《控制理论》课程实验指导书
现代控制理论-基于MATLAB的实验指导书课程设计指导书

现代控制理论基于MATLAB的实验指导书第一部分实验要求1.实验前做好预习。
2.严格按照要求操作实验仪器,用毕恢复原状。
3.实验完成后,由指导教师检查实验记录、验收仪器后,方可离开。
4.实验报告应包括以下内容:1)实验目的;2)实验原理图;3)实验内容、步骤;4)仿真实验结果(保留仿真实验波形,读取关键参数);5)仿真实验结果分析。
第二部分MATLAB平台介绍实际生产过程中,大部分的系统是比较复杂的,并且要考虑安全性、经济性以及进行实验研究的可能性等,这在现场实验中往往不易做到,甚至根本不允许这样做。
这时,就需要把实际系统建立成物理模型或数学模型进行研究,然后把对模型实验研究的结果应用到实际系统中去,这种方法就叫做模拟仿真研究,简称仿真。
到目前为止,已形成了许多各具特色的仿真语言。
其中美国Mathworks软件公司的动态仿真集成软件Simulink与该公司著名的MATLAB软件集成在一起,成为当今最具影响力的控制系统应用软件。
国内MA TLAB软件的著名论坛为“MATLAB中文论坛”,网址为:https:///forum.php,建议同学们注册并参与论坛相关内容的讨论。
图1 MA TLAB仿真环境第三部分 实验实验一线性系统的时域分析实验目的熟悉MATLAB 环境,掌握用MATLAB 控制系统工具箱进行线性定常系统的时域分析、能控性与能观性分析、稳定性分析的方法。
实验要求完成指导书规定的实验内容,记录并分析实验结果,写出实验报告。
实验内容1.已知系统的状态模型,求系统在单位阶跃输入下的各状态变量、输出响应曲线。
例:[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡2121214493.69691.1,0107814.07814.05572.0x x y u x x x x 。
键入:a = [-0.5572, -0.7814; 0.7814,0]; b = [1; 0]; c = [1.9691,6.4493]; d = 0;[y, x, t]=step(a, b, c, d); plot(t, y); grid (回车,显示输出响应曲线。
自动控制理论实验指导书

实验1 典型环节的模拟研究一、实验目的1.了解并掌握TD -ACC+设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
3.了解参数变化对典型环节动态特性的影响。
二、实验设备TD -ACC+型实验系统一套;数字示波器、万用表。
三、实验内容及步骤1.实验准备:将信号源单元的“ST ”插针与“S ”端插针用“短路块”短接。
将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为2V ,周期为10s 左右。
2.观测各典型环节对阶跃信号的实际响应曲线 (1) 比例( P )环节① 按模拟电路图1-1接好线路。
注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),记录实验波形及结果于表1-1中。
表1-1阶跃响应: U O (t )=K (t ≥0) 其中 K =R 1R 0⁄实验参数理论计算示波器观测值输入输出波形0R 1Ro 1i 0U R U R =i U o Uo iU U Ωk 200Ωk 1000.5Ωk 200 1R 0=200kΩ;R 1=100kΩ或200kΩ图1-1U i R 0R 1RR10K10K U o(2) 积分( I )环节①按图1-2接好线路。
② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),测量积分时间T ,记录实验波形及结果于表1-2中。
表1-2阶跃响应: o 01()U t t R C=(t ≥0) 注意:积分时间T 是指积分初始时间到输出值等于输入值时的时间。
自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。
2、通过实验熟悉各种典型环节的传递函数和动态特性。
⼆、实验设备及器材配置1、⾃动控制理论实验系统。
2、数字存储⽰波器。
3、数字万⽤表。
4、各种长度联接导线。
三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。
1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。
现代控制理论基础实验指导书200

现代控制理论基础实验指导书实验一:控制系统模型转换一、实验目的1.掌握控制系统模型转换,并使用计算机仿真软件验证。
2.学习并会简单应用MATLAB软件。
二、实验器材[1] 微型计算机[2] MATLAB软件三、实验要求与任务1.设系统的零极点增益模型为,求系统的传递函数及状态空间模型。
解:在MATLAB软件中,新建m文件,输入以下程序后保存并运行。
%Example 1%k=6;z=[-3];p=[-1,-2,-5];[num,den]=zp2tf(z,p,k)[a,b,c,d]=zp2ss(z,p,k)其中:zp2tf函数——变零极点表示为传递函数表示zp2ss函数——变零极点表示为状态空间表示记录实验结果,并给出系统的传递函数及状态空间模型。
2.给定离散系统状态空间方程求其传递函数模型和零极点模型,并判断其稳定性。
解:在MATLAB软件中,新建m文件,输入以下程序后保存并运行。
%Example 2%a=[ 0 0 ; 0 0 0; ;0 0 0];b=[1;0;1;0];c=[0,0,0,1];d=[0];[num,den]=ss2tf(a,b,c,d)[z,p,k]=ss2zp(a,b,c,d)pzmap(p,z)title('Pole-zero Map')其中:ss2tf函数——变状态空间表示为传递函数表示ss2zp函数——变状态空间表示为零极点表示pzmap ——零极点图记录实验结果,并给出系统的传递函数模型和零极点模型;绘出图形,并判断系统稳定性。
3.已知系统的传递函数为,求系统的零极点增益模型及状态空间模型。
tf2zp函数——变系统传递函数形式为零极点增益形式tf2ss函数——变系统传递函数形式为状态空间表示形式编写程序,记录实验结果,并给出系统的状态空间模型和零极点模型。
4.已知系统状态空间表达式为ss2tf函数——变状态空间表示为传递函数表示ss2zp函数——变状态空间表示为零极点表示编写程序,记录实验结果,并给出系统传递函数模型和零极点模型。
现代控制理论实验指导书2016

现代控制理论实验实验一、线性系统状态空间表达式的建立以及线性变换一 实验目的1. 掌握线性定常系统的状态空间表达式。
学会在MATLAB 中建立状态空间模型的方法。
2. 掌握传递函数与状态空间表达式之间相互转换的方法。
学会用MATLAB 实现不同模型之间的相互转换。
3. 掌握状态空间表达式的相似变换。
掌握将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。
学会用MATLAB 进行线性变换。
二 实验内容1. 已知系统的传递函数 (a) )3()1(4)(2++=s s s s G (b) 3486)(22++++=s s s s s G(1)建立系统的TF 或ZPK 模型。
(2)将给定传递函数用函数ss( )转换为状态空间表达式。
再将得到的状态空间表达式用函数tf( )转换为传递函数,并与原传递函数进行比较。
(3)将给定传递函数转换为对角标准型或约当标准型。
再将得到的对角标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
(4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。
再将得到的能控标准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
2. 已知系统的状态空间表达式(a) u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=106510 []x y 11=(b) u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=7126712203010 []111=y(c) u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=357213********* []x y 101= (d) u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=011310301100 []x y 210-= (1)建立给定系统的状态空间模型。
用函数eig( ) 求出系统特征值。
用函数tf( ) 和zpk( )将这些状态空间表达式转换为传递函数,记录得到的传递函数和它的零极点。
自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
自动控制理论实验指导及操作说明书

第一部分 THBDC-1控制理论·计算机控制技术实验平台使用说明书第一章系统概述“THBDC-1型控制理论·计算机控制技术实验平台”是我公司结合教学和实践的需要而进行精心设计的实验系统。
适用于高校的控制原理、计算机控制技术等课程的实验教学。
该实验平台具有实验功能全、资源丰富、使用灵活、接线可靠、操作快捷、维护简单等优点。
实验台的硬件部分主要由直流稳压电源、低频信号发生器、阶跃信号发生器、低频频率计、交/直流数字电压表、数据采集接口单元、步进电机单元、直流电机单元、温度控制单元、单容水箱、通用单元电路、电位器组等单元组成。
上位机软件则集中了虚拟示波器、信号发生器、VBScript和JScript脚本编程器、实验仿真等多种功能于一体。
其中虚拟示波器可显示各种波形,有X-T、X-Y、Bode图三种显示方式,并具有图形和数据存储、打印的功能,而VBScript脚本编程器提供了一个开放的编程环境,用户可在上面编写各种算法及控制程序。
实验台通过电路单元模拟控制工程中的各种典型环节和控制系统,并对控制系统进行仿真研究,使学生通过实验对控制理论及计算机控制算法有更深一步的理解,并提高分析与综合系统的能力。
同时通过对本实验装置中四个实际被控对象的控制,使学生熟悉各种算法在实际控制系统中的应用。
在实验设计上,控制理论既有模拟部分的实验,又有离散部分实验;既有经典理论实验,又有现代控制理论实验;而计算机控制系统除了常规的实验外,还增加了当前工业上应用广泛、效果卓著的模糊控制、神经元控制、二次型最优控制等实验。
数据采集部分则采用实验室或工业上常用的USB数据采集卡。
它可直接插在IBM-PC/AT 或与之兼容的计算机USB通讯口上,其采样频率为350K;有16路单端A/D模拟量输入,转换精度均为14位;4路D/A模拟量输出,转换精度均为12位;16路开关量输入,16路开关量输出。
第二章硬件的组成及使用一、直流稳压电源直流稳压电源主要用于给实验平台提供电源。
自动控制理论实验指导书

自动控制理论实验指导书第一章硬件资源EL-AT-II型实验系统主要由计算机、AD/DA采集卡、自动控制原理实验箱、打印机(可选)组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要构造被控模拟对象。
显示器打印机计算机 AD/DA卡实验箱电路图1 实验系统构成实验箱面板如图2所示:图2 实验箱面板下面主要介绍实验箱的构成:一、系统电源EL-AT-II系统采用本公司生产的高性能开关电源作为系统的工作电源主要技术性能指标为:1.输入电压:AC 220V2.输出电压/电流:+12V/0.5A,-12V/0.5A,+5V/2A 3.输出功率:22W4.工作环境:-5℃~+40℃。
二、 AD/DA采集卡AD/DA采集卡如图3采用ADUC812芯片做为采集芯片,负责采样数据- 1 -自动控制理论实验指导书 .及与上位机的通信,其采样位数为12位,采样率为10KHz。
在卡上有一块32KBit的RAM62256,用来存储采集后的数据。
AD/DA采集卡有两路输出(DA1、DA2)和四路输入(AD1、AD2、AD3、AD4),其输入和输出电压均为-5V~+5V。
图3 AD/DA采集卡另外在AD/DA卡上有一个9针RS232串口插座用来连接AD/DA卡和计算机,20针的插座用来和控制对象进行通讯。
三、实验箱面板实验箱面板布局如图4所示。
AD/DA卡输入输出模块实验模块1 实验模块2 二极管区 EL-CAT-II 电阻、电容、二极管区实验模块3 变阻箱、变容箱模块实验模块5 实验模块6 实验模块7 图4 实验箱面板布局实验箱面板主要由以下几部分构成: 1.实验模块本实验系统有八组由放大器、电阻、电容组成的实验模块。
每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。
这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《控制理论》课程实验指导书
一、课程的目的、任务
本课程是电子科学、测控技术专业学生在学习控制理论课程间的一门实践性技术基础课程,其目的在于通过实验使学生能更好地理解和掌握基本控制理论,培养学生理论联系实际的学风和科学态度,提高学生的控制理论实验技能和分析处理实际问题的能力。
为后续课程的学习打下基础。
二、课程的教学内容与要求
三.各实验具体要求
见P2
四、实验流程介绍
学生用户登陆进入实验系统的用户名为:学号(如D205001200XX),密码:netlab
详细操作步骤见P5
五、实验报告
请各指导老师登陆该实验系统了解具体实验方法,并指导学生完成实验。
学生结束实验后应完成相应的实验报告并交给指导老师。
其中实验报告的主要内容包括:实验目的,实验内容,实验记录数据,数据分析与处理等。
实验一倒立摆实验
一、实验目的
通过对倒立摆控制系统进行控制实验,学习如何进行控制器的设计,了解控制器各个参数对系统控制性能的影响。
还可以通过控制实验验证自行设计的算法。
二、倒立摆系统原理简介
环形一级倒立摆系统的原理框图如上所示。
系统包括计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分,组成了一个闭环系统。
光电码盘1将连杆的角度、角速度信号反馈给伺服驱动器和运动控制卡,摆杆的角度、角速度信号由光电码盘2反馈回控制卡。
计算机从运动控制卡中读取实时数据,确定控制决策,并由运动控制卡来实现该控制决策,产生相应的控制量,驱动电机转动,带动连杆运动,保持摆杆的平衡。
三、实验任务
注意此实验只做其中的倒立摆控制实验,倒立摆辨识实验不做要求。
该实验采用LQR控制算法,控制倒立摆摆动至竖直状态,并可以控制倒立摆左移和右移。
实验中控制参数已经设好,实验只需选择扰动的波形,及其频率和幅值大小,注意先启动伺服,再起摆,记录实验过程中的摆杆角度、摆杆角速度、连杆角位移和连杆角速度,并记录实验过程中的波形。
实验二吹摆实验
一、实验目的
掌握PID控制算法中各参数对控制效果的影响。
二、吹摆系统原理简介
本实验为利用PID及各种自定义算法,对风扇转速进行控制,使摆架固定的摆叶被吹起,到达所设定的角度。
实验装置模型如下图所示:
图一、实验装置模型
实验原理如下:
图二、实验原理框图
通过闭环控制,利用角度传感器测到的角度与设定角度比较,采用脉冲宽度控制输出电压控制风扇,输出风力吹动吹摆。
三、实验任务
1,设定PID控制参数Kp,Td,Ti,及激励函数的类型和相应参数,记录设定的参数及实验波形。
2,根据实验所得数据讨论PID控制中各控制参数对控制效果的影响。
实验三频率响应实验
一、实验目的
了解测定系统或环节的频率特性的测定方法;进一步掌握电子模拟线路的设计方法。
二、实验任务
1、简介
系统动态性能可用时域的阶跃响应来分析,也可用系统的频率特性来评价。
测试系统的频率特性时,被测系统施加一种稳态正弦信号,系统处在稳态,外来随机干扰对测试结果的影响比测试时域响应时要小的多。
因此测量准确度比较高。
本实验中利用李萨如图形法,测试系统的频率响应特性。
系统提供微分积分电路,二阶系统电路两种基本电路。
用户通过组态,可以绘制需要的电路图,系统同时提供电路图检测功能。
客户端通过服务器将数据发送给控制端,控制端完成实验后,将数据返回给客户端,同时用户可以在客户端观察实验结果。
2、实验任务
该实验提供微分积分系统和二阶系统两个系统的频率响应实验,学生可以任选其中一个系统进行实验。
进入实验操作界面后,首先要绘制电路图,利用界面中提供的元器件列表工具栏,绘制相应的微分积分系统或二阶系统电路图,设置好相应元件的参数值,进行电路检测。
然后登记、启动实验,发送实验数据,注意,在完成检测之前,发送功能是被禁用的,选定频率就可以观察到相应的李萨如图形。
本实验中也提供了标准的电路图,用户可以打开安装目录下的标准电路图载入进行实验。
实验记录电路图及相应参数,和频率响应的李萨如图形;根据李萨如图形分析系统的频率特性。
实验步骤
下面以实验三为例介绍实验的步骤。
1.登陆
点击客户端软件“电工电子网络实验室”logo,出现如下图示:
输入用户名,密码(用户名为各人的学号如D205001200xx,密码统一为netlab),点击“确定”,出现如下界面。
这里需要稍微等待(10s)。
在左边任务栏中选取“频率响应实验”,在上方工具菜单中选取“登记实验”:
会跳出对话框询问用户是否开始实验如右图所示。
点击确定即可开始实验。
2.排队
如果用户进入看到左边的实验列表中某些实验有红色标识,如下页左图所示(红色实圈),则表示该实验目前有人已经在做,并且提示用户前面有多少个用户。
这种情况下选择“登记实验”就可以进入排队队列(下页右图,红色虚圈),等待自己的实验时间。
针对控制理论实验,每个用户设定的时间约一小时。
实验结束后请正常退出实验系统,节约资源,也方便其他用户进行实验。
3.进入实验
以微分积分系统为例。
进入实验,登记实验,可以看到频率响应实验界面界面:
4、绘制电路图并检测
此时,实验界面为空白的,用户可以通过右侧的元器件工具栏拖放相应的器件绘制电路图,或打开安装目录下的标准电路图加载进来,如下图:
点击工具栏中实验-〉检测,检测电路图:
此时提示:
点击开始检测,若电路图正确,则提示:
5、发送实验参数进行实验
检测完电路图后就可以发送实验参数进行实验了:
实验提供同步实验和异步实验两种方式。
若选择同步实验,则点击工具栏上实验-〉同步实验发送参数,此时就可以看到此实验界面:
选择需要的频率,此时,界面上便会出现你所绘制系统的频率响应李萨如图形,
(此过程中需要等待30s左右):
若用户采用异步实验方式,则点击异步发送,在发送完数据后即可退出实验。
经过一段时间再次登陆实验界面后,如果实验数据已经返回,用户可以查看实验结果,此过程需要用户事先设定数据保存路径。
6、结束当前实验
当前实验完成时选择上方工具栏中菜单中的“同步实验->结束实验”选项,如下图所示:
弹出对话框
点击确定。
即可停止当前实验。
8、退出实验登记
如果已经完成了各个实验,则在工具栏中选择“同步实验->撤销登记”,即可退出实验:
9.退出实验系统
点击文件->退出,即选择退出该系统
会跳出对话框:
点击“确定”即退出实验系统。
10.注意事项
1)进行实验之前请仔细阅读该实验指导书,以便对于实验系统应用有一定的了解。
该实验系统为用户提供了尽可能多的便捷,操作简单,实验过程需要的时间也比较短。
但是您必须对于实验系统的应用有所了解。
2)进入实验,请实验者仔细阅读进入时看到的界面,以及系统提供的实验帮助(),因为这里给出了非常详细的实验说明和指导,包括一些细节方面,帮助您更加顺利的完成实验。