初三数学期中试卷及答案.doc

合集下载

初三数学期中考试试卷及答案

初三数学期中考试试卷及答案

初三数学期中考试试卷及答案第一卷:选择题(共80分)一、选择题(每小题1分,共40分)1. 下列各组函数中,相等的是()a) y = x^2 - 2x + 1,y = (x - 1)^2b) y = |2x - 1|,y = -(2x - 1)c) y = |2x - 1|,y = 2|x| - 1d) y = 2|x + 1|,y = -2|x + 1|2. 单项式 2x^3 y z^2 的次数是()a) 2 b) 3 c) 4 d) 53. 若 a:b = 7:5,b:c = 4:3,求 a:b:c =a) 7:5:3 b) 7:4:5 c) 7:10:12 d) 28:20:154. 圆心坐标为 (-4, 2),半径为 5 的圆方程是()a) (x + 4)^2 + (y - 2)^2 = 5^2b) (x - 4)^2 + (y + 2)^2 = 5^2c) (x + 4)^2 + (y + 2)^2 = 5^2d) (x - 4)^2 + (y - 2)^2 = 5^2...第二卷:非选择题(共70分)五、计算题(共30分)1. 化简:(3a^2b)^3 / (6a^5b^2) =2. 解方程:4x - 5 = 3x + 73. 已知图中三角形 ABC,其中∠B = 90°,AC = 8cm,BC = 6cm。

求 sin A 和 cos C 的值。

...八、解答题(共20分)1. 某商店购进一批相同的商品,第一天卖出了商品总数的 1/4,第二天又卖出了剩余商品总数的1/3 ,已知最后剩下的商品总数是60 件,求原先购进的商品总数。

2. 一辆汽车从 A 地开往 B 地,全程 300 km,开了 4 个小时到达终点。

第二天,汽车原路返回,回到 A 地用了 6 个小时。

求汽车在去程和返程时的平均速度。

...第三卷:答题卡(共10分)请将你的答案填写在答题卡上。

注意事项:1. 请认真核对试卷上的题号和试卷形式,确保填涂无误。

初三期中数学试题及答案

初三期中数学试题及答案

初三期中数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。

每小题只有一个选项是正确的,请将正确选项的字母填入题后的括号内。

)1. 下列哪个数是无理数?A. 0.33333...(循环)B. πC. √4D. 3.14答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1答案:A3. 如果a和b互为倒数,那么ab的值是:A. 0B. 1C. -1D. 无法确定答案:B4. 一个等腰三角形的底边长为6,腰长为5,那么它的周长是:A. 16B. 17C. 18D. 20答案:C5. 下列哪个方程是一元二次方程?A. 3x + 2 = 0B. x² - 4x + 4 = 0C. 2x - 3y = 5D. x³ - 2x² + 1 = 0答案:B6. 函数y = 2x + 3的图象是:A. 一条直线B. 一条双曲线C. 一个圆D. 一个抛物线答案:A7. 如果一个角的补角是120°,那么这个角的度数是:A. 60°B. 30°C. 45°D. 90°答案:B8. 一个数的立方根是2,那么这个数是:A. 2B. 4C. 8D. 6答案:C9. 下列哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 正方形D. 圆答案:D10. 如果一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C二、填空题(本题共5小题,每小题4分,共20分。

)11. 一个数的平方是36,这个数是______。

答案:±612. 一个数的绝对值是它本身,这个数是非负数,即这个数可以是______。

答案:0或正数13. 两个角的和是180°,这两个角互为______。

答案:补角14. 一个数的立方是-8,这个数是______。

答案:-215. 一个等腰三角形的底角相等,如果一个底角是40°,那么顶角是______。

2023-2024学年全国初三上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初三上数学人教版期中考试试卷(含答案解析)

专业课原理概述部分一、选择题:5道(每题1分,共5分)1. 下列哪个选项不属于《论语》中的思想?()A. 孝道B. 忠诚C. 仁爱D. 勤奋2. 《诗经》是我国最早的诗歌总集,其内容分为三部分,下列哪一项不属于这三部分?()A. 风诗B. 雅诗C. 颂诗D. 赋诗3. 下列哪个选项是《离骚》的作者?()A. 屈原B. 宋玉C. 李白D. 杜甫4. 下列哪个选项是《史记》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎5. 下列哪个选项是《资治通鉴》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎二、判断题5道(每题1分,共5分)1. 《论语》是孔子及其弟子的言论汇编,由孔子弟子及再传弟子编写而成。

()2. 《诗经》是我国最早的诗歌总集,共有305篇,分为风、雅、颂三部分。

()3. 《离骚》是屈原的代表作,被誉为中国古代浪漫主义诗歌的代表作。

()4. 《史记》是西汉史学家司马迁所著,是我国第一部纪传体通史。

()5. 《资治通鉴》是北宋史学家司马光所著,是我国第一部编年体通史。

()三、填空题5道(每题1分,共5分)1. 《论语》中,孔子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”这句话表达了孔子的______思想。

2. 《诗经》中的“风”是指______地区的民歌,具有浓厚的地方特色。

3. 《离骚》是屈原创作的长篇政治抒情诗,表达了诗人对楚国命运的深切忧虑和对理想的执着追求,被誉为中国古代浪漫主义诗歌的______。

4. 《史记》全书共130篇,包括12本纪、30世家、70列传、10表、8书,其中本纪、世家、列传是按______体例编写的。

5. 《资治通鉴》是北宋史学家司马光主编的一部多卷本编年体史书,记载了从______到______共1362年间的历史。

四、简答题5道(每题2分,共10分)1. 简述《论语》的主要思想内容。

2. 简述《诗经》的艺术特色。

沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)

沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)

沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)AC51.将抛物线y=x^2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为哪一个?A。

y=(x-1)^2+2B。

y=(x+1)^2+2C。

y=(x-1)^2-2D。

y=(x+1)^2-22.已知二次函数y=ax^2-1的图象经过点(1,-2),那么a的值为多少?A。

a=-2B。

a=2C。

a=1D。

a=-13.对于非零向量a、b,如果2|a|=3|b|,且它们的方向相同,那么用向量a表示向量b正确的是哪一个?A。

b=a*(3/2)B。

b=a*(2/3)C。

b=-a*(3/2)D。

b=-a*(2/3)4.在四边形ABCD中,若AB=a,AD=b,BC=c,则CD等于哪一个?A。

a-b-cB。

-a+b-cC。

a-b+cD。

-a+b+c5.在直角三角形ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于哪一个?A。

3sinαB。

3cosαC。

sinα/3D。

cosα/36.在直角三角形ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为多少?A。

3/4B。

4/3C。

5/3D。

3/57.在直角三角形ABC中,∠ACB=90°,BC=1,AC=2,则下列结论正确的是哪一个?A。

sinA=3/2B。

tanA=1/2C。

cosB=3/2D。

tanB=3/48.抛物线y=-3x^2+2x-1的图象与x轴交点的个数是多少?A。

没有交点B。

只有一个交点C。

有且只有两个交点D。

有且只有三个交点9.关于二次函数y=(x+1)^2的图象,下列说法正确的是哪一个?A。

开口向下B。

经过原点C。

对称轴右侧的部分是下降的D。

顶点坐标是(-1,0)10.在三角形ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE//BC的是哪一个?A。

DE^2/BC^2=3/2B。

人教版九年级上册数学期中试卷【含答案】

人教版九年级上册数学期中试卷【含答案】

人教版九年级上册数学期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。

A. y = x²B. y = |x|C. y = x³D. y = sin(x)3. 在直角坐标系中,点P(2, -3)关于原点的对称点是()。

A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据的方差为4,则这组数据的平均数是()。

A. 4B. 2C. 0D. 无法确定5. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长是()。

A. 16B. 26C. 28D. 36二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 在直角坐标系中,所有第一象限的点的坐标都是正数。

()3. 一个等边三角形的三个角都是60度。

()4. 任何两个负数相乘的结果都是正数。

()5. 一个数的立方根只有一个。

()三、填空题(每题1分,共5分)1. 一个正方形的边长为5,则它的面积是______。

2. 若一组数据的平均数为10,则这组数据的总和是______。

3. 在直角坐标系中,点A(3, 4)到原点的距离是______。

4. 若一个等腰三角形的底边长为8,腰长为10,则这个三角形的面积是______。

5. 2³的值是______。

四、简答题(每题2分,共10分)1. 请简述等差数列的定义。

2. 请简述勾股定理的内容。

3. 请简述因式分解的定义。

4. 请简述概率的定义。

5. 请简述直角坐标系中,点的坐标表示的意义。

五、应用题(每题2分,共10分)1. 一个长方形的长是10,宽是5,求这个长方形的面积和周长。

2. 已知一组数据的平均数为15,数据个数为5,求这组数据的总和。

3. 在直角坐标系中,点A(2, 3)和点B(5, 7)之间的距离是多少?4. 若一个等腰三角形的底边长为12,腰长为13,求这个三角形的面积。

人教版初三期中考试数学试卷及答案

人教版初三期中考试数学试卷及答案

人教版初三期中考试数学试卷及答案一、选择题(每题3分,共30分)1.下面关于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=;④(a2+a+1)x2-a=0;⑤=x-1.一元二次方程的个数是()【解析】选B.方程①与a的取值有关,当a=0时,不是一元二次方程;方程②经过整理后,二次项系数为2,是一元二次方程;方程③是分式方程;方程④的二次项系数经过配方后可化为+,不管a取何值,都不为0,所以方程④是一元二次方程;方程⑤不是整式方程,故一元二次方程有2个.【知识归纳】判断一元二次方程的几点注意(1)一般形式:ax2+bx+c=0,特别注意a≠0.(2)整理后看是否符合一元二次方程的形式.(3)一元二次方程是整式方程,分式方程不属于一元二次方程.2.假设(x+y)(1-x-y)+6=0,那么x+y的值是()【解析】选C.设x+y=a,原式可化为a(1-a)+6=0,解得a1=3,a2=-2.关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-B.k>-且k≠0C.k0,解得k>-且k≠0.应选B.4.某种商品零售价经过两次降价后的价格为降价前的81%,那么平均每次降价 ()A.10%B.19%C.9.5%D.20%【解析】选A.设平均每次降价x,由题意得,(1-x)2=0.81,所以1-x=±0.9,所以x1=1.9(舍去),x2=0.1,所以平均每次降价10%.5.在平面直角坐标系中,抛物线y=x2-1与x轴的交点的个数是()【解析】选B.把a=1,b=0,c=-1代入b2-4ac得0+4>0,故与x轴有两个交点.6.二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,那么当x取x1+x2时,函数值为()【解析】选D.由题意可知=,又x1≠x2,所以x1=-x2,即x1+x2=0,所以当x取x1+x2时,函数值为c.7.(2022 宜宾中考)假设关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,那么k的取值范围是()wA.k1C.k=1D.k≥0【解析】选A.∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴Δ=b2-4ac=22-4×1×k>0,∴kx2),那么x1+x2=-1,x1-x2=1,解得x1=0,x2=-1.(2)当x=0时,(a+c)×02+2b×0-(c-a)=0,所以c=a.当x=-1时,(a+c)×(-1)2+2b×(-1)-(c-a)=0,即a+c-2b-c+a=0,所以a=b,所以a=b=c,所以△ABC为等边三角形.21.(8分)心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)假设用10分钟提出概念,学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来答复.【解析】(1)当x=10时,y=-0.1x2+2.6x+43=-0.1×100+2.6×10+43=59.(2)当x=8时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4,∴用8分钟与用10分钟相比,学生的接受能力减弱了;当x=15时,y=-0.1x2+2.6x+43=-0.1×152+2.6×15+43=59.5,∴用15分钟与用10分钟相比,学生的接受能力增强了.22.(8分)(2022 来宾中考)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润到达7200元,且更有利于减少库存,那么每件商品应降价多少元?【解析】(1)由题意,得60(360-280)=4800元.答:降价前商场每月销售该商品的利润是4800元.(2)设要使商场每月销售这种商品的利润到达7200元,且更有利于减少库存,那么每件商品应降价x元,由题意,得(360-x-280)(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润到达7200元,且更有利于减少库存,那么每件商品应降价60元.23.(8分)(2022 温州中考)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y 轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,点A的坐标为(-1,0).(1)求抛物线的解析式.(2)求梯形COBD的面积.【解析】(1)把A(-1,0)代入y=a(x-1)2+4,得0=4a+4,∴a=-1,∴y=-(x-1)2+4.(2)令x=0,得y=3,∴OC=3.∵抛物线y=-(x-1)2+4的对称轴是直线x=1,∴CD=1.∵A(-1,0),∴B(3,0),∴OB=3,∴S梯形COBD==6.24.(9分)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依次类推,即每多买一台,那么所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购置一批图形计算器:(1)假设此单位需购置6台图形计算器,应去哪家公司购置花费较少?(2)假设此单位恰好花费7500元,在同一家公司购置了一定数量的图形计算器,请问是在哪家公司购置的,数量是多少?【解析】(1)在甲公司购置6台图形计算器需要用6×(800-20×6)=4080(元);在乙公司购置需要用75%×800×6=3600(元)440,符合题意.当x=25时,每台单价为800-20×25=300人教版初三期中考试数学试卷及答案.。

九年级期中数学试卷及答案

九年级期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则下列哪个选项一定成立?A.ac>bcB.a+c>b+cC.ac>bcD.a/c>b/c(c≠0)答案:A2.下列哪个是无理数?A.√9B.√16C.√3D.π答案:C3.若x^25x+6=0,则x的值为?A.2或3B.1或6C.-2或-3D.-1或-6答案:A4.下列哪个函数是增函数?A.y=-2x+3B.y=x^2C.y=1/xD.y=-x^2答案:A5.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为?A.26B.28C.30D.32答案:C6.下列哪个图形不是正多边形?A.矩形B.菱形C.正五边形D.正六边形答案:A7.若一个数的算术平方根是3,则该数为?A.9B.6C.12D.18答案:A二、判断题(每题1分,共20分)8.若a>b,则ac>bc。

(c>0)答案:错误9.两个无理数的和一定是无理数。

答案:错误10.两个等腰三角形的面积相等,则它们的周长也相等。

答案:错误11.若一个数的平方是正数,则该数一定是正数。

答案:错误12.任何两个奇数之和都是偶数。

答案:正确13.任何两个负数相乘都是正数。

答案:正确14.若一个数的立方是负数,则该数一定是负数。

答案:正确三、填空题(每空1分,共10分)15.若a=3,b=-2,则a+b=___________,ab=___________。

答案:1516.若x^25x+6=0,则x的值为___________或___________。

答案:2317.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为___________。

答案:2818.若一个数的算术平方根是3,则该数为___________。

答案:919.两个等腰三角形的面积相等,则它们的周长也相等。

(判断对错)答案:错误四、简答题(每题10分,共10分)20.请简述勾股定理的内容。

初三数学期中试题及答案

初三数学期中试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333B. πC. 4.5D. 0.5答案:B2. 一个数的平方等于它本身,这个数可能是:A. 1B. -1C. 0D. 1或-1答案:D3. 如果一个三角形的两边长分别为3和4,那么第三边的长度可能是:A. 1B. 2C. 7D. 5答案:D4. 以下哪个图形是轴对称图形?A. 正方形B. 圆C. 正三角形D. 所有选项答案:D5. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. 正数或零答案:D6. 以下哪个选项是二次根式?A. √2B. √(-1)C. √(0)D. √(4/9)答案:A7. 一个数的立方等于它本身,这个数可能是:A. 1B. -1C. 0D. 1或-1或0答案:D8. 在一个直角三角形中,如果一个锐角是30度,那么另一个锐角是:B. 90度C. 120度D. 30度答案:A9. 以下哪个选项是不等式?A. x + 3 = 7B. x - 5 > 2C. 4x = 16D. 3x ≤ 9答案:B10. 一个数的相反数是它本身,这个数是:A. 1B. -1C. 0D. 任何数答案:C二、填空题(每题4分,共20分)1. 一个数的相反数是-5,那么这个数是_______。

答案:52. 如果一个数的绝对值是8,那么这个数可能是_______或_______。

答案:8,-83. 一个数的平方根是4,那么这个数是_______。

4. 一个三角形的两边长分别为5和12,根据三角形的三边关系,第三边的长度应该大于_______而小于_______。

答案:7,175. 如果一个数的立方是27,那么这个数是_______。

答案:3三、解答题(每题10分,共50分)1. 已知一个数的平方是25,求这个数。

答案:这个数是±5。

2. 一个直角三角形的两条直角边长分别为6和8,求斜边的长度。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D . 2.下列方程中是一元二次方程的是( )A .21xy +=B .21902x x+-= C .20ax bx c ++= D .20x =3.如图,已知AB∥CD∥EF 且AC∥CE =3∥4,BF =14,则DF 的长为( )A .8B .7C .6D .34.已知二次函数2287y x x =++的图象上有点()12,A y -,()25,B y -,()31,C y -,则1y 、2y 、3y 的大小关系为( )A .123y y y >>B .213y y y >>C .231y y y >>D .311y y y >>5.如图,∥ABC 与∥BEF 位似,点O 是它们的位似中心,其中OE=2OB ,则∥ABC 与∥DEF 的周长之比是( )A .1:2B .1:4C .1:3D .1:96.现要在一个长为40m ,宽为26m 的矩形花园中修建等宽的小道,剩余的地方种植花草,如图所示,要使种植花草的面积为2950m ,那么小道的宽度应是( )A .1mB .1.5mC .2mD .2.5m7.如图,在平面直角坐标系中,线段OA 与x 轴正方向夹角为45︒,且2OA =,若将线段OA 绕点O 沿逆时针方向旋转105︒到线段OA ',则此时点A '的坐标为( )A .1)-B .(-C .(D .(1,8.如图,Rt ABC △中,90C ∠=︒,30A ∠=︒,20AB =,点P 是AC 边上的一个动点,将线段BP 绕点B 顺时针旋转60︒得到线段BQ ,连接CQ ,则在点P 运动过程中,线段CQ 的最小值为( )A .5B .10C .20D .259.已知12x x 、是方程2320x x -+=的两根,则12x x += ,12x x = . A .-3,2 B .-3,-2 C .3 , 2 D .2,310.某数学复习课上,数学老师用几何画板上画出二次函数y =ax 2+bx+c (a≠0)图象如图所示,四名同学根据图象,说出下列结论:李佳:abc <0:王宁:2a ﹣b <0:孙浩:b 2>4ac一帆:点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2,你认为其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题 11.若y =(m ﹣4)x |m |﹣2﹣2x ﹣1是关于x 的二次函数,则m =___.12.已知0是关于x 的一元二次方程22(1)10m x x m -++-=的一个根,则m 的值是______. 13.把抛物线23y x =先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为_________14.如图,小明为了测量高楼MN 的高度,在离点18N 米的点A 处放了一个平面镜,小明沿NA 方向后退1.5米到点C ,此时从镜子中恰好看到楼顶的点M ,已知小明的眼睛(点B )到地面的高度BC 是1.6米,则高楼MN 的高度是______.15.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为______.16.如图,点A 在数轴的负半轴,点B 在数轴的正半轴,且点A 对应的数是21x -,点B 对应的数是2x x +,已知5AB =,则x 的值为______.17.将二次函数y =x 2﹣5x ﹣6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y =2x+b 与这个新图象有3个公共点,则b 的值为_____.三、解答题18.解方程:(1)2531x x x -=+(2)3(21)42x x x +=+19.如图,在平面直角坐标系中,已知ABC 三个顶点的坐标分别为()()()1,2,3,4,2,6A B C ---.(1)画出ABC 绕点A 顺时针旋转90︒后得到的111A B C △,写出点1C 的坐标.(2)以原点O 为位似中心,在网格内画出将111A B C △三条边放大为原来的2倍后得222A B C △,写出点2B 的坐标.20.已知关于x 的方程2(1)2(1)0x m x m -++-=()求证:无论m 取何值时,方程总有实数根;(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.21.如图,在ABC 中,PC 平分ACB ∠,PB PC =.(1)求证:APC ACB;(2)若2AP=,5PC=,求AC的长.22.如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约53米,铅球落地点在B处,铅球运行中在运动员前4米处(即4OC=)达到最高点,最高点高为3米,已知铅球经过的路线是抛物线.根据图示的直角坐标系回答下列问题.(1)求铅球所经过路线的函数表达式.(2)铅球的落地点离运动员有多远?23.如图,在Rt∥ABC中,∥ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA 边上以5cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4cm/s的速度向点B匀速运动,运动时间为t s(0<t<2),连接PQ.(1)若∥BPQ和∥ABC相似,求t的值;(2)连接AQ,CP,若AQ∥CP,求t的值.24.如图,抛物线2:3L y ax bx=++与x轴交于A、(3,0)B两点(A在B的左侧),与x轴交于A、B两点,且点B坐标为(3,0)与y轴交于点C,已知对称轴1x=.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围:△能否成为以点P为直角(3)设点P是抛物线L上任一点,点Q在直线:3l x=-上,PBQ顶点的等腰直角三角形?若能,求出符合条件的点P的坐标:若不能,请说明理由.25.商场销售某种电子产品,每个进货价为40元,调查发现,当销售价格为60元时,平均每天能销售100个;当销售价每降价1元时,平均每天多售出10个,该商场要想使得这种电子产品的销售利润平均每天达到2240元.(1)每个电子产品的价格应该降价多少元?(2)在平均每天利润不变的情况下,为尽可能赢得市场,需要让利于顾客,该商场应该将该电子产品按照几折优惠销售?(3)当定价为多少时,商场每天销售该电子产品的利润最大?最大利润是多少?∠=,点P是平面内不与点A、C重合的任意一点,连26.在ABC中,CA CB=,ACBα接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD、BD、CP.(1)如图(1),当60α=︒时,BD CP的值是______,直线BD 与直线CP 相交所成的较小角的度数是______. (2)如图(2),当90α=︒时,请求出BD CP的值及直线BD 与直线CP 相交所成的较小角的度数. (3)如图(3),当90α=︒时,若点E 、F 分别是CA 、CB 的中点,点P 在直线EF 上,请直接写出当点C 、P 、D 在同一直线上时AD CP的值.参考答案1.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、不是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【解析】【分析】根据一元二次方程的定义:含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程,据此逐项分析即可解题.【详解】解:A、21xy+=含有2个未知数,不是一元二次方程,故A不符合题意;B、2190 2xx+-=含有分式,不是一元二次方程,故B不符合题意;C、20ax bc c++=,当0a=不是一元二次方程,故C不符合题意;D、20x=,是一元二次方程,故D符合题意;故选D.【点睛】本题考查一元二次方程的概念,是基础考点,难度较易,掌握相关知识是解题关键.3.A【解析】【分析】根据平行线分线段成比例定理即可得到结论.【详解】解:由题意:∥AB∥CD∥EF,∥AC∥CE=BD∥DF=3∥4,所以设BD=3x,DF=4x,所以3x+4x=14,即x=2,∥DF=4x=8故答案选:A【点睛】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.4.C【解析】【分析】先求出二次函数y=2x2+8x+7的图象的对称轴,然后判断出A(-2,y1),B(-5,y2),C(-1,y3)在抛物线上的位置,再求解.【详解】解:∥二次函数y=2x2+8x+7中a=2>0,∥开口向上,对称轴为x=-2,∥A(-2,y1)中x=-2,y1最小,B(-5,y2),点B关于对称轴的对称点B′横坐标是2×(-2)-(-5)=1,则有B′(1,y2),因为在对称轴得右侧,y随x得增大而增大,故y2>y3.∥y2>y3>y1.故选:C.【点睛】此题考查二次函数图象上点的坐标特征,关键是掌握二次函数图象的性质.5.A【解析】【分析】利用位似的性质得∥ABC∥∥DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.【详解】解:∥∥ABC与∥DEF位似,点O为位似中心.∥∥ABC∥∥DEF,OB:OE= 1:2,∥∥ABC与∥DEF的周长比是:1:2.故选:A.【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.6.A【解析】【分析】设小道的宽度应为x m,则剩余部分可合成长为(40-2x)m,宽为(26-x)m的矩形,根据矩形的面积计算公式,结合种植花草的面积为950m2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小道的宽度应为x m ,则剩余部分可合成长为(402)m x -,宽为(26)m x -的矩形, 依题意得:(402)(26)950x x --=,解得,11x =,245x =.4540>(不合题意,舍去),1x ∴=.答:小道进出口的宽度应为1米.故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.C【解析】【分析】过点A '作A B x '⊥轴,由旋转可知10545150A Ox ∠=︒+︒='︒,进而可得30A OB '∠=︒,进而根据含30度角的直角三角形的性质求得A B ',勾股定理求得OB ,根据A '在第二象限,即可求得点A '的坐标.【详解】解:如图,过点A '作A B x '⊥轴,由旋转可知10545150A Ox ∠=︒+︒='︒,30A OB '∴∠=︒在Rt A OB '△中,11122A B A O AO ''∴===BO A '在第二象限,A '∴(故选C【点睛】本题考查了坐标与图形,旋转的性质,含30度角的直角三角形的性质,求得30A OB '∠=︒是解题的关键.8.A【解析】【分析】如图,取AB 的中点T ,连接PT ,过点T 作TH∥AC 于H .证明∥TBP∥∥CBQ (SAS ),推出CQ=PT ,根据垂线段最短可知,当点P 与H 重合时,PT 的值最小,最小值=TH=12AT=5.【详解】解:如图,取AB 的中点T ,连接PT ,过点T 作TH∥AC 于H .∥∥ACB=90°,∥A=30°,∥AB=2BC ,∥ABC=60°,∥AT=TB ,∥BC=BT ,∥BP=BQ ,∥CBT=∥PBQ ,∥∥CBT -∥PBC=∥PBQ -∥PBC ,即∥TBP=∥CBQ ,∥∥TBP∥∥CBQ (SAS ),∥CQ=PT ,根据垂线段最短可知,当点P 与H 重合时,PT 的值最小,最小值=TH=12AT=14AB=5,∥CQ 的最小值为5.故选A【点睛】本题考查旋转变换,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.9.C【解析】【分析】根据一元二次方程根与系数的关系,x 1+x 2=−b a ,12cx x a =即可进行作答.【详解】由一元二次方程x 2-3x+2=0,知a=1,b=-3,c=2,又∥x1、x 2是一元二次方程x 2-3x+2=0的两根,∥x 1+x 2=−b a =3,12cx x a ==2.故选C.【点睛】本题考查一元二次方程的根与系数的关系,熟练掌握关系式是解题的关键.10.B【解析】【分析】根据二次函数的性质结合图象逐项分析可得解.【详解】解:对称轴在左侧,故ab 同号,c <0,故李佳:abc <0正确;函数对称轴:x =2ba -<﹣1,解得:2a <b ,故王宁:2a ﹣b <0正确;函数和x 轴有两个交点,b 2﹣4ac >0,故孙浩:b 2>4ac 正确;x =﹣3时,y 1<0,而x =1时,y 2>0,故一帆:点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2错误;故选B .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.﹣4【解析】【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:∥y =(m ﹣4)x |m |﹣2﹣2x ﹣1是关于x 的二次函数,∥|m|﹣2=2,m ﹣4≠0,解得:m =﹣4 .故答案为:﹣4.【点睛】本题考查了二次函数的定义.二次函数的定义:一般地,形如y =ax 2+bx+c (a 、b 、c 是常数,a≠0)的函数叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.y =ax 2+bx+c (a 、b 、c 是常数,a≠0)也叫做二次函数的一般形式.12.-1【解析】【分析】把x=0代入已知方程,列出关于m 的新方程,通过解新方程可以求得m 的值.【详解】解:∥x=0是关于x 的一元二次方程22(1)10m x x m -++-=的一个根,∥m 2-1=0且m -1≠0,即m 2=1且m≠1,解得 m=-1.即m 的值是-1.故答案为:-1.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.23(3)2y x =-+【解析】【分析】按照“左加右减,上加下减”的规律得出即可.【详解】解:23y x =先向上平移2个单位,得到232y x =+,再向右平移3个单位23(3)2y x =-+. 得到抛物线的解析式为23(3)2y x =-+.故答案为:23(3)2y x =-+.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,解题的关键是掌握左加右减,上加下减.14.19.2米【解析】【分析】根据相似三角形的判定定理证明BCA ∥MNA △,再利用相似三角形的性质求解即可.【详解】解:由题意得:BC∥CA ,MN∥AN ,∥∥C =∥MNA =90°,由光的反射原理可得:∥BAC =∥MAN ,∥BCA ∥MNA △, ∥BC AC MN AN =,即118.6 1.5MN =, ∥MN =19.2米.故答案为:19.2米.【点睛】本题考查了相似三角形的判定定理与性质,熟练掌握相似三角形的判定定理及性质是解题的关键.15.24︒【解析】【分析】根据旋转可得AB AB '=,由已知条件AB CB ''=,根据等边对等角可得B AC C '∠=∠,AB B B '∠=∠,根据三角形的外角性质可得2AB B C '∠=∠,根据三角形内角和可得1802BAB B '∠=︒-∠,根据108BAC ∠=︒即可求得C '∠的度数【详解】AB CB ''=B AC C '∴∠=∠2AB B C '∴∠=∠将ABC 绕点A 按逆时针方向旋转得到AB C ''△.AB AB '∴=,C C '∠=∠AB B B '∴∠=∠1802BAB B '∴∠=︒-∠1804C =︒-∠108BAC ∠=︒1802BAC CAB B AB C B ''∴∠=∠+∠=∠+︒-∠18041803C C C =∠+︒-∠=︒-∠24C ∴∠=︒24C '∴∠=︒故答案为:24︒【点睛】本题考查了旋转的性质,三角形内角和定理,三角形的外角性质,掌握旋转的性质是解题的关键.16.-2【解析】【分析】根据数轴上点的位置可得2210x x x -<<+,即可得到()2215AB x x x =+--=,由此解方程,再根据210x -<即12x <进行求解即可. 【详解】解:由数轴上点的位置可得2210x x x -<<+,∥()2215AB x x x =+--=即260x x --=,∥()()230+-=x x ,解得3x =或2x =-,∥210x -<即12x <, ∥2x =-,故答案为:-2.【点睛】本题主要考查了数轴上两点的距离,解一元二次方程,解题的关键在于能够熟练掌握数轴上两点的距离以及解一元二次方程的方法.17.﹣12或﹣734. 【解析】【分析】如图所示,过点B 作直线y=2x+b ,将直线向下平移到恰在点C 处相切,则一次函数y=2x+b 在这两个位置时,两个图像有3个交点,即可求解.【详解】解:如图所示:过点B 的直线y =2x+b 与新抛物线有三个公共点,将直线向下平移到恰在点C 处相切,此时与新抛物线也有三个公共点,令y =x 2﹣5x ﹣6=0,解得:x =﹣1或6,即点B 坐标(6,0),将一次函数与二次函数表达式联立得:x 2﹣5x ﹣6=2x+b ,整理得:x 2﹣7x ﹣6﹣b =0, ∥=49﹣4(﹣6﹣b )=0,解得:b =﹣734, 当一次函数过点B 时,将点B 坐标代入:y =2x+b 得:0=12+b ,解得:b =﹣12, 综上,直线y =2x+b 与这个新图象有3个公共点,则b 的值为﹣12或﹣734; 故答案是:﹣12或﹣734. 【点睛】本题考查的是二次函数与坐标轴的交点,涉及到一次函数、根的判别式、翻折的性质等知识点,画出图像确定临界点在图像上的位置是解答本题的关键.18.(1)115x =-,21x =;(2)123x =,212x =- 【解析】【分析】(1)先移项,然后利用因式分解的方法解一元二次方程即可;(2)先去括号,然后移项合并,最后利用因式分解的方法解一元二次方程即可.【详解】解:(1)∥2531x x x -=+,∥25410x x --=,∥()()5110x x +-=, 解得115x =-,21x =; (2)∥3(21)42x x x +=+,∥26342x x x +=+,∥2620x x --=,∥()()21320x x +-=, 解得123x =,212x =-. 【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法. 19.(1)图见解析,1(3,3)C ;(2)图见解析,1(3,3)C【解析】【分析】(1)画出旋转后的对应顶点,再顺次连接即可;根据点的位置,写出坐标即可;(2)根据位似性质,画出放大后的对应顶点,再顺次连接即可;根据点的位置,写出坐标即可;【详解】解:(1)如图,111A B C △为所求作的三角形,1(3,3)C .(2)如图所示,则222A B C △为所求作的三角形,()22,8B .【点睛】本题考查了平面直角坐标系坐标系中画图,涉及到旋转与位似,解题关键是明确旋转和位似的性质,准确进行画图.20.(1)见详解;(2)4和2【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出Δ=(m -3)2∥0,由此即可证出:无论m 取何值,这个方程总有实数根;(2)分腰长为4和底边长度为4两种情况分别求解可得.【详解】解:(1)证明:∥∥=[-(m+1)]2-4×2(m -1)=m 2-6m+9=(m -3)2≥0,∥无论m 取何值,这个方程总有实数根;(2)若腰长为4,将x=4代入原方程,得:16-4(m+1)+2(m -1)=0,解得:m=5,∥原方程为x 2-6x+8=0,解得:x 1=2,x 2=4.组成三角形的三边长度为2、4、4;若底边长为4,则此方程有两个相等实数根,∥∥=0,即m=3,此时方程为x 2-4x+4=0,解得:x 1=x 2=2,由于2+2=4,不能构成三角形,舍去;所以三角形另外两边长度为4和2.【点睛】本题考查了根的判别式、三角形三边关系、等腰三角形的性质以及解一元二次方程,解题的关键是:(1)牢记“当Δ∥0时,方程有实数根”;(2) 分腰长为4和底边长度为4两种情况分别求解.21.(1)见解析;(2)AC 【解析】【分析】(1)利用角平分线及等腰三角形性质,可得出ACP ABC ∠=∠,同时两个三角形有一个公共角,即可得出两个三角形相似;(2)利用(1)中相似三角形的对应边成比例,将已知边代入即可求出答案.【详解】(1)∥PC 平分ACB ∠,PB PC =,∥ACP BCP ∠=∠,BCP ABC ∠=∠,∥ACP ABC ∠=∠.又∥CAP BAC ∠=∠,∥APC ACB ;(2)由(1)可知:APC ACB ,且5PB PC ==,2AP =, ∥257AB AP BP =+=+=,∥AC AP AB AC=, ∥27214AC AB AP =⋅=⨯=,∥AC =【点睛】本题主要考察相似三角形的判定和性质,理解掌握判定定理及性质是解答本题关键. 22.(1)()214312y x =--+;(2)铅球的落地点离运动员有10米远 【解析】(1)根据题意得A 点坐标为(0,53),D 点坐标为(4,3),且D 为抛物线的顶点,故可将抛物线解析式设为顶点式,然后代入A 点坐标求解即可;(2)令0y =,求出x 的值,再根据B 点在x 轴正半轴求出B 点坐标,则OB 的长即为所求.【详解】解:(1)由题意得:A 点坐标为(0,53),D 点坐标为(4,3),且D 为抛物线的顶点, ∥设抛物线的解析式为()243y a x =-+, ∥()250433a =-+, ∥112a =-, ∥抛物线解析式为()214312y x =--+; (2)令0y =,则()2104312x =--+, ∥()2436x -=, 解得10x =或2x =-(因为B 点在x 轴正半轴),∥B 点坐标为(10,0),∥OB=10∥铅球的落地点离运动员有10米远,答:铅球的落地点离运动员有10米远.【点睛】本题主要考查了求二次函数解析式,二次函数与x 轴的交点问题,解题的关键在于能够熟练掌握二次函数的相关知识.23.(1)t的值为1s或3241s;(2)t的值为78s.【解析】(1)根据勾股定理即可得到结论;分两种情况:∥当∥BPQ∥∥BAC时,∥当∥BPQ∥∥BCA 时,根据相似三角形的性质,把BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM∥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,根据∥ACQ∥∥CMP,得出AC:CM=CQ:MP,代入计算即可.【详解】解:(1)∥∥ACB=90°,AC=6cm,BC=8cm,(cm),分两种情况讨论:∥当∥BPQ∥∥BAC时,BP BQ BA BC=,∥BP=5t,QC=4t,AB=10,BC=8,∥584 108t t-=,解得,t=1,∥当∥BPQ∥∥BCA时,BP BQ BC BA=,∥584 810t t-=,解得,t=32 41,∥t=1s或3241s时,∥BPQ∥∥BCA;(2)过P作PM∥BC于点M,AQ,CP交于点N,如图所示,则PB=5t,MC=8-4t,∥PM∥BC,∥ACB=90°,∥PM∥AC,∥∥BPM∥∥BAC,∥BP PM BM BA AC BC==,即51068t PM BM ==, ∥PM=3t ,BM=4t ,MC=8-4t ,∥∥NAC+∥NCA=90°,∥PCM+∥NCA=90°,∥∥NAC=∥PCM ,∥∥ACQ=∥PMC ,∥∥ACQ∥∥CMP , ∥AC CQ CM MP =, ∥64843t t t=-, 解得t=78. 【点睛】本题考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,由三角形相似得出对应边成比例是解题的关键.24.(1)2y x 2x 3=-++;(2)24h ≤≤;(3)能,点P 的坐标为:()()1,4,0,3,,⎝⎭⎝⎭【解析】 (1)根据对称性求得A 的坐标,进而待定系数法求二次函数解析式即可;(2)先求得BC 的解析式,再求得抛物线的顶点坐标,根据平移的特点求得h 的范围; (3)根据题意,点P 是抛物线L 上任一点,点Q 在直线:3l x =-上,设2(,23)P m m m -++,(3,)Q n -,分P 点在x 轴的上方和下方两种情况讨论,证明MPQ ≌NBP △,根据6,MN PM PN PM BN =+==分别列出方程,解方程即可求解.【详解】解:(1)抛物线的对称轴为1x =,点B 坐标为(3,0)与y 轴交于点C ,∴(1,0)A -∥抛物线2:3L y ax bx =++过点(1,0),(3,0)A B -∥309330a b a b -+=⎧⎨++=⎩解得12a b =-⎧⎨=⎩ ∴抛物线L 的解析式为:2y x 2x 3=-++(2)抛物线L :2y x 2x 3=-++与y 轴交于点C()0,3C ∴()3,0B设直线BC 的解析式为y kx b =+将()3,0B ,()0,3C 代入303k b b +=⎧⎨=⎩解得13k b =-⎧⎨=⎩∴直线BC 的解析式为3y x =-+()222314y x x x =-++=--+∴顶点坐标为()1,4∴在直线BC 上,1x =时,2y = 平移后所得抛物线的顶点落在OBC 内(包括OBC 的边界),∴当2h =时,抛物线的顶点在直线BC 上,当4h =时,抛物线的顶点在x 轴上,即OB 上∴24h ≤≤(3)能,点P 的坐标为:()()1,4,0,3,,⎝⎭⎝⎭, 根据题意,点P 是抛物线L 上任一点,点Q 在直线:3l x =-上,设2(,23)P m m m -++,(3,)Q n -, ∥当P 点在x 的上方时,过点P 作PM l ⊥于M ,过点B 作BN x ⊥轴交MP 的延长线于点N ,如图,∥PBQ △是以点P 为直角顶点的等腰直角三角形∥90,BPQ BP PQ ∠=︒=∥,PM MQ PN BN ⊥⊥∥90PMQ BNP ∠=∠=︒MPQ BPN NBP BPN ∴∠+∠=∠+∠MPQ NBP ∴∠=∠在MPQ 和NBP △中PMQ BNP MPQ NBP BP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩∴MPQ ≌NBP △PM BN ∴=223PM BN m m ∴==-++()3,0B ,3PN m ∴=-,6MN PM PN =+=即22336m m m -+++-=解得121,0m m ==(1,4)P ∴或(0,3)∥当P 点在x 轴下方时,过点P 作PM l ⊥于M ,过点B 作BN x ⊥轴交MP 的延长线于点N ,如图,同理可得MPQ ≌NBP △PM BN ∴=()633PM m m ∴=--=+,223BN m m =--则2323m m m +=--解得12m m ==P ∴,⎝⎭⎝⎭综上所述P 的坐标为:()()1,4,0,3,,⎝⎭⎝⎭【点睛】本题考查了二次函数综合,待定系数法求二次函数解析式,二次函数的的平移,等腰直角三角形的性质,全等三角形的性质与判定,坐标与图形,解一元二次方程,第(3)问中,分类讨论,作出辅助线是解题的关键.25.(1)每个电子产品的价格应该降价4元或6元;(2)该商场应该将该电子产品按照九折优惠销售;(3)当x =55时,w 有最大值,最大值为2250元.【解析】【分析】(1)设每个电子产品的价格应该降价x 元,根据每个电子产品的利润乘以销售量,得一元二次方程,求解即可;(2)由(1)所求得的降价额,结合问题的实际意义,可得应降价多少,从而可得打几折优惠;(3)设定价为y 元,商场每天销售该电子产品的利润为w 元,根据题意列出函数关系式,写成顶点式,即可得问题的答案.【详解】解:(1)设每个电子产品的价格应该降价x 元,由题意得:(60﹣x ﹣40)(100+10x )=2240∥(x ﹣4)(x ﹣6)=0∥x 1=4,x 2=6∥每个电子产品的价格应该降价4元或6元.(2)在平均每天利润不变的情况下,为尽可能赢得市场,需要让利于顾客,该商场应该将该电子产品可以降价6元销售:(60﹣6)÷60=0.9∥该商场应该将该电子产品按照九折优惠销售..(3)设定价为y 元,商场每天销售该电子产品的利润为w 元,由题意得:w =(y ﹣40)[100+(60﹣y )×10]=(y ﹣40)(﹣10y+700)=﹣10y 2+1100y ﹣28000=﹣10(y ﹣55)2+2250∥二次项系数为﹣10<0∥当x =55时,w 有最大值,最大值为2250元.【点睛】本题考查了二次函数及一元二次方程在实际问题中的应用,明确成本利润问题的基本关系式及二次函数的性质,是解题的关键.26.(1)1,60︒;(2,45︒;(3)22+【解析】【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DABPAC ∆∆,即可解决问题.(3)分两种情形:∥如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题;∥如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .CA CB =,60ACB ∠=︒ABC ∴是等边三角形60CAB ∴∠=︒由旋转可得PA=PD ,∥APD=60°∥三角形PAD 是等边三角形60PAD CAB ∠=∠=︒,CAP BAD ∴∠=∠,CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆,PC BD ∴=,ACP ABD ∠=∠,AOC BOE ∠=∠,60BEO CAO ∴∠=∠=︒,1BDPC ∴=,线BD 与直线CP 相交所成的较小角的度数是60︒,故答案为1,60︒.(2)如图2中,,90CA CB ACB =∠=︒,将线段AP 绕点P 逆时针旋转90︒得到线段DP ,45,90,CAB CBA APD PA PD ∴∠=∠=︒∠=︒=,45PAD CAB ︒∴∠=∠=,,PAD CAB ∴△△是等腰直角三角形,,DA BA ∴==PAD DAC DAC CAB ∴∠+∠=∠+∠PAC DAB ∴∠=∠,AB AD AC AP ==DAB PAC ∴∆∆,PCA DBA ∴∠=∠,BDABPC AC ==,GHC AHB ∠=∠,45CGH HAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB ∴∥,45EFC ABC ︒∴∠=∠=,45PAO ︒∠=,PAO OFH ∴∠=∠,POA FOH ∠=∠,H APO ∴∠=∠,90APC ︒∠=,EA EC =,PE EA EC ∴==,EPA EAP BAH ∴∠=∠=∠,H BAH ∴∠=∠,BH BA ∴=,45ADP BDC ︒∠=∠=,90ADB ︒∴∠=,BD AH ∴⊥,AD DH =∴90ACH ∠=︒12DC AH AD ∴== DA DC ∴=,设=AD a ,则DC AD a ==,2PD =,2AD CP ∴==如图3﹣2中,当点P 在线段CD 上时,同法可证:=DA DC ,设=AD a ,则CD AD a ==,2PD =,PC a ∴=,2AD PC ∴== 综上所述,AD PC的值为22 【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2024-2025学年北京四中初三上学期期中数学试题及答案

数学试卷班级__________ 姓名__________学号__________ 成绩__________一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下面四个标志中是中心对称图形的是( ).A .B .C .D .2.方程220x x -=的根是( ). A .0x =B .2x =C .0x =或2x =D .0x =或2x =-3.若1(3,)A y -,2(2,)B y -,3(3,)C y 为二次函数21y x =+()图象上的三点,则1y ,2y ,3y 的大小关系是( ). A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<4.二次函数(5)(7)y x x =-+的图象的对称轴是(). A .直线1x =- B .直线1x =C .直线2x =D .直线6x =5.如图,AB 为O 直径,点C 、D 在O 上,如果70ABC ∠=︒,那么D ∠的度数为( ).A .20︒B .30︒C .35︒D .70︒6.2024年北京第一季度GDP 约为1.058万亿元,第三季度GDP 约为1.167万亿元,设2024年北京平均每季度GDP 增长率为x ,则可列关于x 的方程为( ). A .21.058(1) 1.167x -= B .1.058(12) 1.167x +=C .21.058(1) 1.167x +=D .21.167(1)1.058x -=7.如图是一个钟表表盘,连接整点2时与整点10时 的B 、D 两点并延长,交过整点8时的切线于点P ,若切线长2PC =,则表盘的半径长为( ).A .3B. C . D.A8.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),已知计划中的篱笆(不包括门)总长为12m ,现有四种方案(如图)中面积最大的方案为( ). A 方案为一个封闭的矩形B 方案为一个等边三角形,并留一处1m 宽的门C 方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留1m 宽的门D 方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留1m 宽的门A. B.C. D.二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向上平移1个单位,得到的抛物线表达式为 .10.如图,四边形ABCD 内接于O ,E 为BC 延长线上一点,50A ∠=︒,则DCE ∠的度数为 .11.抛物线256y x x =-+与y 轴的交点的坐标是 .12.如图,PA 、PB 分别切O 于A 、B 两点,点C 为AB 上一点,过点C 作O 的切线分别交PA 、PB 于M 、N 两点,若△PMN 的周长为10,则切线长PA 等于 .第10题图 第12题图13.已知22310a a -+=,则代数式2(3)(3)a a a -++的值为 .14.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度....是 cm .图1 图2 第15题图15.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-, 对称轴为直线2x =,抛物线与y 轴交点在(0,1)A 和(0,2)B 之间(不与A 、B 重合).下列结论:①0abc >; ②93a c b +>; ③40a b +=; ④当0y >时,15x -<<; ⑤a 的取值范围为2155a -<<-. 其中正确结论有 .(填序号)16.如图,在直角三角形ABC 中,∠A =90°,D 是AC 上一点,BD =10, AB =CD ,则BC 的最大值为 .三、解答题(共68分,第17题8分,第18、21、25题每题4分,第19、23、24题每题5分,第20、26题6分,第22、27、28题每题7分)17.解下列方程:(1)23610x x -+=; (2)2(3)3x x x -=-.18.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为(1,1)A -,(3,1)B -,(1,4)C -.将△ABC 绕着点B 顺时针旋转90︒后得到△11A BC , (1)请在图中画出△11A BC ; (2)线段BC 旋转过程中所扫过的面积是 (结果保留π).19.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE . (1)求证:△AEB ≌△ADC ; (2)连接DE ,若96ADC ∠=︒,求BED ∠的度数. 20.已知关于x 的一元二次方程22(8)40x k x k +--=.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于3,求k 的取值范围. 21.已知:如图O 及O 外一点P .求作:直线PB ,使PB 与O 相切于点B .李华同学经过探索,想出了两种作法.具体如下(已知点B 是直线OP 上方一点):A ,A 交O 于点B ,则直线PB 是O 的切O 于点M ;②以点的长为半径作弧,交直线,交O 于点B PB 是O 的切线. 证明:如图1,连接OB , A 直径,90PBO =︒.( OB . OB 是O 的半径,∴直线PB 是O 的切线.请仔细阅读,并完成相应的任务.(1)“作法一”中的“依据”是指 ; (2)请写出“作法二”的证明过程.NQ M P22.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过(0,2)A -,(2,0)B 两点.(1)求这个二次函数的解析式;(2)填写表格并在给出的平面直角坐标系中画出这个函数的图象;(3)若一次函数y mx n =+的图象也 经过A ,B 两点,结合图象,直接写出 不等式2x bx c mx n ++<+的解集.23.如图,在Rt △ABC 中,90C ∠=︒,BE 平分ABC ∠交AC于点E ,点D 在AB 上,DE EB ⊥. (1)求证:AC 是△BDE 的外接圆的切线;(2)若2AD =,AE =,求EC 的长.24.如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线2(20)y a x k =-+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米,竖直距离为6米.若发射石块在空中飞行的最大高度为10米. (1)求抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙.25.如图1,线段AB 及一定点C ,P 是线段AB 上一动点,作直线CP ,过点A 作AQ CP ⊥于点Q ,已知7AB =cm ,设A 、P 两点间的距离为x cm ,A 、Q 两点间的距离为1y cm ,P 、Q 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y 、2y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程:第一步:按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y 、2y 与x 的几组对应值.1(,)x y ,2(,)x y ,并画出函数1y 、2y 的图象. 解决问题:(1)在给出的平面直角坐标系中(图2)补全函数2y 的图象;(2)结合函数图象,解决问题:当△APQ 中有一个角为30︒时,AP 的长度约为 cm .图1图226.在平面直角坐标系xOy 中,已知抛物线224(0)y ax a x a =-≠. (1)当1a =时,求抛物线的顶点坐标;(2)已知1(M x ,1)y 和2(N x ,2)y 是抛物线上的两点.若对于15x a =,256x ,都有12y y <,求a 的取值范围.27.已知,如图,在△ABC 中,∠ACB =90°,∠ABC =45°,点D 在BC 的延长线上,点E 在CB 的延长线上,DC =BE ,连接AE ,过C 作CF ⊥AE 于F ,CF 交AB 于G ,连接DG . (1)求证:∠AEB =∠ACF ;(2)用等式表示CG ,DG 和AE 的数量关系,并证明.28. 对于平面直角坐标系xOy 内的直线l 和点P ,若点A 关于l 作轴对称变换得到点1A ,点1A 关于点P 作中心对称变换得到点2A ,我们则称点2A 为点A 关于直线l 和点P 的“正对称点”. 已知B (-1,0),C (2,0),(1)写出B 关于y 轴和点C 的“正对称点”的坐标________;(2)已知点1C (2,m )(102m ),存在过原点O 的直线1l ,使得点B 关于直线1l 和点1C 的“正对称点”在直线2l :y =x+b 上,求b 的取值范围;(3)已知点H 是直线x =1上的一点,且点H 的纵坐标小于0,C (3,0),E 点在以C 为圆心1为半径的圆上,对于直线x =6上的点F (6,h ),以F 为圆心,1为直径作圆F ,若圆F 上存在点B 关于直线OH 和点E 的“正对称点”,直接写出h 的取值范围.备用图数学参考答案一、选择题1.D 2.C 3.B 4.A 5.A 6.C 7.B 8.C二、填空题9. 231y x =+ 10. 50° 11.(0,6) 12.5 13.8 14.18 15.③④⑤16. 5+ 补充说明:T15只有一个正确答案得1分,有错误答案不得分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明三中、滇池中学 2011—2012 学年上学期期中测试
初三数学试卷
本试卷满分共 100 分,考试用时
120 分钟。

一.选择题 ( 每小题 3 分,共 24 分)
1 、如果
3 a 有意义,则 a 的取值范围是(

A. a ≥ 0
B. a ≤ 0
C. a ≥ 3
D. a ≤ 3
2、连掷两次骰子,它们的点数之和是
7 的概率是(

1
1 1
D .
1
A .
B .
C .
36
6
4
16
3、已知⊙ O 的半径 r
为 3cm ,⊙ O 的半径 R 为 4cm ,两圆的圆心距
OO 为 1cm ,则这两圆的位置关系是
1
2
1 2
( )
A .相交
B .内含
C .内切
D .外切
4、下列几个图形是国际通用的交通标志,其中不是中心对称图形的是
( )
5、如图,已知
AB 是半圆 O 的直径,∠ BAC=32o , D 是弧 AC 的中点,那么∠
DAC 的度数是(

A. 25o
B. 29o
C. 30o
D.32°
6、如图,一块边长为
8 cm 的正三角形木板 ABC ,在水平桌面上绕点 B 按顺时针方向旋转至 A ′BC ′的
位置时,顶点 C 从开始到结束所经过的路径长为 ( 点 、 、 ′在同一直线上 ) ( )
A B C
A. 16 π
B.
8
C.
64
16
π
π
D.π
3
3
3
第5题图
第 6题图
第7题图
7 、在一幅长 60cm ,宽 40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如 果要使整个挂图的面积是
2816cm 2,设金色纸边的宽为
x cm ,那么 x 满足的方程是(

A .( 60+x )( 40+2x ) =2816
B .( 60+x )( 40+x ) =2816
C .( 60+2x )( 40+x ) =2816
D .( 60+2x )( 40+2x ) =2816
8 、如图,圆弧形桥拱的跨度
AB = 12 米,拱高 CD = 4 米,则拱桥的半
径为( )
A .米
B .9 米
C .13 米
D .15 米
二 . 填空题(每小题 3 分,共 24 分)
第 8题图
9、 2
3 = ______________ .
10、关于 x 的方程 x 2 ax 2a 0 的一个根是 1,则 a 的值为 _________.
11、如图是一个被分成
6 个相同扇形可自由转动的转盘,转动转盘,当转盘停
....
止后,指针指向白色区域 的概率是 ____________ .
12、将一元二次方程 2x 2- 3 x - 2 = 0 通过配方后所得的方程是

13、若用半径为
x 的圆形桌布将边长为 60 cm 的正方 形餐桌盖住,则
x 的最小值


14、如 图,△ ABC 绕点 B 逆时针方向旋转到△ EBD 的位置,若∠ A=150∠ C=100, E , B , C 在同一直线上,
则旋转角度是
.
D
A
A
D
C
E
B
C
第 14题
15、如图,以BC 为直径,在半径为2,圆心角为90°的扇形内作半圆,交弦AB 于点 D,连接CD ,则
阴影部分的面积是.
16、如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm 的等边三角形ABC ,点 D 是
母线 AC 的中点,一只蚂蚁从点 B 出发沿圆锥的表面爬行到点 D 处,则这只蚂蚁爬行的最短距离
是cm.
三.解答题(共52 分)
17、( 5 分)计算: 1 1
20120 2 21818 、( 4 分)解方程x2 3x 4 0
6
19、( 4 分)如图:在平面直角坐标系中,网格中每一个
y 小正方形的边长为 1 个单位长度;已知△ABC 以 O为
旋转中心,将△ A B C 逆时针旋转 90°得△A B C ,
1 1 1 1 1 1
画出旋转后的图形,并写出B点坐标. A
1
20、( 6 分)( 1)已知关于x 的方程 ax2 4x 1 0 .当 a 取什么值时,方程有实数根?
( 2)已知x1, x2是方程x2 2B
x2
2
C
mx m 1 0 的两个根,且x1 17 ;求 m 的值。

21、( 6 分)小刚和小明两位同学玩一种游戏.游戏规则为
O x :两人各执“象、虎、鼠”三张牌,同时各
出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象
牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局.
( 1)一次出牌小刚出“象”牌的概率是多少?
( 2)如果用A,B,C分别表示小刚的象、虎、鼠三张牌,用A1, B1, C1分别表示小明的象、虎、鼠
三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.
22.(6分)列方程解应用题小刚小明
市政府为了解决市民看病贵的问题,决定下调药品的价格,某种药品经过连
续两次降价后,由每盒200 元下调至 128 元A,求B这种药C品平均每次降价的百分率
A1B1C1
第 21题图
是多少?
23、( 6 分)如图,⊙ O的直径 AB为 10cm, 弦 AC 为 6cm, ∠ ACB的平分线交⊙O于 D, 求 BC、 AD、 BD的长。

24、( 6 分)列方程解应用题
某商场销售一批衬衫,进货价为每件40 元,按每件50 元出售,一个月内可售出500 件。

已知这种衬衫每件涨价 1 元,其销售量要减少10 件。

为在月内赚取8000 元的利润,售价应定为每件多少元?
25、( 9 分)如图, O是已知线段AB上一点,以OB为半径的⊙O交线段AB于点 C,以线段AO为直径的
半圆交⊙ O于点 D,过点 B 作 AB 的垂线与AD 的延长线交于点 E.
( 1)求证: AE切⊙ O于点 D;
( 2)若 AC = 2 ,且 AC、 AD的长是关于x 的方程 x 2kx 4 50 的两根,求线段
AB 的长;
( 3)当点O位于线段AB 何处时,△ ODC恰好是等边三角形?并说明理由。

E
昆明三中、滇池中学2011—2012 学年上学期期中测试
D
初三数学答案
一.选择题 ( 每小题 3 分,共 24
分 )
1、D ;
2、A ; 3 、C ; 4 、D ; 5 、B ; 6 、D ; 7 、D ; 8 、A
二 . 填空题(每小题 3 分,共 24 分)
2
9、
6 ; 10 、1; 11 、 1

12 、 x 3
25 ; 13 、 30 2cm ; 14 、 25 ;
3
3
4
16
15、
1; 16 、 2 5 ;
三.解答题( 52 分)
17、( 5 分) 7 2 2 ;
18
、( 4 分) x 1
4, x 2 1
19、图略( 3
分), B
1, 4 ( 1 分);
1
20、( 1)( 3 分) a ≥ -4
( 2)( 3 分) m
3或
5
21、( 1)( 2分) 1

( 2)( 4 分)图略,
1
3
3
22、( 6 分)解:设这种药品平均每次降价的百分率是
x
200 1 x
2
128 -----------------------------
3

答:这种药品平均每次降价的百分率是
20 %。

---------- 3

23、 BC
10cm ---------------
2 分
AD BD 5 2cm --------------
4

24、( 6 分)解:设每件应涨
x 元
50 x
40 500 10x 8000 -----------------------
3

x 1 10, x 2 30
------------------------ 1 分
50 x 60或80
------------------------
1

答:每件售价应定为 60 或 80 元。

------------------------
1

25、( 1)证明略 --------- 2

(2) AD
2 5 ------ 2
分,
AB 10 ------ 2 分
( 3)当
OB
1
AB 时,△ ODC 恰好是等边三角形
-----3 分
3
第一课件网 系列资料 第一课件网不用注册,免费下载!。

相关文档
最新文档