最新人教版七年级下册数学全册教案
2024年人教版七年级下册数学教案全册

2024年人教版七年级下册数学教案全册一、教学内容1. 第一章:数的概念与运算第一节:有理数的乘方与开方第二节:实数的概念与运算第三节:数的估算与无理数2. 第二章:代数式与方程第一节:单项式与多项式第二节:一元一次方程第三节:不等式与不等式组3. 第三章:图形的认识与图形的测量第一节:平行线与相交线第二节:三角形的概念与性质第三节:四边形的概念与性质二、教学目标1. 理解有理数乘方、开方及实数的概念,掌握实数的混合运算方法。
2. 学会解一元一次方程,掌握不等式与不等式组的解法。
3. 掌握平行线、相交线、三角形及四边形的性质,提高空间想象能力。
三、教学难点与重点1. 教学难点:实数的概念、一元一次方程的解法、不等式组的解法、图形的性质。
2. 教学重点:实数的运算、方程与不等式的解法、图形的测量。
四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体设备。
2. 学具:练习本、铅笔、三角板、直尺。
五、教学过程1. 导入:通过生活实例引入数的概念,激发学生学习兴趣。
2. 新课导入:讲解教材内容,结合例题进行讲解。
3. 随堂练习:设计实践情景,让学生动手操作,巩固所学知识。
6. 课后作业:布置适量的作业,巩固所学知识。
六、板书设计1. 板书内容:章节、重要概念、公式、典型例题、解题步骤。
2. 板书要求:条理清晰、层次分明、重点突出。
七、作业设计1. 作业题目:课后习题1.1、1.2、1.3;课后习题2.1、2.2、2.3;课后习题3.1、3.2、3.3。
2. 答案:课后习题答案附后。
八、课后反思及拓展延伸2. 拓展延伸:针对学生的实际情况,设计拓展性练习,提高学生的思维能力。
重点和难点解析一、教学难点与重点1. 实数的概念与运算:实数是数学中的一个基本概念,包括有理数和无理数。
实数的运算是学生容易出错的地方,需要重点关注。
补充说明:在讲解实数的概念时,可以通过具体例子(如π、√2等)来帮助学生理解无理数的存在。
新人教版七年级数学下册教案全册

新人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线详细内容:平行线的性质与判定,垂直线,斜率的概念及计算。
2. 第六章:概率初步详细内容:事件的分类,概率的定义,概率的基本性质,计算方法。
3. 第七章:三角形详细内容:三角形的基本概念,三角形的判定,等腰三角形,勾股定理及应用。
4. 第八章:图形的变换详细内容:平移,旋转,对称,相似变换。
二、教学目标1. 知识与技能:使学生掌握相交线与平行线的性质,理解概率初步知识,掌握三角形的基本概念及勾股定理,学会图形的变换。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维能力和空间想象能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的合作精神和探索精神。
三、教学难点与重点1. 教学难点:相交线与平行线的判定,概率的计算,勾股定理的应用,图形变换。
2. 教学重点:平行线的性质,概率的基本性质,三角形的判定,图形变换。
四、教具与学具准备1. 教具:黑板,粉笔,多媒体设备。
2. 学具:直尺,圆规,量角器,三角板,计算器。
五、教学过程1. 实践情景引入:通过生活中的实例,引入相交线与平行线的概念,激发学生学习兴趣。
2. 例题讲解:详细讲解相交线与平行线的性质与判定,概率初步知识,三角形的基本概念及勾股定理,图形变换。
3. 随堂练习:针对每个知识点设计练习题,巩固所学知识。
4. 小组讨论:对重难点知识进行分组讨论,培养学生的合作精神。
六、板书设计1. 新人教版七年级数学下册2. 内容:按照章节顺序,列出每个章节的知识点,用不同颜色粉笔标注重点和难点。
七、作业设计1. 作业题目:(1)相交线与平行线的性质与判定。
(2)概率的基本性质及计算方法。
(3)三角形的判定及勾股定理的应用。
(4)图形的变换。
八、课后反思及拓展延伸2. 拓展延伸:布置拓展性作业,提高学生的思维能力和创新能力。
如:研究生活中的概率问题,探索图形变换的奥秘等。
人教版七年级数学下册教案(10篇)

人教版七年级数学下册教案(10篇)七年级数学下册教案篇1一、指导思想:根据学生的实际情况,从生活入手,结合教材内容。
通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。
最终圆满完成七年级下册数学教学任务。
二、情况分析:通过上学期的考试,我们发现这个班的学生数学成绩并不理想。
基础知识不扎实,计算能力差,思维不灵活,缺乏创新思维能力,特别是解决疑难问题的能力低。
整体来看,低分多,两极分化比较严重。
三、教学目标知识与技能目标:认识实数和相交线及平行线,理解平行线的判定及其证明;掌握平面直角坐标系;学会解二元一次方程组以及不等式的具体解法。
过程与方法目标:学会从实际问题中提取数学信息,发展几何思维方式。
培养学生的观察能力和思考能力,特别是独立探索的能力。
情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。
四、教材分析第5章,交线和平行线:本章主要研究有理数的基本性质和运算。
本章重点介绍有理数的概念、性质和运算。
本章的难点是理解有理数的基本性质和运算规则,并应用于解决实际问题和计算。
第六章、实数:本章主要是学习单项式和多项式的加减运算。
本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。
本章难点在于理解合并同类项和去括号的法则。
第七章,平面笛卡尔坐标系:本章主要研究一元一次方程的概念,方程的基本性质,一元一次方程的求解及应用。
本章的重点内容是理解平等的基本属性;掌握解一元一次方程的一般步骤;用列方程解决实际问题的基本思想。
本章的难点在于解一元一次方程,利用一元一次方程解决简单实用的问题。
第八章:二元线性方程组和不等式:本章主要研究线段和角度的性质。
本章的重点是区分直线、射线、线段和角度的性质和计算;了解补角和余角的性质和应用。
本章的难点在于线段和角度的计算。
五、教学措施1.深入研读教材,根据学生实际情况有针对性地备课,精心设置课堂教学内容和模式。
2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册一、教学内容1. 第1章:有理数1.1 有理数的概念与分类1.2 有理数的加减法1.3 有理数的乘除法1.4 有理数的乘方2. 第2章:一元一次方程2.1 方程的概念2.2 一元一次方程的解法2.3 实际问题与一元一次方程3. 第3章:几何图形3.1 线段、射线与直线3.2 角的概念与分类3.3 三角形的性质3.4 平行线的性质与判定二、教学目标1. 理解有理数的概念,掌握有理数的分类、加减乘除及乘方运算。
2. 掌握一元一次方程的解法,并能解决实际问题。
3. 掌握几何图形的基本概念与性质,培养空间想象能力。
三、教学难点与重点1. 教学难点:有理数的乘除法及乘方运算一元一次方程的解法几何图形的性质及判定2. 教学重点:有理数的运算规律方程的解法几何图形的基本性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、尺子、圆规等。
2. 学具:练习本、铅笔、直尺、圆规、量角器等。
五、教学过程1. 实践情景引入:通过生活实例引入有理数的概念与运算。
通过实际问题引入方程的概念。
通过观察身边的几何图形,引入几何图形的性质。
2. 例题讲解:讲解有理数的加减乘除、乘方运算的法则与例题。
讲解一元一次方程的解法及实际应用例题。
讲解几何图形的性质与判定方法。
3. 随堂练习:进行有理数运算的练习。
解答一元一次方程的练习题。
识别与判断几何图形的练习。
4. 课堂小结:六、板书设计1. 有理数的概念、分类及运算规律。
2. 一元一次方程的解法及实际应用。
3. 几何图形的性质与判定。
七、作业设计1. 作业题目:有理数运算练习题。
一元一次方程实际应用题。
几何图形的识别与判断题。
答案:见课后练习册。
八、课后反思及拓展延伸1. 反思本次教学过程中的优点与不足,针对学生掌握程度进行查漏补缺。
2. 拓展延伸:引导学生探索有理数的更多运算性质。
介绍更高层次的方程解法,如二元一次方程组。
引导学生观察生活中的几何图形,培养空间想象能力。
2024年最全面新人教版七年级数学下册教案全册精华版

2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。
2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。
新人教版初中7七年级数学下册全册完整教案(最新)

新人教版七年级数学下册全册教案(新教材)特别说明:本教案为最新人教版教材(改版后)配套教案,各单元教学内容如下:第五章相交线与平行线第八章二元一次方程组5.1 相交线 8.1 二元一次方程组5.2 平行线及其判定 8.2 消元——解二元一次方程组5.3 平行线的性质 8.3 实际问题与二元一次方程组5.4 平移 8.4 三元一次方程组的解法第六章实数第九章不等式与不等式组6.1 平方根 9.1 不等式6.2 立方根 9.2 一元一次不等式6.3 实数 9.3 一元一次不等式组第七章平面直角坐标系第十章数据的收集、整理与描述7.1 平面直角坐标系 10.1 统计调查7.2 坐标方法的简单应用 10.2 直方图10.3 课题学习从数据谈节水12课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【自主学习】1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯?,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征?【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。
2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册一、教学内容1. 第五章:相交线与平行线1.1 探索直线交点1.2 平行线的判定与性质1.3 平行线的应用2. 第六章:平面几何初步2.1 角的概念与性质2.2 三角形的分类与性质2.3 四边形的性质与判定3. 第七章:一元一次不等式与不等式组3.1 不等式的概念与性质3.2 一元一次不等式的解法3.3 不等式组的解法与应用4. 第八章:实数4.1 实数的概念与分类4.2 实数的运算4.3 实数与数轴二、教学目标1. 理解并掌握相交线、平行线的性质与判定方法,能够解决实际问题。
2. 掌握平面几何图形(角、三角形、四边形)的性质、分类与判定,培养空间想象能力。
3. 学会一元一次不等式与不等式组的解法,能够解决实际问题,提高逻辑思维能力。
4. 理解实数的概念,掌握实数的运算方法,培养运算能力。
三、教学难点与重点1. 教学难点:平行线的判定与性质、三角形与四边形的性质与判定、一元一次不等式与不等式组的解法、实数的概念与运算。
2. 教学重点:相交线与平行线的性质、平面几何图形的性质与判定、不等式的解法、实数的运算。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:直尺、圆规、量角器、练习本、笔。
五、教学过程1. 导入:通过实践情景引入,激发学生学习兴趣。
1.1 以生活中的实例(如斑马线、操场跑道等)引入相交线与平行线的概念。
1.2 通过观察几何模型,引导学生发现三角形、四边形的性质。
1.3 以实际问题的形式,让学生感受不等式与实数的应用。
2. 新课导入:讲解新课内容,阐述重点与难点。
2.1 利用多媒体教学设备,展示相交线、平行线的性质与判定方法。
2.2 通过例题讲解,让学生掌握平面几何图形的性质与判定。
2.3 结合实际例题,引导学生学会一元一次不等式与不等式组的解法。
2.4 通过实数的运算练习,让学生掌握实数的概念与运算方法。
3. 随堂练习:巩固所学知识,检验学习效果。
最全面新人教版七年级数学下册教案全册精华版

最全面新人教版七年级数学下册教案全册精华版一、教学内容二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法,能够运用这些知识解决实际问题。
2. 理解实数的概念,掌握实数的运算规则,提高数学运算能力。
3. 掌握平面直角坐标系的性质和应用,能够用坐标系解决相关问题。
4. 学会解二元一次方程组和不等式组,提高解决问题的能力。
5. 理解多边形的性质,能够计算多边形的面积和周长。
6. 掌握旋转的性质和规则,能够解决旋转相关的几何问题。
7. 理解圆的性质和圆的相关计算,能够解决圆的问题。
三、教学难点与重点重点:相交线与平行线的判定、实数的运算、二元一次方程组的解法、多边形的性质、旋转的性质、圆的性质。
难点:平行线的判定与性质、实数的运算、二元一次方程组的解法、多边形的面积计算、旋转的几何问题、圆的相关计算。
四、教具与学具准备教具:黑板、粉笔、尺子、圆规、三角板、教学PPT。
学具:练习本、铅笔、尺子、圆规、三角板。
五、教学过程1. 实践情景引入:通过生活中的实例,引出相交线与平行线的概念,激发学生学习兴趣。
2. 例题讲解:详细讲解相交线与平行线的判定方法,结合实例进行分析。
3. 随堂练习:让学生练习相交线与平行线的相关题目,巩固所学知识。
4. 实数教学:通过数轴上的点,引入实数的概念,讲解实数的运算规则,进行例题讲解和随堂练习。
5. 平面直角坐标系教学:讲解坐标系的性质,进行例题讲解和随堂练习。
6. 二元一次方程组教学:通过实际问题,引入方程组的概念,讲解解法,进行例题讲解和随堂练习。
7. 不等式与不等式组教学:讲解不等式的性质和解法,进行例题讲解和随堂练习。
8. 多边形教学:讲解多边形的性质和计算方法,进行例题讲解和随堂练习。
9. 旋转教学:通过实例,讲解旋转的性质,进行例题讲解和随堂练习。
10. 圆教学:讲解圆的性质和计算方法,进行例题讲解和随堂练习。
六、板书设计1. 相交线与平行线的判定方法、性质、例题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线和平行线教材分析本章包含相交线、平行线及其判定、平行线的性质、平移等4节内容,前三节主要讨论平面内两条直线的位置关系,重点是垂直和平行关系,第4节是有关平移的内容.平面内两条直线的位置关系是“图形与几何”所要研究的基本问题,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究了相交的情形,探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角概念,得出了“对顶角相等”的结论;垂直作为两条直线相交的特殊情形,与它有关的概念和结论是学习“平面直角坐标系”的直接基础,本章对垂直的情形进行了专门的研究,探索得出了“过一点有且只有一条直线与已知直线垂直”“垂线段最短”等结论,并给出点到直线的距离的概念,为学习在平面直角坐标系中确定点的坐标打下基础.对于平面内两条直线平行的位置关系,教科书首先引入一个基本事实(平行公理),即过直线外一点有且只有一条直线与已知直线平行,以此为出发点探讨了平行线的判定和平行线的性质,教科书接下来对命题、命题的构成、真假命题、定理作了简单介绍,使学生初步接触有关形式逻辑概念和术语.本章在最后一节安排了有关平移的内容.从《课程标准(2011版)》看,图形的变化是“图形几何”领域中一块重要的内容,通过将图形的平移、旋转、折叠等活动,使图形动起来,有助于在运动变化的过程中发现图形不变的几何性质,因此图形的变换是研究几何问题、发现几何结论的有效工具.教学重点1.垂线的概念.2.平行线的判定和性质.教学难点逐步深入地让学生学会说理,培养学生的推理能力.课时安排5.1相交线约4课时5.2平行线及其判定约2课时5.3平行线的性质约3课时5.4平移约1课时小结约2课时机动约2课时5.1 相交线5.1.1 相交线教学目标1.理解对顶角的概念,会在图形中找出对顶角.2.掌握对顶角的性质,了解它的推证过程,会用对顶角的性质进行有关的推理和计算.3.了解邻补角的概念,会在图形中找出邻补角,并会用它进行有关的推理或计算.4.经历探究对顶角、邻补角的位置关系的过程建立空间概念,发展学生的抽象概括能力.5.使学生认识数学与现实生活的联系,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识.教学重点对顶角、邻补角的概念以及性质.教学难点性质的探究过程.课时安排1课时.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察右图,同桌讨论,教师统一学生观点并板书.板书:∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,并口答为什么.板书:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演.解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).∠4=∠2=140°(对顶角相等).三、范例学习学生活动:让学生把例题中∠1=40°换成其他条件,而结论不变,自编几道题.名称特征性质相同点不同点对顶角①两条直线相交面成的角②有一个公共顶点③没有公共边对顶角相等都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个邻补角①两条直线相交面成的角②有一个公共顶点③有一条公共边邻补角互补变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1∶∠2=2∶9四、课堂小结学生活动:表格中的结论均由学生自己口答填出.五、布置作业教材P3练习.5.1.2 垂线教学目标1. 使学生掌握垂线、垂线段、点到直线的距离等概念,理解垂线的性质,掌握过一点有且只有一条直线与已知直线垂直的结论.2. 会用三角板或量角器过一点画一条直线的垂线.3.经历观察、分析、概括、论述的学习过程,培养学生逻辑思维能力以及推理能力,进一步训练学生的作图能力.4.通过创设情境,激发学生学习兴趣,给学生创造成功的机会,体验成功的快乐.教学重点使学生掌握垂线,理解垂线的性质,“垂线段最短”的性质,点到直线的距离的概念及其简单应用.教学难点用垂线定义判断两条直线是否垂直及垂线的画法.理解点到直线的距离的概念.课时安排2课时.第1课时教学内容垂直的概念、性质和画法.教学过程一、创设问题情境1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象.在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这是我们要学习的内容.2.学生观察教材P3图5.1-4并思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角α是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?教师在组织学生交流中,应学生明白:当b的位置变化时,角α从锐角变为钝角,其中∠α是直角是特殊情况.其特殊之处还在于:当∠α是直角时,它的邻补角、对顶角都是直角,即a、b所成的四个角都是直角,也就是都相等.3.师生共同给出垂直定义师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名.如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”.4.垂直的表示法垂直用符号“⊥”来表示,结合教材图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号.5.简单应用(1)学生观察教材P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例.(2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线l的垂线.(1)已知直线l(教师在黑板上画一条直线l),画出直线l的垂线.学生上黑板画出l 的垂线后,教师追问:还能画出l的垂线吗?能画几条?通过师生交流,使学生明确直线l的垂线有无数多条.教师再问:怎样才能确定直线l的垂线位置?学生回答:在直线l上取一点A,过点A画l的垂线.学生动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线l外一点B画直线l的垂线,这样的垂线能画出几条?从中你又得出什么结论?教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1:过一点有且只有一条直线与已知直线垂直.2.变式训练:巩固垂线的概念和画法,根据下列语句画图.(1)过点P画射线MN的垂线,Q为垂足;(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;(3)过点P画线段AB的垂线,交线AB延长线于Q点.学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线.三、课堂小结本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?第2课时教学内容点到直线的距离.教学过程一、创设问题情境教师展示教材图5.1-8,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?二、新课教学1. 垂线(1)教师以问题串形式,启发学生思考.问题1 上学期我们曾经学过什么最短的知识,还记得吗?学生说出:两点间线段最短.问题2:如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线l,那么原问题就是怎么的数学问题.问题2 使学生能用数学眼光思考:在连接直线l外一点P与直线l上各点的线段中,哪一条最短?(2)教师演示教具,给学生直观的感受.在硬纸板上固定木条l,l外一点P,转动的木条a一端固定在点P.使木条l与a相交,左右摆动木条a,l与a的交点A随之变化,线段PA长度也随之变化.PA最短时,a与l的位置关系如何?用三角尺检验.(3)学生画图操作,得出结论.画出直线l,l外一点P;过P点出PO⊥l,垂足为O;点A1,A2,A3…在l上,连接PA,PA2,PA3…;用叠合法或度量法比较PO,PA1,PA2,PA3…长短.(4)师生交流,得出垂线的另一条性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.或简单说成“垂线段最短”.关于垂线段教师可让学生思考:垂线段与垂线的区别联系;垂线段与线段的区别与联系.2.点到直线的距离(1)师生根据两点间的距离的意义给出点到直线的距离命名.结合教材图5.1-9,深入认识垂线段PO:PO⊥l,∠POA=90°,O为垂足,垂线段PO 的长度比其他线段PA1、PA2…都短.按照两点间的距离给点到直线的距离命名,教师板书:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.在图5.1-9中,PO的长度是点P到直线l的距离,其余结论PA、PA2…长度都不是点P到l的距离.(2)练习教材P6练习.三、课堂小结通过这节课,我们主要学习了什么呢?四、布置作业教材P8习题5.1第6题、P9习题5.1第10题.5.1.3 同位角、内错角、同旁内角教学目标1. 明确构成同位角、内错角、同旁内角的条件,理解同位角、内错角、同旁内角的概念.2.结合图形识别同位角、内错角、同旁内角.3.通过变式或复杂图形找出同位角、内错角、同旁内角,培养学生的识图能力.让学生找到在千变万化的图形中的不变之处,能够抓住概念的重点.4.从复杂图形分解为基本图形过程中,渗透化繁为简、化难为易的化归思想,从图形变化过程中,使学生认识几何图形的位置美.5.通过观察,探究“三线八角”的过程培养学生的观察、抽象能力;发展图形观念,积极参与数学活动与他人合作交流的意识.教学重点同位角、内错角、同旁内角的概念与识别.教学难点识别同位角、内错角、同旁内角.课时安排1课时.一、导入新课复习两条直线相交得到的四个角的位置关系及性质。