。
机电设备实验报告

实验一振动检测故障诊断一、实验内容与目的1、了解振动信号采集、分析与处理的整个过程及注意事项;2、了解并掌握测试仪器的连接、信号的敏感参数选取、测点布置及各注意事项;3、掌握信号的时域分析、频域分析理论与特点。
二、实验设备⑴振动实验台,电机及数据线等;⑵振动加速度传感器YD36(2只):电荷灵敏度SC=7。
99 PC/m.s-2;⑶DLF2通道四合一放大滤波器;⑷INV306DF 16通道智能信号采集仪;⑸Coinv Dasp2003专业版信号采集分析与处理系统。
信号采集与分析系统基本框图如图1-1所示。
图1 信号采集与分析系统框图另外,简易诊断设备有BZ-8701A便携式测振仪。
三、实验原理1、振动测量敏感参数的选取常用的振动测量参数有加速度a(t)、速度v(t)和位移x(t)。
假定振动位移信号x(t)为:x(t)= Asin(ωt+ϕ)(1)则振动速度信号为:v(t)= Aωcos(ωt+ϕ) (2)ωsin(ωt+ϕ) (3)振动加速度信号为:a(t)=-A2由上式可知,当传感器拾取的信号很微弱时,位移信号x(t)和速度信号v(t)幅值很小,由于频率的放大作用,加速度的信号的幅值相比相应的位移和速度分量的幅值要大得多,加速度参数在高频范围更加敏感,所以选择加速度振动信号.实用上,参数的选定可参考以下频率范围进行:低频范围(10~100Hz)―位移参数;中频范围(10~1000Hz)―速度或称振动烈度(Vrms);高频范围(>1000Hz)―加速度参数。
2、振动信号分析与处理(傅里叶级数)对于一个复杂的周期振动信号可以用傅里叶级数展开,即可将这个信号分解成许多不同的频率的正弦和余弦的线性叠加.四、实验步骤1、根据选取的敏感参数选择振动传感器;2、合理布置测点,测点布置的是否合理,直接关系到采集信号的真空性。
要注意以下:⑴所布置的测点要固定,且固定面要光滑、绝缘,并且要用特殊明显的标记符号标出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滚动轴承的振动测量与简易诊断(1)由于滚动轴承的故障信号具有冲击振动的特点,频率极高,衰减较快,因此利用振动信号对其进行监测诊断时,除了参考前面已经介绍的旋转机械、往复机械的振动测试方法以外,还应根据其振动特点,有针对性地采取一些措施和方法。
一、测点的选择滚动轴承因故障引起的冲击振动由冲击点以半球面波方式向外传播,通过轴承零件、轴承座传到箱体或机架。
由于冲击振动所含的频率很高,每通过零件的界面传递一次,其能量损失约80%。
因此,测量点应尽量靠近被测轴承的承载区,应尽量减少中间传递环节,探测点离轴承外圈的距离越近越直接越好。
图1表示了传感器位置对故障检测灵敏度的影响。
在图1 (a)中,假如传感器放在承载方向时为100%,则在承载方向士45°方向上降为95%(- 5dB),在轴向则降为22%-25%(-12~13dB)。
在图1 (b)中,当止推轴承发生故障产生冲击并向外散发球面波时,假如在轴承盖正对故障处的读数为100%,则在轴承座轴向的读数降为5%(-19dB)。
在图1 (c) 和(d)中给出了传感器安装的正确位置和错误位置,较粗的弧线表示振动较强烈的部位,较细的弧线表示因振动波通过界面衰减导致振动减弱的情形。
图1 传感器位置对故障检测灵敏度的影响由于滚动轴承的振动在不同方向上反映出不同的特性,因此应尽量考虑在水平(x)、垂直(y)和轴向(z)三个方向上进行振动检测,但由于设备构造、安装条件的限制,或出于经济方面的考虑,不可能在每个方向上都进行检测,这时可选择其中的两个方向进行检测。
二、传感器的选择与固定方式根据滚动轴承的结构特点,使用条件不同,它所引起的振动可能是频率约为1kHz以下的低频脉动(通过振动),也可能是频率在1kHz以上,数千赫乃至数十千赫的高频振动(固有振动),通常情况下是同时包含了上述两种振动成分。
因此,检测滚动轴承振动速度和加速度信号时应同时覆盖或分别覆盖上述两个频带,必要时可以采用滤波器取出需要的频率成分。
考虑到滚动轴承多用于中小型机械,其结构通常比较轻薄,因此,传感器的尺寸和重量都应尽可能地小,以免对被测对象造成影响,改变其振动频率和振幅大小。
滚动轴承的振动属于高频振动,对于高频振动的测量,传感器的固定采用手持式方法显然不合适,一般也不推荐磁性座固定,建议采用钢制螺栓固定,这样不仅谐振频率高,可以满足要求,而且定点性也好,对于衰减较大的高频振动,可以避免每次测量的偏差,使数据具有可比性。
三、分析谱带的选择滚动轴承的故障特征在不同频带上都有反映,因此,可以利用不同的频带,采用不同的方法对轴承的故障做出诊断。
1.低频段在滚动轴承的故障诊断中,低频率段指1kHz以下的频率范围。
一般可以采用低通滤波器(例如截止频率fb≤1kHz)滤去高频成分后再作频谱分析。
由于轴承的故障特征频率(通过频率)通常都在1kHz以下,此法可直接观察频谱图上相应的特征谱线,做出判断。
由于在这个频率范围容易受到机械及电源干扰,并且在故障初期反映故障的频率成分在低频段的能量很小,因此,信噪比低,故障检测灵敏度差,目前已较少采用。
2.中频段在滚动轴承的故障诊断中,中频段指1~20kHz频率范围。
同样,利用该频率时也可以使用滤波器。
(1)高通滤波器使用截止频率为1kHz的高通滤波器滤去1kHz以下的低频成分,以消除机械干扰;然后用信号的峰值、RMS值或峭度系数作为监测参数。
许多简易的轴承监测仪器仪表都采用这种方式。
(2)带通滤波器使用带通滤波器提取轴承零件或结构零件的共振频率成分,用通带内的信号总功率作为监测参数,滤波器的通带截止频率根据轴承类型及尺寸选择,例如对309球轴承,通带中心频率为 2 .2kHz左右,带宽可选为1~2kHz。
3.高频段在滚动轴承的故障诊断中,高频率段指20~80kHz频率范围。
由于轴承故障引起的冲击有很大部分冲击能量分布在高频段,如果采用合适的加速度传感器和固定方式保证传感器较高的谐振频率,利用传感器的谐振或电路的谐振增强所得到衰减振动信号,对故障诊断非常有效。
瑞典的冲击脉冲计(SPM)和美国首创的IFD法就是利用这个频段。
滚动轴承的振动测量与简易诊断(2)四、滚动轴承的简易诊断利用滚动轴承的振动信号分析故障诊断的方法可分为简易诊断法和精密诊断法两种。
简易诊断的目的是为了初步判断被列为诊断对象的滚动轴承是否出现了故障;精密诊断的目的是要判断在简易诊断中被认为出现了故障的轴承的故障类别及原因。
1.滚动轴承故障的简易标准在利用振动对滚动轴承进行简易诊断的过程中,通常需要将测得的振值(峰值、有效值等)与预先给定的某种判定标准进行比较,根据实测的振值是否超出了标准给出的界限来判断轴承是否出现了故障,以决定是否需要进一步进行精密诊断。
因此,判定标准就显得十分重要。
用于滚动轴承简易诊断的判定标准大致可分为以下三种。
(1)绝对判定标准绝对判定标准是指用于判断实测振值是否超限的绝对量值。
(2)相对判定标准相对判定标准是指对轴承的同一部位定期进行振动检测,并按时间先后进行比较,以轴承无故障情况下的振值为基准,根据实测振值与该基准振值之比来进行判断的标准。
(3)类比判定标准类比判定标准是指对若干同一型号的轴承在相同的条件下在同一部位进行振动检测,并,将振值相互比较进行判断的标准。
需要注意的是,绝对判定标准是在标准和规范规定的检测方法的基础上制定的标准,因此必须注意其适用频率范围,并且必须按规定的方法进行振动检测。
适用于所有轴承的绝对判定标准是不存在的,因此一般都是兼用绝对判定标准、相对判定标准和类比判定标准,这样才能获得准确、可靠的诊断结果。
2.振动信号简易诊断法(1)振幅值诊断法这里所说的振幅值指峰值XP、均值X(对于简谐振动为半个周期内的平均值,对于轴承冲击振动为经绝对值处理后的平均值)以及均方根值(有效值)Xrms。
这是一种最简单、最常用的诊断法,它是通过将实测的振幅值与判定标准中给定的值进行比较来诊断的。
峰值反映的是某时刻振幅的最大值,因而它适用于像表面点蚀损伤之类的具有瞬时冲击的故障诊断。
另外,对于转速较低的情况(如300r/min以下),也常采用峰值进行诊断。
均值用于诊断的效果与峰值基本一样,其优点是检测值较峰值稳定,但一般用于转速较高的情况(如300r/min以上)。
均方根值是对时间平均的,因而它适用于像磨损之类的振幅值随时间缓慢变化的故障诊断。
日本NSK公司生产NB系列轴承监测仪和新日铁研制的MCV-21A型机械监测仪就是这类仪器。
可以测量振动信号的峰值或峰值系数,有的还可以测量RMS值或绝对平均值。
测量参数除加速度外,有的还包括振动速度和位移。
(2)波形因数诊断法波形因数定义为峰值与均值之比(XP/X )。
该值也是用于滚动轴承简易诊断的有效指标之一。
如图2所示,当XP/X 值过大时,表明滚动轴承可能有点蚀;而XP/X 小时,则有可能发生了磨损。
滚动轴承的振动测量与简易诊断(3)(3)波峰因数诊断法波峰因数定义为峰值与均方根值之比(XP/Xrms)。
该值用于滚动轴承简易诊断的优点在于它不受轴承尺寸、转速及载荷的影响,也不受传感器、放大器等一、二次仪表灵敏度变化的影响。
该值适用于点蚀类故障的诊断。
通过对XP/Xrms值随时间变化趋势的监测,可以有效地对滚动轴承故障进行早期预报,并能反映故障的发展变化趋势。
当滚动轴承无故障时,XP/Xrms,为一较小的稳定值;一旦轴承出现了损伤,则会产生冲击信号,振动峰值明显增大,但此时均方根值尚无明显的增大,故XP/Xrms增大;当故障不断扩展,峰值逐步达到极限值后,均方根值则开始增大,XP/Xrms逐步减小,直至恢复到无故障时的大小。
(4)概率密度诊断法无故障滚动轴承振幅的概率密度曲线是典型的正态分布曲线;而一旦出现故障,则概率密度曲线可能出现偏斜或分散的现象,如图3所示。
(5)峭度系数诊断法峭度(Kurtosis)β定义为归一化的4阶中心矩,即式中x—瞬时振幅;X—振幅均值;p(x)—概率密度;σ—标准差。
振幅满足正态分布规律的无故障轴承,其峭度值约为3。
随着故障的出现和发展,峭度值具有与波峰因数类似的变化趋势。
此方法的优点在于与轴承的转速、尺寸和载荷无关,主要适用于点蚀类故障的诊断。
图3 滚动轴承的损伤英国钢铁公司研制的峭度仪在滚动轴承故障的监测诊断方面取得了很好的效果。
利用快装接头,仪器的加速度传感器探头直接接触轴承外圈,可以测量峭度系数、加速度峰值和RMS值。
图4为使用该仪器监测同一轴承疲劳试验的结果。
试验中第74h轴承发生了疲劳破坏,峭度系数由3上升到6[图(a)],而此时峰值[图(b)]和RMS值尚无明显增大。
故障进一步明显恶化后,峰值、RMS值才有所反映。
图中虚线表示在不同转速(800~2700r/min )和不同载荷(0~11kN)下进行试验时上述各值的变动范围。
很明显,峭度系数的变化范围最小,约为士8%。
轴承的工作条件对它的影响最小,即可靠性及一致性较高。
有统计资料表明,使用峭度系数和RMS值共同来监测,滚动轴承振动情况,故障诊断成功率可达到96%以上。
滚动轴承的振动测量与简易诊断(4)3.滚动轴承的冲击脉冲诊断法(SPM法)滚动轴承存在缺陷时,如有疲劳剥落、裂纹、磨损和滚道进入异物时,会发生冲击,引起脉冲性振动。
由于阻尼的作用,这种振动是一种衰减振动。
冲击脉冲的强弱反映了故障的程度,它还和轴承的线速度有关。
SPM冲击脉冲法(Shock Pulse Method)就是基于这一原理。
根据统计规律得出的脉冲值与轴承寿命的关系如图5所示。
图5 冲击脉冲值与轴承寿命的关系在无损伤或极微小的损伤期,脉冲值(dB值)大体在水平线上下波动。
随着故障的发展,脉冲值逐渐增大。
当冲击能量达到初始值的1000倍(60dB)时,就认为该轴承的寿命已经结束。
总的冲击能量dBsv 与初始冲击能量dBi之差称为标准冲击能量dBN。
dBN=dBSV-dBi可以根据dBN的值判断轴承的状态:0≤dBN≤20dB正常状态,轴承工作状态良好;20dB≤dBN≤35d B 注意状态,轴承有初期损伤;35dB≤dBN≤60dB警告状态,轴承已有明显损伤。
初始冲击能量也称背景分贝,可根据轴承内径及转速加以确定。
冲击脉冲法对使用者的要求较高,初学者在现场使用中往往由于经验不足、对设备工况条件考虑不周造成诊断失误,因此采用此方法进行诊断时应注意以下几方面问题。
(1)传感器的安装对于固定安装的SPM传感器,经常由于机器本身的结构限制,无法完全达到SPM传感器的安装标准,造成信号衰减。
(2)设备安装条件对滚动轴承状态有明显影响的设备安装因素主要有不对中和轴弯曲。
这两种安装状态都会使轴承产生不均匀载荷,对轴承油膜的形成造成很大影响。