基于VerilogHDL的通行时间可变的交通灯控制器

合集下载

基于VerilogHDL语言的复杂交通指标灯设计与实现

基于VerilogHDL语言的复杂交通指标灯设计与实现

2009.2011.141引言针对采用单片机和可编程控制器PLC 实现交通灯控制器的不足,如:存在修改、调试均需要硬件电路支持,且存在采用的电路原件相对较多、接线复杂、故障率高、可靠性低等不足[1,2]。

尽管文献[3,4]的作者在实时性和自适应控制系统设计方面展开了研究,但其依赖硬件电路支持的不足仍然存在。

为此,研究者和工程师们寻求其他设计交通灯控制器的途径,而随着Electronic Design Automation 技术的发展,在线可编程逻辑器件PLD 的出现,使得用户在实验室制作专用集成电路成了现实。

研究者提出了一些基于VHDL 的交通灯控制器的设计方案[5-8],有效地克服了基于PLC 交通灯设计与实现方案的不足,其中,HDL (Hardware Description Language ,硬件描述语言)是一种描述硬件工作的语言。

Verilog HDL 是工业和学术界的硬件设计者常用的两种主要的HDL 之一。

文献[6]的作者依据Altera 公司的EDA 软件平台Max+PlusII ,给出CPLD 芯片上交通灯系统的控制过程的实现,而文献[8]的作者选择XILINX 公司的FPGA 芯片(如同文献[7]的设计工作),采用ISE5.X 和MODELSIMSE6.0开发工具进行了程序的编译和功能仿真。

2交通灯系统控制器的设计与实现2.1设计要求无论采用何种手段进行交通灯控制器的设计,交通灯控制器均遵循类似的工作机制,借用文献[5-8]的设计思路,按照以下规则对系统进行控制:(1)十字路口的A 方向(主干道)、B 方向(支干道)各设红(R),黄(Y),绿(G)和左拐(L),右拐(R )五盏灯,A 方向4种灯按“绿黄左黄红黄”的顺序循环亮灭,B 方向4种灯按“红黄绿黄左黄”的顺序循环亮灭,并能将灯亮的时间以倒计时的形式显示出来。

(2)保证主干道绝对优先,初始状态设为主干道绿灯,支干道红灯。

(3)两个方向各种灯亮的时间应该能够非常方便地进行设置和修改,此外设A 方向是主干路,车流量大,因此A 方向通行的时间在正常模式下比B 方向时间长一些。

交通信号灯控制器的verilog实现

交通信号灯控制器的verilog实现

H a r b i n I n s t i t u t e o f T e c h n o l o g yV e r i l o g实验报告(2)实验内容:交通信号灯控制器班级:姓名:学号:哈尔滨工业大学2015年6月一、功能描述本设计利用Verilog HDL 语言,对一个十字路口的交通信号灯进行控制,可控制4个路口的红、黄、绿、左转四盏信号灯,让其按特定的规律进行变化。

并通过ModelSim软件对系统进行了仿真。

仿真结果表明系统可自动实现十字路口红绿灯及左转弯信号灯的控制。

实现设计目标如下:(1)设计一个十字路口的交通灯控制电路,每条路配有红、黄、绿、左转四盏交通信号灯。

通过控制器对四个路口的四组交通灯的状态实现自动循环控制;(2)实现两主干道车辆交替运行,每次通行直行时间为30 秒;左转时间为10秒,右转不受信号灯控制。

(3)黄灯作为绿灯转为左转灯,左转灯转为红灯的过渡信号灯,过渡时间为5s。

(4)系统设有总复位开关,可在任意时间对系统进行复位。

二、设计方案1.设计思路我们对图1所示的十字路口进行设计,路口A和路口C的车辆同时行驶,路口B和路口D的车辆同时行驶,所以虽然要控制4组信号灯,但其实它们可以俩俩合并,这样大大简化了设计。

由于我们采用自动控制方式,两个方向的灯按照顺序依次交替循环显示,每种灯亮的时间结合实际生活合理设定。

系统设有复位开关,可在任意时间内对系统进行复位。

图1 十字路口示意图由以上分析可知,该系统可视为一个状态机,而且共有8种状态,如表1所示。

表1 交通灯状态示意表由上表我们还可以得到状态转换图,如图2所示:图2 状态转移示意图该状态机共有两个输入信号rstn和clk,rstn为复位信号,当该信号为低电平时,状态机处于S0,且状态不发生改变。

当rstn为高电平时,这8个状态依次按时间顺序发生变化,每个状态保持多长时间由clk信号控制。

三、关键代码1.我们通过宏定义来设置每个状态保持的时间,这样既增强了代码的可读性,又方便以后的更改。

基于VerilogHDL的交通灯控制器设计

基于VerilogHDL的交通灯控制器设计

目录第一章设计原理 (1)1.1设计要求 (1)1.2设计思路和原理 (1)1.3实现方法 (1)第二章Verilog 程序设计 (2)2.1整体设计 (2)2.2 具体设计 (3)第三章仿真 (7)3.1 波形仿真 (7)第四章设计总结 (9)4.1 总结 (9)4.2参考资料 (9)程序清单 (10)交通灯控制器设计第一章 设计原理1.1设计要求设计一个交通控制器,用LED 显示灯表示交通状态,并以7段数码显示器显示当前状态剩余秒数 主干道绿灯亮时,支干道红灯亮;反之亦然,二者交替允许通行,主干道每次放行35s ,支干道每次放行25s 。

每次由绿灯变为红灯的过程中,亮光的黄灯作为过渡,黄灯的时间为5s 。

能进行特殊状态显示,特殊状态时东西、南北路口均显示红灯状态。

用LED 灯显示倒计时,并且能实现总体清零功能,计数器由初始状态开始计数,对应状态的显示灯亮。

1.2设计思路和原理本次设计是针对十字路口,进行南北和东西直行情况下交通灯控制。

设定东西方向为主干道方向,根据交通灯的亮的规则,在初始状态下四个方向的都为红灯亮启,进入正常工作状态后,当主干道上绿灯亮时,支干道上红灯亮,持续35S 后,主干道和支干道上的黄灯都亮启,持续5S 后,主干道上红灯亮启,支干道上绿灯亮启持续25S ,之后主干道和支干道上的黄灯都亮启5s ,一个循环完成。

循环往复的直行这个过程。

其过程如下图所示:0s30s25s主干道方向支干道方向图1.交通灯点亮时间控制说明1.3实现方法本次采用文本编辑法,即利用Verilog 语言描述交通控制器,通过状态机计数法,实现设计所要求的交通灯控制及时间显示。

设计中用两组红黄绿LED 模拟两个方向上的交通灯,用4个7段数码管分别显示两个方向上的交通灯剩余时间,控制时钟由试验箱上频率信号提供。

第二章 Verilog 程序设计2.1整体设计根据上章设计原理,交通灯控制的关键是各个状态之间的转换和进行适当的时间延时,根据状态机的设计规范,本次设计了三个状态之间的循环转化,其真值表及状态转化图如下所示:状状状状状状状状状状状状00状状10状状11状状01状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状状001100010010001010100010图2.交通灯控制状态转化说明:该状态图为交通灯在正常情况下的状态转化图,进入控制后,状态00时主干道绿灯及支干道红灯亮起,进入状态01后两路黄灯亮起,状态11时主干道红灯及支干道绿灯亮起。

基于Verilog HDL的交通灯控制器

基于Verilog HDL的交通灯控制器

交通灯控制器专业:电子信息科学与技术_班级:学号:学生姓名:指导教师:*** _摘要交通灯是城市交通监管系统的重要组成部分,对于保证机动车辆的安全运行,维持城市道路的顺畅起到了重要作用。

目前很多城市交叉路口的交通灯实行的是定时控制,灯亮的时间是预先设定好的,在时间和空间方面的应变性能较差,一定程度上造成了交通资源的浪费,加重了道路交通压力。

本文在EDA技术的基础上,利用FPGA的相关知识设计了交通灯控制系统,可以根据实际情况对灯亮时间进行自由调整,通过数码管显示等待时间,点阵显示运行状态,蜂鸣器提示紧急状况,很好地维护了道路的交通规则。

整个设计系统通过Quartus Ⅱ软件中的Verilog HDL语言进行代码编写,并下载到FPGA器件中进行硬件调试,验证了设计的交通信号灯控制电路完全可以实现预定的功能,具有一定的实用性。

关键字:交通灯、定时控制、FPGA、Verilog HDL一、设计原理根据交通灯循环顺序表可以得到如表1的循环状态表,遇到紧急状况的时候,这时候有东西通行、南北通行和全部禁行三种情况,紧急状态结束后条件满足的情况下状态依次往后跳转。

表1 交通灯循环状态表1. 方案比较方案一:直接用GPIO口驱动双色点阵;方案二:用两块3-8译码器控制双色点阵,一个控制红色,另一个控制绿色;方案三:用一块4-16选择器控制双色点阵;通过比较方案一需要24个GPIO,方案二需要14个GPIO口,而方案三只需要12个GPIO 口,考虑到IO口的数量限制和资源的优化,故选择方案三,硬件部分还包括Led灯和蜂鸣器,用洞洞板搭建好了硬件电路。

2.系统框架图1 状态机状态转换图随着现代生活节奏的加快,人们出门便更多地选择自家的交通工具,这无疑加大了交通流量,如何控制十字路口的红绿灯,便显得相当的重要。

简单的,有效地控制红绿灯,是减小客流量,甚至减少交通事故的重要保障。

而此次课题,我选择了交通灯控制电路,能熟悉Verilog HDL 硬件描述语言在现实生活中的重要意义,为以后的学习和工作打好基础。

毕业设计---基于Verilog的交通灯控制器的设计

毕业设计---基于Verilog的交通灯控制器的设计

课题:交通灯控制器的设计目录1. 设计内容与要求 (2)2. 交通灯控制系统的组成框图 (3)3. 交通灯控制电路的设计 (4)4. 交通灯控制电路设计的难点与解决方法 (5)5. 交通灯控制电路的Verilog语句 (6)5. 交通灯控制电路的程序和波形分析 (12)6. EPF10K10LC84-4芯片引脚分配图 (20)7. 实验小结 (21)一、 设计内容与要求① 设计一个十字路口交通信号灯的定时控制电路。

要求红、绿灯按一定的规律亮和灭,并在亮灯期间进行倒计时,并将运行时间用数码管显示出来。

②绿灯亮时,为该车道允许通行信号,红灯亮时,为该车道禁止通行信号。

要求主干道每次通行时间为99秒,支干道每次通行时间为30秒。

每次变换运行车道前绿灯闪烁,持续时间为5秒。

即车道要由主干道转换为支干道时,主干道在通行时间只剩下5秒钟时,绿灯闪烁显示,支干道仍为红灯,以便主干道上已过停车线的车继续通行,未过停车线的车停止通行。

同理,当车道由支干道转换为主干道时,支干道绿灯闪烁显示5秒钟,主干道仍为红灯。

③ 对红、绿灯的运行时间要能比较方便的进行重新设置。

④ 添加左转灯的控制,可自行到实际十字路口观看规律并实现。

对器件进行在系统编程和实验验证。

⑤用Verilog 语言对设计进行描述,设计一个测试方案,通过Muxplus 对设计进行仿真验证。

并能够下载到实验板上调试成功。

二、交通灯控制系统的组成框图交通信号灯控制原理图绿灯左拐灯红灯绿灯左拐灯红灯交通信号灯控制系统框图三、交通灯控制电路的设计交通灯控制器设计的重点是控制电路的设计,根据设计要求分析,控制电路的算法可用下图所示的ASM图描述。

各状态的详细说明如下:S0状态:主干道绿灯亮,支干道红灯亮,此时若主干道有车等待左拐,而且主干道绿灯已亮足规定的时间间隔Ts;在主干道绿灯亮了(Ts-5)s后,则开始闪亮,直至绿灯亮了Ts;控制器发出状态转换信号Tempm==0,输出从状态S0转换到S1。

基于VerilogHDL的通行时间可变的交通灯控制器

基于VerilogHDL的通行时间可变的交通灯控制器

通行时间可变的交通灯控制器设计module tr1(ng,clk,reset,resets,emergency,lighta,lightb,seg,select); input ng,clk,reset,emergency,resets;output[6:0]seg;//显示用的output[3:0] lighta,lightb;//a是主干道,b是支干道output [3:0] select;//选择那一个管子进行显示reg clk1,clk2;//clk1要5HZ clk2要几千HZreg [3:0] select;reg tim1,tim2;//这是看你的等有没有变过颜色的控制信号reg [1:0] cont;reg[2:0]state1,state2,ste;两个控制颜色变化状态的信号。

reg[3:0]lighta,lightb;//a是主干道,b是支干道reg[3:0]num;//译码器是根据这个东西来译码的reg [35:0] fout;reg[6:0]seg;//显示reg[7:0] numa,numb;reg[7:0] red1,red2,green1,green2,yellow1,yellow2,left1,left2; always @(ng )if(!ng)begin //设置计数初值green1 <=8'b00110000;//30Sred1 <=8'b01010001;//51Syellow1<=8'b00000011;//3Sleft1 <=8'b00010101; //15Sgreen2 <=8'b00110000;//30Sred2 <=8'b01010001;//51Syellow2<=8'b00000011;//3Sleft2 <=8'b00010101; //15Sendalways @ (posedge clk)beginif (fout==36'b111111111111111111111111111111111111)fout<=0;else begin fout<=fout+1;clk1=fout[23];5HZclk2=fout[13];几千HZendendalways @(posedge clk1 )beginif(reset) //复位与特殊情况控制这是主干道的复位beginlighta<=4'b1000;//lighta是主干道的交通灯,lightb是支干道的交通灯,1000是红灯,0100是直行绿灯,0010是黄灯,0001是左转绿灯numa<=red1; //主干道的数码管从红灯开始记state1<=0;//这时候灯变化的控制信号为0endelse if(emergency)//紧急情况beginlighta<=4'b1000;//主干道红了numa<=red1;//计时也从红灯记endelse if(ng)//这下开始正常工作了begin //使能有效开始控制计数if(!tim1) //你有没有变过颜色啊?没有?那开始变颜色吧。

基于FPGA的交通灯控制器设计(VHDl代码全,各个模块均调.

基于FPGA的交通灯控制器设计(VHDl代码全,各个模块均调.

2.3 FPGA 主控实现方案设计结合已有的 PLC 实现和单片机应用实现的经验,并吸收两种设计的优势之处,再根据交通灯控制系统的设计要求和 FPGA 模块化功能实现,确定了以下方案,因每个方向相对的信号灯状态及倒计时显示器的显示完全一致,根据设计要求和系统所具有的功能,交通灯控制器系统框图如图 2-6 所示。

图 2-6 交通灯控制器系统框图确定的方案中, 系统具有复位功能, 能使系统重新开始计时; 在红绿灯交通信号系统中, 大多数的情况是通过自动控制的方式指挥交通的, 但为了配合高峰时段,防止交通拥挤,有时还必须使用手动控制。

为此主体包括系统复位,手动 /自动,红绿灯切换,主控模块,显示器,报警器。

具体主控部分用 FPGA 来实现。

图 2-7 交通灯通行示意图结合实现方案,主要有东西、南北、南北左拐,东西左拐,跟手动控制 5种工作方式,具体由 M2~M0设定,具体如表 2-1。

表2-1 交通灯工作方式表方式 M2(0:自动, 1:手动 M1(0:A向,1:B向M0(O:直行, 1:左拐1 0 0 02 0 0 13 0 1 04 0 1 15 1 * *当出现特殊情况时,可选择方式 1 到方式 4 中的任何一种方式,停止正常运行,进入特殊运行状态。

此时交通灯按工作方式显示,计时电路停止计时,计时时间闪烁显示。

当系统总复位时,控制电路和计时电路复位,信号灯全部熄灭。

3 各功能模块的设计与实现3.1总体设计思路3.1.1系统组成框图结合设计任务要求和确定的实现方案, 假设某个十字路口是由一条主干道和一条次干道回合而成, 在每个方向设置红绿黄 3种信号灯, 红灯亮禁止通行, 绿灯亮允许通行。

黄灯亮允许行驶中车辆有时间停考到禁止线以外。

按照自顶向下的层次化设计方法, 整个系统可分为 4个模块, 系统时序发生电路、红绿灯计数时间选择模块、定时控制电路、红绿灯信号译码电路。

其系统组成方框图如图 3-1所示。

VerilogHDL编写的交通灯

VerilogHDL编写的交通灯

1. module trafficlight(clk,lx,lx_l,lx_r,ly,ly_l,ly_r,c,done,m);input clk,c;//始终和初始化控制output done;output [5:0]m;//倒计时寄存器output lx,lx_l,lx_r,ly,ly_l,ly_r;//指示灯(分别是X、Y方向的直行、左转和右转)reg lx,lx_l,lx_r,ly,ly_l,ly_r;reg [5:0]m;reg [1:0]state;//状态机reg done;parameters0=2'b00,s1=2'b01,s2=2'b10,s3=2'b11;//-------------------------------------------//状态模块always@(posedge clk)if(c)begin done<=1;state<=2'b00;endelsebegincase(state)s0:if(done)begin m<=6'd44;done<=0;endelse if(m>1) m<=m-1;elsebegin state<=s1;done<=1;m<=0;ends1:if(done)begin m<=6'd24;done<=0;endelse if(m>1) m<=m-1;elsebegin state<=s2;done<=1;m<=0;ends2:if(done)begin m<=6'd29;done<=0;endelse if(m>1) m<=m-1;elsebegin state<=s3;done<=1;m<=0;ends3:if(done)begin m<=6'd14;done<=0;endelse if(m>1) m<=m-1;elsebegin state<=s0;done<=1;m<=0;endendcaseend//-----------------------------------------//输出模块always@(posedge clk)begincase(state)s0:{lx,lx_l,lx_r,ly,ly_l,ly_r}<=6'b101001;s1:{lx,lx_l,lx_r,ly,ly_l,ly_r}<=6'b011001; s2:{lx,lx_l,lx_r,ly,ly_l,ly_r}<=6'b001101; s3:{lx,lx_l,lx_r,ly,ly_l,ly_r}<=6'b001011; endcaseend//-------------------------------------------- endmodule2.生成的状态机3.整体的图,四个状态都包括X方向由直行变左转,符合倒计时的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通行时间可变的交通灯控制器设计module tr1(ng,clk,reset,resets,emergency,lighta,lightb,seg,select); input ng,clk,reset,emergency,resets;output[6:0]seg;//显示用的output[3:0] lighta,lightb;//a是主干道,b是支干道output [3:0] select;//选择那一个管子进行显示reg clk1,clk2;//clk1要5HZ clk2要几千HZreg [3:0] select;reg tim1,tim2;//这是看你的等有没有变过颜色的控制信号reg [1:0] cont;reg[2:0]state1,state2,ste;两个控制颜色变化状态的信号。

reg[3:0]lighta,lightb;//a是主干道,b是支干道reg[3:0]num;//译码器是根据这个东西来译码的reg [35:0] fout;reg[6:0]seg;//显示reg[7:0] numa,numb;reg[7:0] red1,red2,green1,green2,yellow1,yellow2,left1,left2; always @(ng )if(!ng)begin //设置计数初值green1 <=8'b00110000;//30Sred1 <=8'b01010001;//51Syellow1<=8'b00000011;//3Sleft1 <=8'b00010101; //15Sgreen2 <=8'b00110000;//30Sred2 <=8'b01010001;//51Syellow2<=8'b00000011;//3Sleft2 <=8'b00010101; //15Sendalways @ (posedge clk)beginif (fout==36'b111111111111111111111111111111111111)fout<=0;else begin fout<=fout+1;clk1=fout[23];5HZclk2=fout[13];几千HZendendalways @(posedge clk1 )beginif(reset) //复位与特殊情况控制这是主干道的复位beginlighta<=4'b1000;//lighta是主干道的交通灯,lightb是支干道的交通灯,1000是红灯,0100是直行绿灯,0010是黄灯,0001是左转绿灯numa<=red1; //主干道的数码管从红灯开始记state1<=0;//这时候灯变化的控制信号为0endelse if(emergency)//紧急情况beginlighta<=4'b1000;//主干道红了numa<=red1;//计时也从红灯记endelse if(ng)//这下开始正常工作了begin //使能有效开始控制计数if(!tim1) //你有没有变过颜色啊?没有?那开始变颜色吧。

begin //主干道交通灯点亮控制tim1<=1;//主干道的灯的开关,行了,我变过了。

case(state1)//state1是用来控制主干道亮灯的各个状态的。

//1000(8)是红灯,0100(4)是直行绿灯,0010(2)是黄灯,0001(1)是左转绿灯3'b000:begin numa<=green1; lighta<=4; state1<=3'b001;end//直行绿3'b001:begin numa<=yellow1;lighta<=2; state1<=3'b010;end//黄3'b010:begin numa<=left1; lighta<=1; state1<=3'b011;end//左转绿3'b011:begin numa<=yellow1;lighta<=2; state1<=3'b100;end//黄3'b100:begin numa<=red1; lighta<=8; state1<=3'b000;end//红default:lighta<=8;//接二极管正极,负极接地endcaseendelse//tm1=1,我变过颜色了,可以开始计数了。

begin //倒数计时if(numa>0)if(numa[3:0]==0)beginnuma[3:0]<=4'b1001;numa[7:4]<=numa[7:4]-1;endelse numa[3:0]<=numa[3:0]-1;if(numa==1) tim1<=0;好了,差不多计完了,再让我变一次吧。

endendelse //如果电路没有启动beginlighta<=4'b0100;//默认为直行绿灯numa=0;//默认计数为0tim1<=0; //默认我没有变过颜色endendalways @(posedge clk1 )//下面就和主干道的一样了beginif(reset) //复位与特殊情况控制beginlightb<=4'b1000;numb<=red2;state2<=0;endelse if(emergency)beginlightb<=4'b1000;numb<=red2;endelse if(ng)beginif(!tim2)begintim2<=1;case(state2)0:begin numb<=red2; lightb<=8; state2<=1; end 1:begin numb<=green2; lightb<=4; state2<=2; end2:begin numb<=yellow2;lightb<=2; state2<=3;end3:begin numb<=left2; lightb<=1; state2<=4;end4:begin numb<=yellow2; lightb<=2; state2<=0;enddefault:lightb<=8;endcaseendelsebegin //倒数计时if(numb>0)if(numb[3:0]==0)beginnumb[3:0]<=4'b1001;numb[7:4]<=numb[7:4]-1;endelse numb[3:0]<=numb[3:0]-1;if(numb==1) tim2<=0;endendelsebegintim2<=0;state2<=0;lightb<=4'b0100;endendalways @(posedge clk2)begin //数码管扫描if(resets)begincont=0;select=4'b1111;;endelsebegincase(cont)2'b00:begin num<=numa[3:0]; select<=4'b1101;cont<=cont+1; end 2'b01:begin num<=numa[7:4]; select<=4'b1011;cont<=cont+1; end 2'b10:begin num<=numb[3:0]; select<=4'b0111;cont<=cont+1; end 2'b11:begin num<=numb[7:4]; select<=4'b1110;cont<=cont+1; end endcaseendendalways @(posedge clk2) begin //数码管译码显示case(num)4'b0000: seg<=7'b0111111; //0 4'b0001: seg<=7'b0000110; //1 4'b0010: seg<=7'b1011011; //2 4'b0011: seg<=7'b1001111; //3 4'b0100: seg<=7'b1100110; //4 4'b0101: seg<=7'b1101101; //5 4'b0110: seg<=7'b1111101; //6 4'b0111: seg<=7'b0000111; //7 4'b1000: seg<=7'b1111111; //8 4'b1001: seg<=7'b1101111; //9 default: seg<=7'b0111111; //0 endcaseendendmodule。

相关文档
最新文档