提公因式法

合集下载

《提公因式法》分解因式

《提公因式法》分解因式
对于一元二次方程,如果二次项的系数为1,那么可以直接提取一次项的公因式;如果二次 项的系数不为1,则可以先将方程化为一般形式,再提取公因式。
对于二元一次方程组,可以分别提取每个方程的公因式,得到一组新的方程,然后求解。
提取三角函数的公因式
01
对于三角函数表达式,可以先将 有相同角或相反角的项组合在一 起,然后提取公因式。
02
对于三角函数恒等式,可以运用 公式进行化简,然后再提取公因 式。
03
提公因式法的步骤
确定多项式的项数
确定多项式的项数
首先需要确定多项式的项数。多 项式的项数是指构成多项式的单 项式的个数。
例如
对于多项式 2x² + 3x - 4,我们 可以看到它有三项,分别是 2x² 、3x 和 -4。
确定各项的系数和指数
当一个多项式的第一项和最后 一项是同类项时,需要将整个 多项式的符号放在公因式的外 面。
如果不注意符号的变化,会导 致分解因式出现错误。
注意一些特殊的项
在提公因式法中,还需要注意一 些特殊的项。
例如,当一个多项式的第一项和 最后一项都是负数时,需要将整 个多项式的符号放在公因式的外
面。
如果不注意这些特殊的项,会导 致分解因式出现错误。
提取公因式
将找出的公因式提取出来 ,得到一个或多个没有公 因式的多项式。
公因式的重要性
简化多项式
通过提取公因式,可以将 多项式简化为更容易处理 的形式。
便于计算
在因式分解或化简时,提 取公因式可以简化计算过 程。
便于约分
提取公因式有助于将一个 多项式约分成若干个简单 分式。
公因式法的定义
公因式法
题目2
三角函数 $\cos(A+B)$ 中,公因式 是 $\cos$。

提公因式法的概念

提公因式法的概念

提公因式法的概念提公因式法是一种数学方法,用于将多项式进行因式分解。

通过找出多项式中的公因式,并提取出来,可以简化多项式的形式,使之更易于理解和计算。

该方法通常应用于代数运算和解方程等数学问题中。

提公因式法的核心思想是将多项式表达式中的每一项进行因式分解,找出它们之间的公因子,并提取出来。

通过这种方式,可以将多项式分解为更简单的形式,使之更易于处理和分析。

具体应用提公因式法进行因式分解的步骤如下:1.首先,将多项式按照加减号分成多个项,如将3x^2 + 5x -2x^3 + 6按照加减号分成四个项。

2.然后,观察每个项之间是否存在公因子。

公因子是指每一项都能够整除的因子。

例如,在3x^2 + 5x - 2x^3 + 6中,3是第一个项和第四个项的公因子,而x是第一个项和第三个项的公因子。

3.确定了公因子后,将这个公因子提取出来,并将其乘以剩余的部分,得到分解后的形式。

例如,在3x^2 + 5x - 2x^3 + 6中,公因子3可以提取出来,得到3(x^2 + 5/3x - 2x^3/3 + 2)。

4.进一步分解剩余部分的多项式,重复上述步骤,直到无法再分解为止。

提公因式法的优点是可以大大简化多项式的形式,使之更易于处理和计算。

通过找出公因子,并将其提取出来,可以将多项式的求解问题转化为更简单的形式,例如可以将求解方程转化为求解一次方程或二次方程的问题。

此外,提公因式法还可以用于多项式的乘法和约分运算。

在进行多项式的乘法运算时,可以通过提取公因子的方法,将复杂的运算转换为简单的乘法运算。

而在进行多项式的约分运算时,也可以利用公因子提取的方法,将多项式约分为最简形式。

需要注意的是,提公因式法只适用于多项式之间存在公因子的情况。

当多项式之间没有公因子时,无法通过提取公因子的方法进行因式分解。

此时,可以尝试其他的因式分解方法,如配方法、二次差分等。

综上所述,提公因式法是一种数学方法,通过找出多项式中的公因子,并将其提取出来,将多项式进行因式分解。

提公因式法 课件

提公因式法 课件
(2)尝试将它们分别写成两 个(1)16 25 x2
(2)4a2 1 b2 9
(1)16 25 x2
42 (5x)2
=(4+5x)(4-5x)
(2)4a2 1 b2 9
(2a)2 (1 b)2 3
(2a 1 b)(2a 1 b)
把一个多项式化为几个整式的乘积的形 式,这就是因式分解.
公因式的概念:
多项式ab+bc的各项都含有相同的因式b, 我们把多项式各项都含有的相同因式,叫 做这个多项式各项的公因式。
例如: b是多项式ab+bc各项的公因式。 b是多项式mb²+nb-b各项的公因式。 x是多项式3x²+x各项的公因式。
提公因式法:
(x 5y)(x 5y) ( y 3z)( y 3z)
回顾与思考:
上面运用了那个乘法公式 平方差公式:
(a b)(a b) a 2 b2
事实上把这个公式反过来 就得到: a2 b2 (a b)(a b)
(1) 多项式x2 25和9x 2 y 2 他们有什么
共同特征?
(x2 4 y2 )(x2 4 y2 )
例2 分解因式: (4x 1)2 (3x 1)2
9(a 2b)2 4(a 2b)2
若 x2 y2 44, x y 11, 求 x y 的值
3
3
例2 :把下列各式分解因式
(1)4(m n)2 (m n)2
(2)3x3 12 x
(1)4(m n)2 (m n)2
2(m n)2 (m n)2
2(m n) (m n)2(m n) (m n)
=(2m+2n+m-n)(2m+2n-m+n) =(3m+n)(m+3n)

因式分解———提公因式公式法

因式分解———提公因式公式法

因式分解———提公因式公式法因式分解是数学中的一个重要的方法,它可以将一个多项式拆分成更简单的乘积形式。

常用的因式分解方法有提公因式法和公式法。

一、提公因式法提公因式法是一种常用的因式分解方法,它的基本思想是找出多项式中的公因式,并将其提取出来。

下面以一个具体的例子来说明:例题:将多项式3x^2+9x分解因式。

解题步骤:1.观察多项式中的每个项,找出它们的公因式。

在这个例子中,3和9都是3的倍数,所以可以提取出公因式3来,即3x^2+9x=3(x^2+3x)。

2.检查提取出的公因式是否是多项式的最大公因子。

这一步其实是用求最大公因子的方法来验证的。

在这个例子中,公因式3是最大公因子,因为3x^2和3x都可以被3整除,而且没有其他的公因子。

3.将提取出来的公因式和剩下的部分组合在一起。

在这个例子中,可以将公因式3和剩下的部分(x^2+3x)组合在一起,即3(x^2+3x)。

综上所述,多项式3x^2+9x可以分解因式为3(x^2+3x)。

二、公式法公式法是因式分解中的另一种常用方法,它适用于具有特定形式的多项式。

下面以一个具体的例子来说明:例题:将多项式x^2+4x+4分解因式。

解题步骤:1.观察多项式的各个项的系数。

在这个例子中,x^2的系数为1,4x的系数为4,4的系数为42.检查多项式是否具有特定形式。

在这个例子中,多项式的形式为x^2+4x+4,它的形式和公式(a+b)^2非常相似。

3.根据公式(a+b)^2,将多项式进行分解。

根据公式(a+b)^2 = a^2 + 2ab + b^2,可以将多项式x^2 + 4x + 4分解为(x+2)^2综上所述,多项式x^2+4x+4可以分解因式为(x+2)^2综合练习:1.将多项式6x^2+9x+3分解因式。

解:可以观察到,多项式的各个项的系数都是3的倍数,所以可以提取公因式3,即6x^2+9x+3=3(2x^2+3x+1)。

2.将多项式x^3-8分解因式。

提公因式法

提公因式法

⑴提公因式法各项都含有得公共得因式叫做这个多项式各项得公因式。

如果一个多项式得各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积得形式,这种分解因式得方法叫做提公因式法.具体方法:当各项系数都就是整数时,公因式得系数应取各项系数得最大公约数;字母取各项得相同得字母,而且各字母得指数取次数最低得;取相同得多项式,多项式得次数取最低得。

如果多项式得第一项就是负得,一般要提出“-”号,使括号内得第一项得系数成为正数。

提出“-”号时,多项式得各项都要变号.口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形瞧奇偶。

例如:-am+bm+cm=-m(a—b-c);a(x-y)+b(y-x)=a(x-y)—b(x—y)=(x-y)(a—b)。

注意:把2a+1/2变成2(a+1/4)不叫提公因式⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a^2-b^2=(a+b)(a-b);完全平方公式:a^2±2ab+b^2=(a±b)^2;注意:能运用完全平方公式分解因式得多项式必须就是三项式,其中有两项能写成两个数(或式)得平方与得形式,另一项就是这两个数(或式)得积得2倍。

立方与公式:a^3+b^3=(a+b)(a^2-ab+b^2);立方差公式:a^3-b^3=(a—b)(a^2+ab+b^2);完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)例如:a^2+4ab+4b^2 =(a+2b)^2。

(3)分解因式技巧1、分解因式与整式乘法就是互为逆变形.2、分解因式技巧掌握:①等式左边必须就是多项式;②分解因式得结果必须就是以乘积得形式表示;③每个因式必须就是整式,且每个因式得次数都必须低于原来多项式得次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

用提公因式法进行因式分解“三步曲”

用提公因式法进行因式分解“三步曲”

用提公因式法进行因式分解“三步曲”提公因式法是因式分解的基本方法.为了避免出现错误,我们常常采取“三步走”的方法,即:“一定、二提、三看”的方法进行因式分解:1、“一定”就是确定公因式,其方法是:系数取各项整数系数的最大公约数;字母取各项含有的相同字母(有时是多项式);各字母次数取各相同字母的最低次数。

2、“二提”就是将各项的公因式提出,并同时确定各项的另一个因式,这个过程实质上是用原多项式除以公因式的过程。

3、“三看”就是提取公因式后,要对结果认真观察:括号内有同类项时要合并同类项;括号内的多项式化简后如果产生了新的公因式要继续提取;有相同的因式相乘时要写成幂的形式。

例1 把多项式y x y x y x 22236126-+因式分解分析:6、12、6的最大公约数是6,各项都有相同的字母xy ,字母x 最低次数为2,字母y 的最低次数是1,所以多项式y x y x y x 22236126-+的公因式是y x 26解 原式=y x 26()12++y x注意:当一个多项式的各项公因式是其中的单独一项时,提取公因式后该项应用1补上,不能漏掉。

例2 把多项式m mn m 182792-+-分解因式.分析:9、27、18的最大公约数是9,各项都有相同的字母m ,字母m 的最低指数是1,同时由于多项式的首项是负的,所以m mn m 182792-+-可确定提取公因式m 9-解:原式=m 9-()23+-n m注意:如果多项式按一定顺序排列后,首项为负时,一般要连同 “-”号提出,使括号内的第一项的系数为正的,但在提出“-”后括在括号内的各项与原来相比要改变符号。

例3 把多项式()()()b a b b a b a +-++32分解因式分析:在确定公因式时,要充分关注“多项式”公因式,本题中()b a -可作为一个整体,作为公因式提出。

解:原式=()()b b a b a -++32=()()b a b a 22++=()22b a + 注意:提取公因式后要对括号内的项进行适当的化简,有同类项时要合并同类项;又产生了新的公因式时要再次提取,相同的多项式要写成幂的形式。

人教版八年级数学上册14.3.1《提公因式法》教学设计

人教版八年级数学上册14.3.1《提公因式法》教学设计

人教版八年级数学上册14.3.1《提公因式法》教学设计一. 教材分析《提公因式法》是人民教育出版社八年级数学上册第14章第3节的内容,本节课主要让学生掌握提公因式法分解因式的技巧,并能灵活运用解决实际问题。

教材通过引入实例,引导学生发现并总结提公因式法的原理,进而运用到因式分解中。

本节课的内容是学生学习因式分解的重要环节,对于提高学生的数学思维能力和解决实际问题能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法、完全平方公式和平方差公式等基础知识。

但由于提公因式法的抽象性较强,学生可能难以理解其本质和应用。

此外,学生在学习过程中可能存在对公式死记硬背的现象,缺乏对公式的灵活运用能力。

因此,在教学过程中,需要关注学生的认知基础,引导学生发现提公因式法的规律,培养学生的数学思维能力。

三. 教学目标1.知识与技能目标:让学生掌握提公因式法,能够运用提公因式法分解因式。

2.过程与方法目标:通过观察、分析、归纳等方法,引导学生发现提公因式法的原理,培养学生的数学思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:提公因式法的原理和运用。

2.难点:如何引导学生发现提公因式法的规律,以及如何灵活运用提公因式法解决实际问题。

五. 教学方法1.启发式教学:通过设置疑问,引导学生主动思考,发现提公因式法的规律。

2.案例教学:通过分析具体实例,使学生理解并掌握提公因式法的应用。

3.小组合作学习:引导学生分组讨论,培养学生的团队合作精神。

六. 教学准备1.教学课件:制作课件,展示提公因式法的原理和应用。

2.实例:准备一些具有代表性的例子,用于讲解和练习。

3.练习题:准备一些练习题,巩固学生对提公因式法的掌握。

七. 教学过程1.导入(5分钟)利用实例引入提公因式法,引导学生思考如何简化表达式。

例如,给出表达式 (x^2 - 4x + 4),让学生尝试分解。

因式分解-提公因式法

因式分解-提公因式法
例如,我们可以使用提公因式法对多项式 4x^2 - 8x 进行因式分解。 首先,我们找到多项式中的公因式 4x。 然后,我们提取公因式得到:4x(x - 2)。 最后,我们对剩余部分 x - 2 进行因式分解。 因此,多项式 4x^2 - 8x 的因式分解结果为:4x(x - 2)。
提公因式法的应用场景
• 可提取公因式简化 多项式
• 需要进一步分解剩 余部分
配方法
• 适用于二次方程式 • 通过转化为平方完
成因式分解 • 适用范围有限
根式法
• 适用于含有平方根 的多项式
• 通过提取平方根进 行因式分解
• 限制较多
提公因式法的优点
简单易用
提公因式法是一种较为简单的因式分解方法,易于掌握和应用。
通用性强
因式分解-提公因式法
因式分解是一种重要的数学概念,提公因式法是常用的因式分解方法之一。
提公因式法的定义
提公因式法是一种通过找出多项式中的公因式,将其进行提取,从而达到进 行因式分解的目的的方法。
提公因式法的步骤
1. 找出多项式中的公因式 2. 提取公因式 3. 将剩余部分进行因式分解
示例:使用提公因式法进行因式分解
提公因减少计算量
通过提取公因式,可以简化多项式,减少计算的复杂度。
结论
提公因式法是一种重要的因式分解方法,能够帮助我们简化复杂的代数表达 式,解决方程,以及进行数学建模。
1 简化表达式
提公因式法可以帮助我们简化复杂的代数表达式,使计算更加简便。
2 解方程
提公因式法可以用于解决一些复杂方程,帮助我们找到方程的根。
3 数学建模
提公因式法是数学建模中常用的一种方法,可以帮助我们更好地理解和描述实际问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
b2
最大公约数 相同字母最低次幂
步骤 一看系数 二看字母 三看指数
12a2b3-8a3b2-16ab4
练一练
找出下列各多项式中的公因式:
(1) 8x+64 8
提示:从公因式的
(2) 2ab2+ 4abc 2ab 系数,字母,字母的指数)
(3) m2n3 -3n2m3 m2n2
( 4) a2b-2ab2+ab ab
(4)15a2+10a=( 5a )( 3a+2 ) (5)12xyz-9x2y2=( 3xy )( 4z—3xy)
原式=x(3x2 ÷x-6xy ÷x+x ÷x)
=x(3x-6y+1)
•找出公因式 •提取公因式得 到 另一个因式
•写成积的形式
(2)把 -24x3 –12x2 +28x 分解因式.
2. 20042+2004能被2005整除吗? 3. 计算: 7652×17-2352 ×17
(1)2101+299能被5整除吗,为什么 转化为有一因式为5的倍数
(2)224-1能被63和65整除吗?
今天你有什么收获? 你还有什么疑问吗?
.规律总结
分解因式与整式乘法是互逆过程. 分解因式要注意以下几点: 1.分解的对象必须是多项式. 2.分接的结果一定是几个整式的乘积 的形式. 3.要分解到不能分解为止.
解:原式= (24x3 12x228x ) 4x (24x3 ÷ 4x+12x2 ÷ 4x-28x ÷4x) = 4x (6x2+3x-7)
当多项式第一项系数 是负数,通常先提出 “-”号,使括号内 第一项系数变为正数, 注意括号内各项都要
变号.
方法二
(2)把 -24x3 –12x2 +28x 分解因式.
因式分解
(4) (a-3)(a+3)=a2-9
整式乘法
(5) 2πR+ 2πr = 2π(R+r) 因式分解
下列从左到右的变形是分解因式的有( )
⑴ 6x2y=3xy·2x ⑵ a2-b2+1=(a+b)(a-b)+1 ⑶ a2-ab=a(a-b) ⑷ (x+3)(x-3)= x2-9
探索发现
因式分解:ma mb mc 解: ma mb mc m(a b c)
问:多项式中的公因式是如何确定的?
•多项式各项系数都是整数时,取 各项系数的最大公约数
•相同字母最低次幂
解:原式= 4ab2(8a3b2÷ 4ab2-12ab3c ÷ 4ab2) =4ab2(2a2-3bc)
如何检验
•找出公因式 •提取公因式得 到 另一个因式
•写成积的形式
因式分解:提公因式法 (1)ax+xy=( x )(a+y) (2)3mx-6my =( 3m )(x-2y) (3)x2y+xy2=( xy )( x+y )
原式=28x—24x3—12x2 =4ห้องสมุดไป่ตู้ (7 —6x2 —3x)
把下列各式分解因式:
(1) 24x3y-18x2y (2) 7ma+14ma2 (3) -16x4+32x3-56x2 (4) -7ab-14abx+49aby
例4 把2a(b+c)-3(b+c)分解因式.
试一试: (1)2a(y-z)-3b(y-z) (2)p(a2+b2)-q(a2+b2)
看谁算的快: 1、已知:a+b=5,a-b=3,求a2-b2的值。 2、已知:a+b=5,m-n=3, 求am-an+bm-bn的值.
请把下列多项式写成整式乘积的形式
(1)x2 x x(x 1)
(2)x2 1 (x 1)(x 1)
(3)ma+mb+mc= m(a+b+c)
把一个多项式化成几个整式积的形式, 这种变形叫做把这个多项式因式分 解(或分解因式).
公因式
提公因式法
多项式中各项都含有的相同因式,称之为公因式
把公因式提出来,多项式ma+mb+mc 就可以
分解成两个因式m和(a+b+c)的乘积。像这种 因式分解的方法,叫做提取公因式法。
试一试
因式分解: 12a2b3-8a3b2-16ab4
议一议 8a3b2-12ab3c 的公因式是什么?
公因式 4
想一想:因式分解与整式乘法有何关系?
x2-y2 因式分解 (x+y)(x-y) 整式乘法
因式分解与整式乘法是互逆过程
练一练“理解概念”
判断下列各式哪些是因式分解?为什么?
(1) x2-4y2=(x+2y)(x-2y) (2) 2x(x-3y)=2x2-6xy
因式分解 整式乘法
(3) x2+4x+4=(x+2)2
(3)若多项式-6ab+18abx+24aby的一个因式是 -6ab,那么另一 个因式是(D ) (A)-1-3x+4y (B)1+3x-4y (C)-1-3x-4y (D)1-3x-4y
(4)若多项式(a+b)x2+(a+b)x要分解因式,
则要提的公因式是 (a+b)x .
6x2y2(4x-3) 7ma(1+2a) xy(4x-y)
-8x2(2x2-4x+7)
-2mn(2m2n-3m+1)
课后练习
1. 若a=101,b=99,求a2-b2的值. 2. 若x=-3,求20x2-60x的值. 3. 1993-199能被200整除吗?还能被
哪些整数整除?
课后练习
4.若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
5.某工厂需加工一批零件,由甲、乙、丙三位工人 共同完成,已知甲工人每天加工23个零件,乙 工人每天加工19个零件,丙工人每天加工18个 零件,三人需共同做12天才能做完,要加工的 零件共有多少?
小结
1、什么叫因式分解?
2、确定公因式的方法:
一看系数 二看字母 三看指数
3、提公因式法分解因式步骤(分两步):
第一步,找出公因式;
第二步,提公因式 4、用提公因式法分解因式应注意的问题: (1)公因式要提尽; (2)小心漏掉 (3)多项式的首项取正号
试一试 拓展应用
1.先分解因式,再求值 4a2 (x 7) 3(x 7),其中a 5, x 3
课后练习
1.选择
1.多项式6ab2+18a2b2-12a3b2c的公因式(C ) (A)6ab2c (B)ab2 (C)6ab2 (D)6a3b2C
2.分解-4x3+8x2+16x的结果是( D ) (A)-x(4x2-8x+16) (B)x(-4x2+8x-16) (C)4(-x3+2x2-4x) (D)-4x(x2-2x-4)
相关文档
最新文档