污泥处理系统设计计算

污泥处理系统设计计算
污泥处理系统设计计算

污泥处理系统

污泥浓缩池

采用两座辐流式圆形重力连续式污泥浓缩池,用带栅条的刮泥机刮泥,采用静压排泥,剩余污泥泵房将污泥送至浓缩池。

.1 要求:

a 连续流重力浓缩池可采用沉淀池形式,一般为竖流式或辐流式;

b 浓缩时间一般采用12—16h 进行核算,不宜过长

c 活性污泥含水率一般为99.2%—99.6%,浓缩后污泥含水率97%-98%

d 污泥固体负荷采用20—30kg/d m ?2

e 浓缩池的有效水深一般采用4m

f 浓缩池的上清液应重新回流到污水处理系统;

g 池子直径与有效水深之比不大于3,池子直径不宜大于8m ,一般为4—7m h 浮渣挡板高出水面0.1—0.15m ,淹没深度为0.3-0.4m

i 采用栅条浓缩机时,外缘线速度一般为1~2㎡/min ,底坡不小于0.5;

j 无刮泥设备时,污泥是斜壁与水平面形成的家教不小于50度

k 沉淀部分上升流速一般不大于0.1mm/s

l 采用定期排泥时,两次排泥间隔一般可采用8h

.2 设计参数

污泥初始含水率%4.99为

浓缩时间采用h 14

浓缩池有效水深采用m 4

浓缩后污泥含水率%97

.3 计算

.3.1 浓缩池的直径

浓缩池面积:

M

X M Qc A ?==

式中: Q —剩余污泥量,;m 3/d

c —污泥固体浓度,g/l

M —浓缩池污泥固体通量,kg/(㎡ /d)

ΔX —剩余活性污泥量 ,kg/d

A=2269/45=50.42㎡

采用两个重力浓缩池,每个池子的面积为A/2=25.21㎡

污泥浓缩池直径πA

D 4==6m

.3.2 泥斗尺寸

浓缩后的污泥体积为

46%

971%)4.991(9.2261)1(21=--=--=P P Q V w m 3/d 'V =V/2=46/2=23m 3/d

两次排泥时间间隔取8h

则贮泥区所需容积 24

'82V V =

=7.7 m 3 令m r m r 1,221== 污泥斗高度021560tan )(h r r -==1.73m

()3222121537.123

m r r r r h V =++=π

沉淀池坡度设为i=0.06 06.0)23(06.0)(06.0h 14=-=-=r R m

故池底可贮泥容积

2.119.1)(3

212144≈=++=R R r r h V πm 3 因此总的贮泥容积

43V V V +==12.7+1.2≈14 m 3

.3.3 浓缩池的总高度

取超高 1h =0.3m ,缓冲层高3h =0.3m ,则

总高 H=54321h h h h h ++++

=0.3+4+0.3+0.06+1.73

=6.39m ≈6.4m

贮泥池及提升泵

.1 贮泥池的作用

剩余污泥经浓缩后进入贮泥池,主要作用为:

调节污泥量;

药剂投加池

预加热池

.2 设计参数

进泥量:

污泥经浓缩池,含水率为2P =97%的污泥W =463

m d

设贮泥池:1座,贮泥时间:T =0.5d=12h

.3 设计计算

池容为V=WT =46?0.5=233

m

贮泥池尺寸(将贮泥池设计为正方形形):

L B H ??=3×3×3m ,有效池容为V=273m 污泥提升泵将贮泥池的污泥提升至污泥脱水间。

5、脱水间

进泥量V =463

m d ,含水率2P =97%

采用带式压滤机, 压滤后的泥饼含水率降至72%。

出泥饼:

W G =)1()1(100032P P V --??=%)721(%)971(100046--??=4928.6kg d =4.93t d 泥饼干重:

W=1000Q(1-2P )=1380kg d

=1.38t d 根据有关设计手册知,对于氧化沟与二沉池活性污泥的混合污泥,当挥发性固体小于75%,进泥含水率为97%--98%,投加的有机高分子混凝剂量为污泥干重的0.15—0.5%时,其生产能力一般为130—300kg 干污泥/(m ·h ),脱水后泥饼含水率为75---80% 。目前带式压滤机的最大带宽为3m 。本次设计选用标准型的带式压滤机,型号为HQBFP-ST-1,该压滤机长为4140mm, 宽1620mm, 高2000mm, 重量为5t, 驱动器功率 1.5kw, 耗水量(水压8巴)10m 3/h, 耗气量(10巴)1.0m 3/h 。选用两台,一台备用。

脱水机房尺寸(10×10)m 2,泥饼外运填。

管道直径设计计算步骤

管道直径设计计算步骤 以假定流速法为例,其计算步骤和方法如下: 1.绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。 管段长度一般按两管件间中心线长度计算,不扣除管件(如三通,弯头)本身的长度。 2.确定合理的空气流速 风管内的空气流速对通风、空调系统的经济性有较大的影响。流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。对除尘系统流速过低会使粉尘沉积堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。根据经验总结,风管内的空气流速可按表6-2- 1、表6-2-2及表6-2-3确定。除尘器后风管内的流速可比表6-2-3中的数值适当减小。 表6-2-1一般通风系统中常用空气流速(m/s) 支室内xx空干管 管进风口回风口气入口6~2~1.5~2.5~ 5.5~薄钢1483.53.5 工业建筑机6.5板、混凝土 械通讯 4~2~1.5~2.0~ 砖等

5~61263.03.0 工业辅助及 民用建筑 0.5 0.50.2~~0.7 自然通风~1.01.0类别 机械通风5~8 52~ 2~4风管 材料 表6-2-2空调系统低速风管内的空气流速部位 新风xx 总管和总干管 无送、回风口的支管 有送、回风口的支管频率为1000Hz时室内允许声压级(dB)<40~60>60 3.5~ 4.04.0~4.5 5.0~ 6.0 6.0~8.06.0~8.0 7.0~12.0 3.0~ 4.0 5.0~7.0 6.0~8.0 2.0~ 3.03.0~5.03.0~6.0表6-2-3除尘风管的最小风速(m/s)粉尘类

利用COD指标进行活性污泥法系统的设计

利用COD指标进行活性污泥法系统的设计 朱明权 (Schueffl & Forsthuber Consulting) 摘要阐述了利用COD指标进行活性污泥法系统设计的主要思想和过程,并建立一套用于硝化和反硝化的活性污泥法COD设计方法。大量实际运行结果表明,利用该法对系统剩余污泥量和耗氧量以及活性污泥的组成计算所得的结果要较传统的BOD 5 方法更为精确。 关键词COD 活性污泥法设计剩余污泥量需氧量硝化 反硝化 活性污泥法是目前废水生物处理的最主要方法,长期以来活性污泥 法均根据污水处理厂的进、出水BOD 5指标进行设计。由于BOD 5 指标测定 精度低、费时耗力、其值也仅仅反映部分较易降解的有机物含量,故利 用BOD 5 指标不能对整个处理系统建立物料平衡。随着污水处理厂处理要求的不断提高,活性污泥法系统的设计污泥龄将逐渐提高,故难降解和部分颗粒性有机物的水解程度也将有所提高,污水处理厂中实际所降解 的有机物含量明显高于进水BOD 5 所反映的含量。与之相比,COD指标测定简单、精度高且具可比性,能反映污水中所含的全部有机物,故利用COD指标可以进行物料衡算。 虽然COD指标不能说明污水中有机物的生物可降解性,但对污水厂出水或将水样和活性污泥经混合后进行较长时间曝气所得过滤液的COD 以及对活性污泥增殖情况进行分析,可以基本反馈入流污水COD中可降解和难降解物质的含量比例,这就为利用COD指标进行污水厂的设计和运行提供了可能。据此,国际水质协会(IAWQ)所建立的活性污泥1号和2号动态模型也均采用COD指标为基础。随着现代分析技术的飞速发展,快速COD测定方法以及在线COD测定仪(on-line)不断应用,对进水COD 各个组分的分析技术及其在活性污泥法系统中动力学转化机理的认识不断提高,尤其是活性污泥法过程动态模拟方法不断普及,可以认为利用COD指标进行活性污泥法系统的设计将呈不断上升的趋势。 1 活性污泥法的COD设计方法 1.1进水水质组成及其转化过程 在利用COD指标进行活性污泥法系统设计前,应首先对进水水质进行分析。主要包括测定水样经混合后的总COD浓度、水样经过滤后(滤纸孔隙直径为0.45 μm)滤液的COD浓度(即水样的溶解性COD浓度)、SS 和VSS、进水氮和磷浓度等。 一般城市污水的水质组成及其在活性污泥法系统中的转化过程如图1所示。 根据图1,进水总COD和各个组分之间的关系可用下式表示:

污泥处理系统设计计算

污泥处理系统 污泥浓缩池 采用两座辐流式圆形重力连续式污泥浓缩池,用带栅条的刮泥机刮泥,采用静压排泥,剩余污泥泵房将污泥送至浓缩池。 .1 要求: a 连续流重力浓缩池可采用沉淀池形式,一般为竖流式或辐流式; b 浓缩时间一般采用12—16h 进行核算,不宜过长 c 活性污泥含水率一般为99.2%—99.6%,浓缩后污泥含水率97%-98% d 污泥固体负荷采用20—30kg/d m ?2 e 浓缩池的有效水深一般采用4m f 浓缩池的上清液应重新回流到污水处理系统; g 池子直径与有效水深之比不大于3,池子直径不宜大于8m ,一般为4—7m h 浮渣挡板高出水面0.1—0.15m ,淹没深度为0.3-0.4m i 采用栅条浓缩机时,外缘线速度一般为1~2㎡/min ,底坡不小于0.5; j 无刮泥设备时,污泥是斜壁与水平面形成的家教不小于50度 k 沉淀部分上升流速一般不大于0.1mm/s l 采用定期排泥时,两次排泥间隔一般可采用8h .2 设计参数 污泥初始含水率%4.99为 浓缩时间采用h 14 浓缩池有效水深采用m 4 浓缩后污泥含水率%97 .3 计算 .3.1 浓缩池的直径 浓缩池面积: M X M Qc A ?== 式中: Q —剩余污泥量,;m 3/d c —污泥固体浓度,g/l M —浓缩池污泥固体通量,kg/(㎡ /d) ΔX —剩余活性污泥量 ,kg/d A=2269/45=50.42㎡ 采用两个重力浓缩池,每个池子的面积为A/2=25.21㎡

污泥浓缩池直径πA D 4==6m .3.2 泥斗尺寸 浓缩后的污泥体积为 46% 971%)4.991(9.2261)1(21=--=--=P P Q V w m 3/d 'V =V/2=46/2=23m 3/d 两次排泥时间间隔取8h 则贮泥区所需容积 24 '82V V = =7.7 m 3 令m r m r 1,221== 污泥斗高度021560tan )(h r r -==1.73m ()3222121537.123 m r r r r h V =++=π 沉淀池坡度设为i=0.06 06.0)23(06.0)(06.0h 14=-=-=r R m 故池底可贮泥容积 2.119.1)(3 212144≈=++=R R r r h V πm 3 因此总的贮泥容积 43V V V +==12.7+1.2≈14 m 3 .3.3 浓缩池的总高度 取超高 1h =0.3m ,缓冲层高3h =0.3m ,则 总高 H=54321h h h h h ++++ =0.3+4+0.3+0.06+1.73 =6.39m ≈6.4m 贮泥池及提升泵 .1 贮泥池的作用 剩余污泥经浓缩后进入贮泥池,主要作用为: 调节污泥量; 药剂投加池 预加热池 .2 设计参数 进泥量:

活性污泥系统的工艺计算与设计

活性污泥系统的工艺计算与设计 一、设计应掌握的基础资料与工艺流程的选定 活性污泥系统由曝气池、二次沉淀池及污泥回流设备等组成。其工艺计算与设计主要包括5方面内容,即 ①工艺流程的选择; ②曝气池的计算与设计; ②曝气系统的计算与设计; ④二次沉淀池的计算与设计; ⑤陌泥回流系统的计算与设计。 进行活性污泥处理系统的工艺计算和设计时,首先应比较充分地掌握与废水、污泥有关的原始资料并确定设计的基础数据。主要是下列各项: ①废水的水量、水质及变化规律; ②对处理后出水的水质要求; ③对处理中所产生污泥的处理要求; ④污泥负荷率与BOD5去除率: ⑤混合液浓度与污泥回流比。 对生活污水和城市废水以及性质与其相类似的工业废水,人们已经总结出一套较为成熟和完整的设计数据可直接应用。而对于一些性质与生活污水相差较大的工业废水或城市废水,则需要通过试验来确定有关的设计数据, 选定废水和污泥处理工艺流程的主要依据就是的前述的①、②、③各项内容和据此所确定的废水和污泥的处理程度。 在选定时,还要综合考虑当地的地理位置、地区条件、气候条件以及施工水平等因素,综合分析本工艺在技术上的可行性和先进性及经济上的可能性和合理性等。特别是对工程量大、建设费用高的工程,需要进行多种工艺流程比较之后才能确定,以期使工程系统达到优化。 二、曝气池的计算与设计 曝气他的计算与设计主要包括:①曝气池(区)容积的计算;②需氧量和供气量的计算; ③池体设计等几项。 1.曝气池(区)容积的计算 (1)计算方法与计算公式 计算曝气区容积,常用的是有机负荷计算法。也称BOD5负荷计算法。负荷有两种表示方法,即污泥负荷和容积负荷。曝气池(区)容积计算公式列于表3—17—19中。

污泥脱水设计方案学习资料

污泥脱水系统 设 计 方 案 宜兴市昌亚环保设备有限公司二零一二年三月

目录 一、项目概述 (3) 二、设计依据 (3) 三、处理量 (3) 四、污泥处理工艺选择 (3) 五、污泥处理工艺流程 (4) 六、主要工艺设备技术性能及结构 (4) 七、主要设备清单 (9) 八、设备投资概算 (10) 九、服务承诺、优惠内容 (11)

一、项目概述 本方案污泥来源主要为印染污水系统产生的污泥。该公司领导决定新增一套污泥处理系统。我公司受该公司委托,并对现场进行了实地考察,针对该项目的实际情况,编制如下污泥处理方案,供业主及有关专家参考。 二、设计依据 1.《室外给水设计规范》(GB50013-2006) 2. 给水排水设计手册3《城镇给水》(第二版) 3.《供配电系统设计规范》(GB50052-95) 4.《低压配电设计规范》(GB50054-95) 5.《通用电气设备配电设计规范》(GB50055-93) 6、有关土建、电气设计规范; 7、用户提供的有关资料; 三、处理量 考虑业主现场的实际情况,本工程考虑处理量:5m3/h。 脱水后污泥含水率:≤20% PAM投加量:3kg/t干污泥(以粉状PAM计) 四、污泥处理工艺选择 污泥脱水和干化的目的是除去污泥中的大量水分,缩小其体积,减轻其重量;一般经过脱水、干化处理后,污泥含水量能从90%左右下降到60~80%,体积减小到仅为原来的1/10~1/5。自然干化多采用于干化床;机械脱水多采用板框压滤机、带式压滤机、离心脱水机等。 1、真空过滤机 真空过滤机是早期使用的连续机械脱水机械,过滤能力强;但其滤饼的含固率低。 2、板框压滤机

管道的设计计算——管径和管壁厚度(精)

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。 A.管内径:管道内径可按预先选取的气体流速由下式求得: =i d 8.1821 ?? ? ??u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h 如上表所示u=6 m/s 带入上述公式=i d 8.1821??? ??u q v =i d 8.1821 6252??? ??=121.8 mm 得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。 a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算: min δ= []c np npd i +-?σ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;?为焊缝系数,无缝钢管?=1,直缝焊接钢管?=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。 当管子被弯曲时,管壁应适当增加厚度,可取 'δ=R d 20δ δ+ 式中,0d 为管道外径;R 为管道弯曲半径。 b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。 常用管材许用应力 例2: 算出例1中排气管路的厚度。管路材料为20#钢 公式 min δ=[]c np npd i +-?σ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131 ?=1 , C =1 带入公式 min δ=[]c np npd i +-?σ2=1321131212132+?-????=3.8 mm 管路厚度取4 mm

活性污泥法课程设计(DOC)

课程设计 题目城镇污水处理厂工艺设计 (活性污泥法) 学院环境与生物工程学院 专业环境工程 班级环境工程一班 学生姓名张琼 指导教师谭雪梅 2012 年12 月7 日

目录 目录 (1) 第一章设计任务 (4) 1.1 设计任务及要求 (4) 1.1.1 设计任务 (4) 1.1.2 设计要求 (4) 第二章总体设计 (5) 2.1 处理构筑物选择 (5) 2.2 污水处理厂选址 (5) 2.3 核心工艺比较 (6) 2.3.1 氧化沟工艺 (6) 2.3.2 A/O法 (6) 2.3.3 SBR法 (7) 2.3.4 曝气生物滤池(BAF) (7) 2.3.5 MBR工艺 (7) 2.4 设计流量 (9) 2.5 污水、污泥处理工艺流程图 (9) 第三章格栅 (9) 3.1 设计草图 (10) 3.2 设计参数 (10) 3.3 设计计算 (10) 3.3.1 中格栅的设计计算 (10) 3.3.2 细格栅的设计计算 (12) 第四章沉砂池 (14) 4.1 设计草图 (15) 4.2 设计参数 (15) 4.3 设计计算 (15) 第五章初级沉淀池 (17) 5.1 设计草图 (17) 5.2 设计计算 (17)

第六章曝气池 (20) 6.1 污水处理程度的计算及曝气池的运行方式 (20) 6.1.1 污水处理程度的计算 (20) 6.1.2 曝气池的运行方式 (20) 6.2 曝气池的计算与各部位尺寸的确定 (21) 6.3 曝气系统的计算与设计 (23) 6.4 供气量计算 (24) 6.5 空气管系统计算 (26) 6.6 空压机的选定 (27) 第七章二次沉淀池 (27) 7.1 设计草图 (28) 7.2 设计参数 (28) 7.3 设计计算 (28) 第八章其他构筑物 (31) 8.1 集水井 (31) 8.2 污水提升泵房 (32) 8.3 接触池 (33) 8.4 液氯投配系统 (33) 8.5 计量堰 (34) 8.6 污泥回流泵房 (34) 8.7 污泥浓缩池 (35) 8.8 污泥脱水间 (35) 第九章构筑物高程布置计算及水力损失 (35) 9.1平面布置 (35) 9.2构筑物水头损失计算 (36) 9.2.1 污泥管道水头损失 (37) 9.2.2 污水管渠水力计算 (38) 9.3 污泥高程计算 (38) 第十章污水厂运行成本及其构成 (40) 10.1 污水处理厂的处理成本构成 (40) 10.2 运行成本分析 (40)

通风管道设计计算

通风管道系统的设计计算 在进行通风管道系统的设计计算前,必须首先确定各送(排)风点的位置和送(排)风量、管道系统和净化设备的布置、风管材料等。设计计算的目的是,确定各管段的管径(或断面尺寸)和压力损失,保证系统内达到要求的风量分配,并为风机选举和绘制施工图提供依据。 进行通风管道系统水力计算的方法有很多,如等压损法、假定流速法和当量压损法等。在一般的通风系统中用得最普遍的是等压法和假定流速法。 等压损法是以单位长度风管有相等的压力损失为前提的。在已知总作用压力的情况下,将总压力按风管长度平均分配给风管各部分,再根据各部分的风量和分配到的作用压力确定风管尺寸。对于大的通风系统,可利用等压损法进行支管的压力平衡。 假定流速法是以风管内空气流速作为控制指标,计算出风管的断面尺寸和压力损失,再对各环路的压力损失进行调整,达到平衡。这是目前最常用的计算方法。 一、通风管道系统的设计计算步骤 800m /h 3 1500m /h 31 2 3 4000m /h 3 4 除尘器 6 5 7

图6-8 通风除尘系统图 一般通风系统风倌管内的风速(m/s)表6-10 除尘通风管道最低空气流速(m/s)表6-11 1、绘制通风系统轴侧图(如图6-8),对个管段进行编号,标注各管段的长度和风量。以风量和风速不变的风管为一管段。一般从距风机最远的一段开始。由远而近顺序编号。管段长度按两个管件中心线的长度计算,不扣除管件(如弯头、三通)本身的长度。 2、选择合理的空气流速。风管内的风速对系统的经济性有较大影响。流速高、风管断面小,材料消耗少,建造费用小;但是,系统压力损失增大,动力消

管道承压计算公式

管道承压计算公式 一、根据设计压力计算壁厚 参照规范GB50316-2000<工业金属管道设计规范>计算公式P44,当直管计算厚度S1小于管子外径D 的1/6时,按照下面公式计算 公式1 S1= ) ]([21PY E PD +σ 公式2 S=S1+C1+C2 二、根据壁厚简单计算管道承受压力校核验算 公式1 P=S D ES +2)]([2σ

阀门磅级,MPA, BAR, PSI和公斤的含义和换算 阀门磅级,MPA, BAR, PSI和公斤的含义和换算 class 150 300 400 600 800 900 1500 2500 LB Mpa 1.6-2.0 2.5-5.0 6.3 10.0 13.0 15.0 25.0 42.0 MPA 150LB对应1.6-2.0MPa,300LB对应2.5-5.0MPa,400LB对应6.3MPa,600LB对应10MPa,800LB对应13MPa,900LB对应15MPa,1500LB对应25MPa,2500LB对应42MPa 我通常所用的PN,CLass,都是压力的一种表示方法,所不同的是,它们所代表承受的压力对应参照温度不同,PN欧洲体系是指在120℃下所对应的压力,而CLass美标是指在425.5℃下所对应的压力。所以在工程互换中不能只单纯的进行压力换算,如CLass300#单纯用压力换算应是2.1MPa,但如果考虑到使用温度的话,它所对应的压力就升高了,根据材料的温度耐压试验测定相当于5.0MPa。 阀门的体系有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120度)的许用工作压力为基准的“公称压力”体系。一种是美国为代表的以某个温度下的许用工作压力为代表的“温度压力体系” 美国的温度压力体系中,除150LB以260度为基准外,其他各级均以454度为基准。 150磅级(150psi=1MPa)的25号碳钢阀门在260度时候,许用应力为1MPa,而在常温下的许用应力要比1MPa大得多,大约是2.0MPa。 所以,一般说美标150LB对应的公称压力等级为2.0MPa,300LB对应的公称压力等级为5.0MPa等等。因此,不能随便按照压力变换公式来变换公称压力和温压等级。 PN是一个用数字表示的与压力有关的代号,是提供参考用的一个方便的圆整数,PN是近似于折合常温的耐压MPa数,是国内阀门通常所使用的公称压力。对碳钢阀体的控制阀,指在200℃以下应用时允许的最大工作压力;对铸铁阀体,指在120℃以下应用时允许的最大工作压力;对不锈钢阀体的控制阀,指在250℃以下应用时允许的最大工作压力。当工作温度升高时,阀体的耐压会降低。 美标阀门以磅级为表示公称压力,磅级是对于某一种金属的结合温度和压力的计算结果,他根据ANSI B16.34的标准来计算。磅级与公称压力不是一一对应的主要原因是磅级与公称压力的温度基准不同。我们通常使用软件来计算,但是也要懂得使用表格来查磅级。日本主要用K值表示压力等级。 对于气体的压力,在中国,我们一般更常用其质量单位“公斤”描述(而不是“斤”),单位kg。其对应的压强单位是“kg/cm2”,一公斤压力就是一公斤的力作用在一个平方厘米上。 同样,相对应于国外,对于气体的压力,常用的压强单位是“psi”,单位是“1 pound/inch2”, 就是“磅/平方英寸”,英文全称为Pounds per square inch。但是更常用的是直接称呼其质量单位,即磅(LB.),实际这LB.就是前面提到的磅力。把所有的单位换成公制单位就可以算出: 1 psi=1磅/inch 2 ≈0.068bar,1 bar≈14.5psi≈0.1MPa,欧美等国家习惯使用psi作单位。 在Class600和Class1500中对应欧标和美标有两个不同数值, 11MPa(对应600磅级)是欧洲体系规定,这是在《ISO 7005-1-1992 Steel Flanges》里面的规定;10MPa(对应600磅级)是美洲体系规定,这是在ASME B16.5里面的规定。 因此不能绝对地说600磅级对应的就是11MPa或者10MPa,不同体系的规定是不同的。 阀门的体系主要有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120

城市污泥干化处理课程设计

城市污泥干化处理课程设计 一、课程设计基础资料 广州污水处理厂污泥干化工程即将大规模启动,广州市水务局计划推动西朗污水厂、沥滘污水厂、京溪地下净水厂、大坦沙污水厂和猎德污水厂等污泥干化减量工程。按照计划,将要求相关污水处理厂建设污泥干化减量设施,再将干化污泥运输至水泥厂、电厂和垃圾焚烧厂直接焚烧。从而实现所有污泥都可以在广州本地处理,不再产生臭气扰民的同时还能够实现资源化利用。 某污水处理厂按照污水厂规模10万立方米/日(20万立方米/日、50万立方米/日),配套建设污泥处理系统,折合干基污泥约15吨/日(30吨/日、75吨/日)。将在厂内新建污泥脱水干化车间,配套物料分选系统、板框压滤系统、热干化系统、热源供给和回收系统、废气净化除湿系统,生物除臭系统,以及浓缩、调理、出料等相关辅助设备。污泥在厂内进行处理后,含水率从原来的80%以上,降低到30%~40%。 本课程设计的目的和要求:能够将数学、自然科学、工程基础和专业知识用于解决固体废物处理与资源化方面的复杂工程问题。运用深入的工程原理通过系统分析解决复杂工程问题,重点如下:1、设计多种技术、工程和其他因素,分析其中存在的冲突,做到扬长避短,尽量做到互相借鉴;2、通过建立合适的抽象模型解决工程问题,建模过程中需要体现出创造性(建立模型可理解为利用有关工程原理进行合理的情景分析和预测,提出解决思路);3、以常用的技术方法为基础,从多学科交叉和方法移用方面体现出创新性,以推动问题的解决;4、分析有关专业标准和规范中所涉及的因素是否全面,找出或发掘解决复杂问题的关键因素,并对标准和规范进行拓展;5、技术方法的确定方面,既要考虑处理效率和环保政策要求,又要考虑经济成本的可接受性,还需考虑短期和长远的发展预期;6、提出解决方案需要综合考虑经济、环境和社会效益,也需要采用综合性的解决思路和多学科工程技术的集成,还需考虑固体废物、废水、废气的全面有效处理,也需考虑技术的可行性、选用设备的处理能力和组合方式、工程应用的安全性等,即从多角度、多层次、多阶段、整体性等方面综合性解决。

活性污泥法课程设计(DOC)知识分享

活性污泥法课程设计 (D O C)

学号:2010122140 课程设计 题目城镇污水处理厂工艺设计 (活性污泥法) 学院环境与生物工程学院 专业环境工程 班级环境工程一班 学生姓名张琼 指导教师谭雪梅 2012 年12 月7 日

目录 目录 0 第一章设计任务 (3) 1.1 设计任务及要求 (3) 1.1.1 设计任务 (3) 1.1.2 设计要求 (3) 第二章总体设计 (4) 2.1 处理构筑物选择 (4) 2.2 污水处理厂选址 (4) 2.3 核心工艺比较 (5) 2.3.1 氧化沟工艺 (5) 2.3.2 A/O法 (5) 2.3.3 SBR法 (6) 2.3.4 曝气生物滤池(BAF) (6) 2.3.5 MBR工艺 (6) 2.4 设计流量 (8) 2.5 污水、污泥处理工艺流程图 (8) 第三章格栅 (9) 3.1 设计草图 (9) 3.2 设计参数 (9) 3.3 设计计算 (9) 3.3.1 中格栅的设计计算 (9) 3.3.2 细格栅的设计计算 (11) 第四章沉砂池 (14) 4.1 设计草图 (14) 4.2 设计参数 (14) 4.3 设计计算 (15) 第五章初级沉淀池 (16) 5.1 设计草图 (17) 5.2 设计计算 (17)

第六章曝气池 (19) 6.1 污水处理程度的计算及曝气池的运行方式 (20) 6.1.1 污水处理程度的计算 (20) 6.1.2 曝气池的运行方式 (20) 6.2 曝气池的计算与各部位尺寸的确定 (20) 6.3 曝气系统的计算与设计 (23) 6.4 供气量计算 (24) 6.5 空气管系统计算 (27) 6.6 空压机的选定 (27) 第七章二次沉淀池 (28) 7.1 设计草图 (28) 7.2 设计参数 (29) 7.3 设计计算 (29) 第八章其他构筑物 (32) 8.1 集水井 (32) 8.2 污水提升泵房 (32) 8.3 接触池 (33) 8.4 液氯投配系统 (34) 8.5 计量堰 (34) 8.6 污泥回流泵房 (35) 8.7 污泥浓缩池 (36) 8.8 污泥脱水间 (36) 第九章构筑物高程布置计算及水力损失 (36) 9.1平面布置 (36) 9.2构筑物水头损失计算 (37) 9.2.1 污泥管道水头损失 (38) 9.2.2 污水管渠水力计算 (38) 9.3 污泥高程计算 (39) 第十章污水厂运行成本及其构成 (40) 10.1 污水处理厂的处理成本构成 (40) 10.2 运行成本分析 (41)

某污泥处理车间的通风设计

某污泥处理车间的通风设计 摘要:介绍了在某污泥处理项目中,对污泥发酵车间工艺处理过程中所产生的臭气、粉尘的通风、除尘措施,并指出了在此类项目设计过程中通风除尘系统存在的问题和需要注意的事项。 关键词:污泥发酵间、通风除臭系统、管材和设备、注意事项 目前随着政府对环境保护和废物利用意识的加强,污水处理后所产生的衍生物—污泥受到了越来越多的重视。目前污泥主要用于园林绿化、土地改良和混合填埋。 污水处理厂工艺处理后产生的污泥,需要在污泥综合发酵车间进行发酵处理后方能利用,在污泥处理过程中会产生大量的NH3、H2S、胺类、硫醇、有机硫化物等微量有机组分挥发性气体及粉尘颗粒等,基于操作人员职业健康及周边空气环境质量的考虑,对发酵车间整体进行废气和粉尘的收集和处理。结合甘肃某污泥处理项目中工艺专业的处理要求,对发酵车间的除臭、除尘等通风系统按以下设计。 1.通风除臭系统污泥在发酵槽发酵过程中,将会由于曝气和翻抛机翻抛污泥而产生大量的有害气体、粉尘及水蒸气,一方面对车间内的工作环境影响很大,同时湿空气遇冷产生的冷凝水也会重新回到待发酵的发酵槽中,影响污泥的发酵质量。 发酵间内的除臭系统设置就是配合发酵工艺过程中有害气体的逸出而设置的收集、处理系统,作为工作场所及空气环境质量的保障措施。由于每个发酵槽中发酵所处周期不同,曝气及可能逸出有害气体的时间也不同,考虑过多数量的发酵槽同时进行除臭工作会使除臭系统规模过大,造成不必要的工程投资。结合工艺的处理要求,本项目污泥发酵区除臭,对于32 个发酵槽中的8 个同时工作考虑。由于目前尚没有专门针对污泥发酵项目的设计规范,一般可以参照相关污水设计规范中的规定并结合实际情况取值:无人作业空间1-3 次/小时;非发酵槽有人作业空间6-8 次/小时;发酵槽有人作业空间12 次/小时。本项目发酵槽换气次数为3 次/小时,当发酵槽中的气体检测仪表检测到有害气体浓度超出《工作场所有害因素职业接触限值》GBZ2-2002 中的指标限值时开启槽内气体收集系统和相应风机,收集至生物滤池进行处理,处理后满足《恶臭污染物排放标准》 (GB14554-93)中的二级标准后排放。当有害气体浓度不超标,发酵槽曝气时仍需启动气体收集系统防止发酵槽内正压状况时气体逸出至整个发酵车间,污染车间内环境。 堆料内的废气主要是在鼓风过程中被排出,工程采用底部曝气方式,故发酵槽上部为臭气浓度较高区域。由于臭气中NH3 的成分最大,且密度比空气小,堆体产生的NH3 会向高处扩散,故随着高度的增加,NH3 的浓度也增加,导致顶部浓度较高,通过发酵车间顶部的吸风口收集进入生物除臭滤池处理后外排。对于发酵车间,结合一些项目的现场检测,开启生物除臭通风系统可使H2S、NH3浓度下降70%-98%,避免恶臭气体带来的环境污染。 发酵槽翻抛、出料工作过程中会产生大量的粉尘,为了保证工作环境的空气质量,需设置除尘排风收集系统,发酵槽除尘与除臭共用管路收集系统,收集含尘气体采用单独引风机送至水浴式喷淋除尘器处理后排放。根据工艺处理要求除尘按4 槽考虑,由于翻抛、出料等需除尘的环节可单独控制,因此设计中相对于共用收集管路的其他工况,除尘运行可优先,可根据发酵车间灰尘的浓度由工作

管道设计计算公式(流速规定、泵的选用)

1流速与管径计算公式 水流速度取0.7 m/s,则管径计算值如下: D= 4×Q 3600×π×V = 4×6000 3600×3.14×0.7 =174 mm 空气管道的流速,一般规定为:干、支管为10~15m/s,通向空气扩散装置的竖管、小支管为4~5m/s。 2泵的选型 水管管路的水头损失=沿程水头损失+局部水头损失 沿途水头损失=(λL/d)*V^2/(2g)------------P150(层流、紊流均适用) 局部水头损失=ζ*V^2/(2g) 水管管路的水头损失=沿程水头损失+局部水头损失=(λL/d+ζ)*V^2/(2g) 式中:λ—管道沿途阻力系数;L—管道长度;ζ——局部阻力系数,有多个局部阻力系数,则要相加;d—管道内径, g—重力加速度,V—管内断面平均流速。沿途阻力系数λ和局部阻力系数ζ都可查水力学手册。 λ=64/Re 仅适用于圆管层流。对于紊流,由于运动的复杂性,其规律主要由试验确定,但可在理论上给以某些阐述。P171

沿程水头损失 (1)层流区Re<2320(即lgRe<3.36)λ=64/Re (2)层流转变为紊流过渡区2320<Re<4000(即3.36<lgRe<3.6),试验点散乱,流动情况比较复杂且范围不大,一般不作详细分析。 (3)紊流区Re>4000(即lgRe>3.6)分为紊流光滑区、紊流过渡区、紊流粗糙区。 ①紊流光滑区:不同相对粗糙度△/d试验点均落在直线cd上,说明λ与△/d无关。和层流情况相类似,λ值也仅仅与Re有关。可表示为λ=(Re),但与层流区所遵循的函数关系不同。

②紊流粗糙区:分界线ef右方,λ与Re无关,仅与△/d有关,可表示为λ=(△/d) ③紊流过度粗糙区λ=(△/d,Re)

管网设计计算说明书

目录 第一篇给水管网设计 1.概述 (2) 1.1给水现状 (2) 1.2规划用水单位 (2) 1.3水源选择 (2) 1.4水压要求 (2) 2.设计用水量计算 (3) 3.管网设计 (4) 3.1管网定线 (4) 3.2比流量,沿线流量和节点流量以及流量出分配 (4) 3.3管网平差计算 (8) 4泵站流量扬程计算 (9) 5.管网设计校核 (9) 5.1消防工况校核 (9) 5.2事故工矿校核 (11) 第二篇污水管网设计 1.概述 (12) 2.管道定线及设计管段、面积划分 (12) 3.设计流量、比流量计算 (13) 4.污水管段设计流量计算表 (14) 5.污水干管水力和埋设深度计算 (14) 第三篇雨水管网设计 1.概述 (16) 2.雨水量计算 (16) 2.1暴雨强度公式 (16) 2.2综合径流系数 (16) 3.雨水管网定线 (16) 4.划分设计管段 (17) 5.汇水面积划分 (17) 6.管段设计流量及管道水力计算 (18) 7.各设计管段上、下端的管底标高和埋设深度计算 (19)

第一篇给水管网设计 1. 概述 1.1 给水现状 目前镇区没有统一给水,居民用水多采用自发组织引山泉水及地下水,其水量不能满足镇区用水量的要求,此外,镇区给水管网不成系统,管径和管材都不能满足要求。 1.2 规划用水单位 镇区规划以居住生活用地为主,用水量主要包括:居民生活用水量、工业用水量、公建用水量及市政用水量。规划可根据远期镇区的发展状况、人民生活水平、工业的性质及水资源的情况,同时参考国家有关规及相似城镇的用水标准, 1.3 水源选择 根据水利部门提供资料,本镇区上游的溪水库(在规划围之外,位于本镇的东北方向,溪上游)流域集雨面积为约为10km2,水量充足,水质符合《地面水环境质量标准》(GB3838)二级标准,溪在水质及水量方面均能满足远期镇区供水的要求,故规划拟定以溪水库作为镇区供水水源。供水方式采用统一,均由位于镇区东北角的自来水厂统一供给。 1.4 水压要求

污泥处理系统设计设备安装施工方案

目录

第一章工程概况 项目信息 项目名称:市污泥处置及资源化利用项目一期工程 建设单位:技术股份有限公司 建设地点:市经济技术开发区 建设规模:以系统年处理能力为×(湿污泥含固率以计),系统具有总蒸发能力不小于的性能。同时考虑系统所维护时间作为设备选型依据。 项目基本概况 按照市的城市总体规划分区的情况、居民及工业分布,结合城市地形地貌特征、水系分布、铁路和高速公路等障碍物的位置及现状污水处理厂的建设情况,遵循集中处理和相对集中处理为主、分散处理为辅,城乡统筹和有利于污水处理厂出水再生利用等原则,合理布局城市污水处理系统。目前市现状有两座污水处理厂:汤汪污水处理厂和六圩污水处理厂,负责收集处理现状主城区中心的污水。北山区域和北洲区域规划新建两座污水处理厂。 西部分区周边地区以及西北绕城公路以西部分地区,随着市政府“一体两翼” 的发展计划,将会得到长足的发展,规划在该区域内新建一座污水处理厂,收集处理该部分污水,共分为个污水处理系统。 市区五个污水处理系统,现状污泥量已经达到,近期年估计达到。由此确定一期工程设计规模考虑,二期工程扩建后兼顾年规模达到。

第二章编制依据及原则 1、依据建设工程施工招标文件及附件编制而成。 2、依据《市污泥处理处置工程》建设工程施工招标、评标、定标标准方法、以及招标文件修改、澄清(答疑)纪要及补充说明进行编制。 3、依据国家颁发的现行施工验收规范及工程质量评定标准、施工操作规程等进行编制。 (1)国家《中华人民共和国建筑法》国家主席令第号; (2)国家《中华人民共和国计量法》国家主席令第号; (3)国家《建设项目环境保护管理条例》国家主席令第号; (4)依据《工程测量规范》(); (5)依据《建筑电气安装工程质量检验评定标准》; (6)依据《建筑安装工程质量检验评定标准一通用机械设备安装工程》; (7)依据《建筑安装工程质量检验评定标准容器工程》; (8)依据《建筑安装工程质量检验评定标准一工业管道安装工程》; (9)依据《给水排水管道工程施工及验收规范》; (10)依据《工业设备及管道绝热工程施工及验收规范》; (11)依据《工业设备及管道绝热工程质量检验评定标准》; (12)依据《工业金属管道工程施工及验收规范》; (13)依据《机械设备安装工程施工及验收通用规范》; (14)依据《排水工程机电设备安装质量检验评定标准》; (15)依据《起重设备安装工程施工及验牧规范》; (16)依据《(自动化仪表安装工程质量检验评定标准》; (17)依据《钢结构工程施工质量验收规范》(); (18)依据《建筑钢结构焊接技术规程》(); (19)依据《涂装前钢材表面锈蚀等级和除锈等级》(); (20)依据《混凝土结构工程施工质量验收规范》(); (21)依据《钢筋机械连接通用技术规程》();

管道支吊架设计和计算

浅谈管道门字型支吊架的设计及计算 文摘】用来支撑管道的结构叫管道支吊架,管道在敷设时都必须对管子进行固定或支承,固定或支承管子的构件是支吊架。在机电工程里,管道 支架是分布广、数量大、种类繁多的安装工事,同时管道支吊架的设 计和安装对管道及其附件施工质量的好坏取决定性作用。如何采用安 全适用、经济合理、整齐美观的管道支吊架是机电安装工程的一个重 点。 关键词】管道布置管道跨距管架分析管架内力计算 、管道的布置 对管道进行合理的深化和布置是管道支吊架设计的前提条件。欲设计安全使用、经济合理、整洁美观的管道支吊架,首先需对管道进行合理的布置,其布置不得不考虑以下参数: 1.管道布置设计应符合各种工艺管道及系统流程的要求; 2.管道布置应统筹规划,做到安全可靠、经济合理、满足施工、操作、维 修等方面的要求,并力求整齐美观; 3.在确定进出装置(单元)的管道的方位与敷设方式时,应做到内外协调; 4.管道宜集中成排布置,成排管道之间的净距(保温管为保温之间净距) 不应小于50mm 。 5.输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布 置,应符合设备布置设计的要求,并力求短而直,切勿交叉; 6.地上的管道宜敷设在管架或管墩上,在管架、管墩上布置管道时,宜使 管架或管墩所受的垂直荷载、水平荷载均衡; 7.管道布置应使管道系统具有必要的柔性,在保证管道柔性及管道对设 备、机泵管口作用力和力矩不超出过允许值的惰况下,应使管道最 短,组成件最少; 8.应在管道规划的同时考虑其支承点设置,并尽量将管道布置在距可靠支 撑点最近处,但管道外表面距建筑物的最小净距不应小于100mm ,同时应尽量考虑利用管道的自然形状达到自行补偿; 9.管道布置宜做到“步步高”或“步步低”,减少气袋或液袋。不可避免 时应根据操作、检修要求设置放空、放净。 、管架跨距 管架的跨距的大小直接决定着管架的数量。跨距太小造成管架过密,管架数量增多,费用增高,故需在保证管道安全和正常运行的前提下,尽可能增大管道的跨距,降低工程费用。但是管架跨距又受管道材质、截面刚度、管道其它作用何载和允许挠度等的影响,不可能无限的扩大。所以设计管道的支吊架应先确定管架的最大跨距,管架的最大允许跨距计算应按强度和刚度两个条件分别计算,取其小值作为推荐的最大允许跨距。 1.按强度条件计算的管架最大跨距的计算公式:

深度水处理系统工艺设计高密度澄清池

深度水处理系统工艺设计高密度澄清 池

1.1.1深度水处理系统工艺设计 1.1.1.1混凝沉淀系统工艺描述及技术参数 工艺过程描述 高密度沉淀池内加入合适的软化剂-石灰和纯碱,软化剂与水中的悬浮的有机物和无机物快速的凝聚,同时软化剂还与水中可生物降解的有机物(包括生物颗粒与菌胶团)有较强的亲和力,因此在软化剂凝聚的过程中还会将可生物降解的有机物(即BOD5)从水中去除。软化剂凝聚处理除了能够降低水中悬浮的有机物、无机物和BOD5外,还能够降低水中细菌和病毒含量,同时还能有效去除硬度(包括暂硬和永硬)和碱度。 高密度沉淀池采用污泥外循环高密度沉淀池技术。高密度沉淀池主要结构应由反应室、斜板沉降室、集水槽、搅拌机、刮泥机、钢结构(含桥架、内外反应筒、集水槽、支撑架、固定件和取样装置等)等部分组成。 高密度沉淀池为污泥外循环高效澄清池。 高密度沉淀池按2系列配置,鉴于装置内废水回流的影响,高密度沉淀池设计处理能力按不低于2×155m3/hr考虑。 高密度沉淀池工艺是在传统的平流沉淀池的基础上,充分利用了动态混凝、加速絮凝原理和浅池理论,把混凝、强化絮凝、斜管沉淀三个过程进行优化。主要基于4个机理:独特的一体化

反应区设计、反应区到沉淀 区较低的流速变化、沉淀区 到反应区的污泥循环和采用 斜管沉淀布置。反应池分为 2个部分:快速混凝搅拌反 应池和慢速混凝推流式反应 池。快速混凝搅拌反应池是 将原水引入到反应池底板的中央,在圆筒中间安装一个叶轮,该叶轮的作用是使反应池内水流均匀混合,并为絮凝和聚合电解质的分配提供所需的动能。矾花慢速地从预沉池进入到澄清池,这样可避免矾花破碎,并产生涡旋,使大量的悬浮固体颗粒在该区均匀沉积。矾花在澄清池下部汇集成污泥并浓缩。浓缩区分为两层:上层为再循环污泥的浓缩,下层是产生大量浓缩污泥的地方。逆流式斜管沉淀区将剩余的矾花沉淀。经过固定在清水收集槽进行水力分布,斜管将提高水流均匀分配。清水由一个集水槽系统收回。絮凝物堆积在澄清池下部,形成的污泥也在这部分区域浓缩。该沉淀池有以下几方面的优点:1)将混合区、絮凝区与沉淀池分离,采用矩形结构,简化池型;2)沉淀分离区下部设污泥浓缩区,占地少;3)在浓缩区和混合部分之间设污泥外部循环,部分浓缩污泥由泵回流到机械混合池,与原水、混凝剂充分混合,经过机械絮凝形成高浓度混合絮凝体,然后进入沉淀区分离。

弯管道设计及计算方法

弯管道设计及计算方法 弯管道主要是算出弦到弧的垂直距离h、h x,定出A、B(B')、C(C')等弯点,即可连成弯管道的弧线,其他钉中心桩和控制桩方法与直线管道相同。如图1所示。 图1弯管道示意 下面例举两种基本的弯管道测量方法(钉桩略)。 1.图2 图2弯管道测量之一 已知条件:两人孔间没有障碍,L和h可直接量得。具体方法: 第一步用皮尺量出两人孔间直线(L)长度,在中点M作垂线h,根据道路弯曲情况确定A点,量出h长度,利用公式(1-1)算出半径R。

R L h h =+22 48 (1-1) 如算出的R 小于36米,则调整A 的位置,使R 大于36米。 第二步 由M 点向两头将L 分成若干等份MN(MN ')、NP(N 'P ')(等份愈小,绘出的弧愈精确)。利用公式(1-2)、(1-3)……算出h 1、h 2……等长度。 ()h h R R x 1212=-- - (1-2) ()h h R R x 222 2 =--- (1-3) 第三步 根据h 、h 1、h 2……等,找出A 、B 、C 、D 等点,依次连接起来就是弯管道的弧线。 2. 图3 图3 弯管道测量之二 已知条件:人孔B 附近有障碍,A 点不能选定,B 点可以选定,L 及x 可以直接量出,具体方法: 第一步 根据已知条件和公式(1-4),求出R 2 22228444???? ??--+=x x h h x L L R (1-4) 第二步 再用公式(1-5),求出h 。 x h x R R h +--=22 (1-5) 第三步 与图3同样方法,得出弯管道弧线上、A 、C 、B 、D 等各点,并连成弧线。

相关文档
最新文档