沪科版-数学-八年级上册-一次函数在生活中的应用
沪科版八年级数学上册教案《一次函数》

《一次函数》教学设计第1课时《正比例函数的图象和性质》1.认识正比例函数的意义,掌握正比例函数解析式的特点;2.理解和掌握正比例函数图象的性质,能利用所学知识解决相关实际问题;3.经历利用正比例函数图象直观分析正比例函数性质的过程,体会数形结合的思想方法和研究函数的方法,形成合作交流、独立思考的学习习惯.、教学重点:认识正比例函数的意义,掌握正比例函数解析式的特点。
教学难点:理解和掌握正比例函数图象的性质,能利用所学知识解决相关实际问题。
一、情境导入生活中,我们常常见到各式各样的钟表.时钟的秒针每旋转一圈,表示时间过了1min ;旋转两圈,表示时间过了2min ……~那么,秒针走过的圈数与经过的时间之间的关系如何表示呢二、合作探究探究点一:一次函数与正比例函数【类型一】 一次函数与正比例函数的识别下列函数关系式中,哪些是一次函数,哪些是正比例函数(1)y =-x -4; (2)y =5x 2-6;(3)y =2πx; (4)y =-x 2; (5)y =1x; (6)y =8x 2+x (1-8x ). -解析:首先看每个函数的表达式能否变形转化为y =kx +b (k ≠0,k 、b 是常数)的形式,如果x 的次数是1,则是一次函数,否则不是一次函数;在一次函数中,如果常数项b =0,那么它是正比例函数.解:(1)是一次函数,不是正比例函数;(2)不是一次函数,也不是正比例函数;(3)是一次函数,也是正比例函数;(4)是一次函数,也是正比例函数;(5)不是一次函数,也不是正比例函数;(6)是一次函数,也是正比例函数.方法总结:一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零;判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.#【类型二】根据一次函数与正比例函数的定义求字母的值已知函数y=(m-5)xm2-24+m+1.(1)若它是一次函数,求m的值;(2)若它是正比例函数,求m的值.解析:(1)要使函数是一次函数,根据一次函数的定义x的指数m2-24=1,且一次项系数m-5≠0;(2)要使函数是正比例函数,除了满足上述条件外,还需加上m+1=0这个条件.解:(1)因为y=(m-5)xm2-24+m+1是一次函数,所以m=±5且m≠5,所以m=-5.所以当m=-5时,函数y=(m-5)xm2-24+m+1是一次函数;(2)因为y=(m-5)xm2-24+m+1是一次函数,所以m2-24=1且m-5≠0且m+1=0.所以m=±5且m≠5且m=-1,这样的m不存在,所以函数y=(m-5)xm2-24+m+1不可能为正比例函数.方法总结:函数是一次函数,则k≠0,且自变量的次数为1.当b=0时,一次函数为正比例函数.~探究点二:正比例函数的图象和性质【类型一】正比例函数的图象已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是( )解析:将x=-1,y=-2代入正比例函数y=kx(k≠0)中,求出k的值为2,即可根据正比例函数的性质判断出函数的大致图象,故选C.方法总结:本题考查了正比例函数的图象,知道正比例函数的图象是过原点的直线,且当k>0时,图象过第一、三象限;当k<0时,图象过第二、四象限.【类型二】正比例函数的性质已知正比例函数y=-kx的图象经过第一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三点在函数y=(k-2)x的图象上,且x1>x3>x2,则y1,y2,y3的大小关系为( )-A.y1>y3>y2 B.y1>y2>y3C.y1<y3<y2 D.y3>y2>y1解析:由y=-kx的图象经过第一、三象限,可知-k>0即k<0,∴k-2<0.由正比例函数的性质可知,y=(k-2)x的函数值y随x的增大而减小,则由x1>x3>x2得y1<y3<y2.故选C.方法总结:正比例函数y=kx(k≠0)的函数值y随x的变化情况由k的符号决定.k>0时,y随x的增大而增大;k<0时,y随x的增大而减小.探究点三:两点法画正比例函数的图象画出函数y=-2x的图象.解析:当x=0时,y=0;当x=1时,y=-2.经过原点O(0,0)和点A(1,-2)作直线,则这条直线就是函数y=-2x的图象.解:如图所示.(方法总结:作函数图象的一般步骤:列表,描点,连线,正比例函数的图象是经过原点的直线,只需再另外找一点就可作出图象.三、板书设计正比例函数的图象和性质教学反思:本节内容第一次涉及一个具体的函数的学习和研究,要让学生体会研究函数的方法步骤和知识结构,因此,本课的教与学的活动,要学生有比较清醒的方案意识.教学中随着一环扣一环的提问、练习、点拨,突出教学目标.通过观察—比较—交流—归纳,利用图象和解析式的统一化抽象为具体,降低了难度,突破了正比例函数的性质这一难点.让学生进行课堂小结,不仅使学生从总体上把握知识,强化知识的理解和记忆,还培养了学生良好的个性和思维品质.第2课时《一次函数的图象和性质》教学设计:1.理解和掌握一次函数解析式的特点及意义,掌握一次函数y=kx+b(k、b为常数,k ≠0)的性质,能根据k与b的值说出函数的有关性质;2.会用描点法和平移的方法画一次函数图象,理解和掌握截距的概念;3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力;通过类比的方法学习一次函数,体会数学研究方法的多样性.教学重点:理解和掌握一次函数解析式的特点及意义,掌握一次函数y=kx+b(k、b为常数,k≠0)的性质,能根据k与b的值说出函数的有关性质。
沪科版八年级上册 12.4 一次函数的应用典型例题讲解 讲义(无答案)

一次函数的应用一、知识点复习1.一次函数的图像与性质2.一次函数)0kxby中k的实际意义:=k(≠+在行程问题中,k可以是指代单一物体的速度,也可指代速度和或速度差。
3.待定系数法求一次函数的解析式二、常考典型例题分析题型一:待定系数法在一次函数中的应用1.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,刚弹簧不挂重物时的长度是()A.9cm B.10cm C.10.5cm D.11cm2.大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数,如表是测得的指距与身高的一组数据:请你根据所给信息确定:某人身高为196cm,一般情况下他的指距应是。
题型2:分段函数问题3.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=-8t+25 B.途中加油21升C.汽车加油后还可行驶4小时D.汽车到达乙地时油箱中还余油6升题型3:两直线相交问题4.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l、2l分别表示小敏、小聪离B地的距离y(km)与已用1时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/h C.4km/h和4km/h D.4km/h和3km/h5.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y千米与行驶时间x小时之间的函数图象如图所示,则下列说法中错误的是()A.客车比出租车晚4小时到达目的地B.客车速度为60千米/时,出租车速度为100千米/时C.两车出发后3.75小时相遇D.两车相遇时客车距乙地还有225千米题型4:利用一次函数解决购买方案问题6.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(2x)个羽毛球,供社区居民免费借用。
沪科版数学八年级上册12.4综合与实践——一次函数模型的应用课件(共21张PPT)

(2)设获得的利润为y元,由题意,得y=50[4x+2(150-x)] +80[2x+6(150-x)],即 y= -220x+87 000.因为-220<0,所以y随x的增大而减小,所以 x=50时,y取得最大值,最大值为 -220×50+87000 = 76 000.答:该工艺厂购买A,B两类原木分别为50根和100根时获得利润最大,最大利润是76000元.
同学们再见!
授课老师:
时间:2024年9月1日
(2)当0<x≤1时,令22x>16x+3,解得 ;令22x=16x+3,解得 ; 令22x<16x+3,解得 .当x>1时,令15x+7>16x+3,解得x<4;令15x+7=16x+3,解得x=4; 令15x+7<16x+3,解得x>4.综上所述,当快递物品的重量少于 千克或者多于4千克时,选择甲公司更省钱;当快递物品的重量等于 千克或者4千克时,选择甲,乙两家公司费用一样;当快递物品的重量多于 千克且少于4千克时,选择乙公司更省钱.
2.50
(1)在图2中描出表中的数据,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩上所挂物的质量是多少?(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少?
解:(1)描点如图所示,这些点在一条直线上,故y与x满足一次函数关系.
沪科版数学八年级上册12.2.5一次函数的实际应用课件(共21张PPT)

解:设两地运费之和为y元,则y=yA+yB=(-5x+5000)+(3x+4680)=-2x+9680.由题意得yB=3x+4680≤4830,解得 x≤50.∵y随x的增大而减小,x最大为50,∴y最小=-2×50+9680=9580.∴在此情况下,当A地运往甲、乙两仓库分别为50吨、150吨;B地运往甲、乙两仓库分别为190吨、110吨时,才能使两地运费之和最少,最少是9580元.
观察图象,可知:当人数为50时,选甲或乙旅行社费用相同;当人数为0~49时,选择甲旅行社费用较少;当人数为51~100时,选择乙旅行社费用较少.
y1= 80x
y2= 60x+1000
解法二:设选择甲、乙旅行社费用之差为y, 则y=y1-y2=80x-(60x+1000)=20x-1000. 画出一次函数y= 20x-1000的图象如图.
一次函数的应用
列出不等式(方程),求出自变量在取不同值时所对应的函数值,判断其大小关系
结合实际需求,选择最佳方案
同学们再见!
授课老师:
时间:2024年9月1日
解:yA=20x+25(200-x)=-5x+5000,
yB=15(240-x)+18(60+x)=3x+4680;
练习2
(2)试讨论A、B两地中,哪个的运费较少;
解:∵yA-yB=(-5x+5000)-(3x+4680)=-8x+320,∴当-8x+320>0,即x<40时,B地的运费较少;当-8x+320=0,即x=40时,两地的运费一样多;当-8x+320<0,即x>40时,A地的运费较少;
利用一次函数进行方案选择
初中数学沪科版八年级上册12.4 综合与实践 一次函数模型的应用

漏出的水量 V(ml)
2
5
8 11
14
17 20
(1)表格中有几个变量?它们之间是函数关系吗?
(2)如何将表格中的各组数据所对应的点在平面 直角坐标系中表示出来?
(3)观察你所描出的点的分布,猜测V与t之间的 (近似)函数关系,并求出函数表达式.
(4)根据你建立的模型,计算1小时漏水多少千克? (1毫升的水=1克的水)
教师寄语
生活是数学的源泉, 探索是数学的生命线.
------高 斯淮南市龙湖中学· 民 Nhomakorabea校区 高长亮
淮南市龙湖中学· 民生校区 高长亮
义务教育教科书(沪科)八年级数学上册 12.4综合与实践
城市之痛——高空抛物
淮南市龙湖中学· 民生校区 高长亮
义务教育教科书(沪科)八年级数学上册 12.4综合与实践
问题2 物体从高处下落会产生冲力,可以直观地看
出物体下落的高度越高,产生的冲力就越大。那么物 体下落高度与产生的冲力具有怎样的关系呢?
请你进行实验,将实验数据填入下表,并根据实验 数据建立函数模型:
下落高度h(m) 0.5 0.6 0.7 0.8 0.9 1.0 ... 产生的冲力
F(N)
请你预测该物体从3米的高空落下产生多大的 冲力?
淮南市龙湖中学· 民生校区 高长亮
义务教育教科书(沪科)八年级数学上册
12.4综合与实践
方法总结
请您根据刚才的过程说说如何建立
两个变量间的函数模型?
淮南市龙湖中学· 民生校区 高长亮
义务教育教科书(沪科)八年级数学上册 12.4综合与实践
函数应用
请你选择一个可以应用函数模型 解决的问题,并建立合适的函数模型.
八年级数学上册第12章一次函数12.4综合与实践一次函数模型的应用教案新版沪科版

12.4综合与实践——一次函数模型的应用◇教学目标◇【知识与技能】熟练运用一次函数知识建立实际问题的数学模型,提高解决实际问题的能力.【过程与方法】经历活动过程,让学生认识数学在现实生活中的用途,发展学生运用数学知识解决实际问题的能力.【情感、态度与价值观】1.体会数学与生活的联系,了解数学的价值,加深对数学的理解和认识;2.认识数学是解决实际问题的重要工具,了解数与形的联系以及事物之间的关系.◇教学重难点◇【教学重点】根据题意写出函数关系式,建立实际问题的数学模型.【教学难点】运用一次函数解决实际问题.◇教学过程◇一、情境导入甲、乙两人(甲骑自行车,乙骑摩托车)从A地出发到B地旅行,下图表示甲、乙两人离开A地的路程与时间之间的函数图象,根据图象,你能得到关于甲、乙两人旅行的哪些信息?二、合作探究典例奥运会每4年举办一次,奥运会的游泳纪录在不断地被突破,如男子400 m自由泳项目,1996年奥运会冠军的成绩比1960年的提高了约30 s.下面是该项目冠军的一些数据:根据上面资料,能否估计2020年东京奥运会时该项目的冠军成绩?[解析](1)以1980年为零点,举办奥运会的年份的x值为横坐标、相应的y值为纵坐标,在坐标系中描出这些数据对应的点;(2)观察图中描出的点的整体分布,它们基本上在一条直线附近波动,因此y与x之间的关系可以近似地以一次函数去模拟,即设y=kx+b,这里,我们选择点(0,231.31)和点(6,223.10)的坐标代入y=kx+b,解方程组得k=-1.37,b=231.31,所以一次函数表达式为y=-1.37x+231.31;(3)把x=10代入上式得y=-1.37×10+231.31=217.61(s),所以估计2020年东京奥运会时该项目冠军成绩约为217.61 s.综合与实践——一次函数模型的应用建立两个变量之间的函数模型的具体步骤:(1)将实验得到的数据在直角坐标系中描出;(2)观察这些点的特征,确定选用的函数形式,并根据已知数据求出具体的函数表达式;(3)进行检验;(4)应用这个函数模型解决问题.◇教学反思◇本节课我们给出了生活中的例子,让学生来解决,锻炼学生的主观性和积极性.本节课涉及用函数表达式表达函数之间的关系和由函数图象比较两个函数值的大小等知识,这是对学生函数应用能力和观察能力的考查和锻炼.。
12.4综合与实践一次函数模型的应用-沪科版八年级数学上册教案

12.4 综合与实践一次函数模型的应用-沪科版八年级数学上册教案一、教学目标1.理解一次函数模型的概念和基本特征;2.掌握利用一次函数模型解决实际问题的方法;3.培养学生综合运用数学知识解决实际问题的能力。
二、教学重点1.理解一次函数模型的概念和基本特征;2.掌握利用一次函数模型解决实际问题的方法。
三、教学难点1.培养解决实际问题的能力;2.能够运用数学知识解决跨学科问题。
四、教学内容及安排1. 一次函数模型的概念和基本特征1.通过教学PPT介绍一次函数的概念和定义;2.讲解一次函数的基本特征,如自变量、因变量、斜率、截距等。
2. 一次函数模型解决实际问题的方法Step1: 明确问题解题思路1.分析问题条件;2.明确问题所求。
Step2: 求解过程1.确定自变量和因变量;2.列出函数模型;3.解方程,求出变量值;4.求解问题。
3. 练习与拓展1.在课堂上进行部分例题的讲解;2.布置习题课后练习;3.扩展问题的解决。
五、教学方法1.教师讲授与学生练习相结合;2.合作学习、讨论、呈现等多种方式;3.引导学生思考,培养学生解决问题的能力。
六、教学过程与时间安排1. 教师引入(5分钟)介绍本节课的教学目标和安排,并激发学生学习的兴趣和热情。
2. 阐述一次函数的概念和基本特征(15分钟)1.通过PPT进行讲解;2.询问学生,让学生拓展思路,增加理解。
3. 讲解一次函数模型解决实际问题的方法(25分钟)1.通过教学PPT,讲解解决问题的方法,引导学生理解方法;2.对选择的实际问题进行解题演示;3.鼓励学生自己动手解题。
4. 练习及拓展(20分钟)1.转化思路,增加难度,进行课堂练习;2.接着进行拓展,探究更多实际问题。
5. 课堂总结(5分钟)回顾本节课教学目标,并询问学生遇到的问题和思路拓展。
七、课堂设计说明本节课的教学重点在于提高学生的综合运用数学知识解决实际问题的能力。
在教学过程中,既要让学生掌握一次函数模型的基本概念和特征,又要引导学生把数学知识应用到实际问题中去,帮助学生培养跨学科问题解决的能力。
沪科版数学八年级上册《12.4 综合与实践 一次函数模型的应用》教学设计

沪科版数学八年级上册《12.4 综合与实践一次函数模型的应用》教学设计一. 教材分析《12.4 综合与实践一次函数模型的应用》是沪科版数学八年级上册的教学内容。
本节课的主要内容是一次函数在实际问题中的应用,通过解决实际问题,让学生理解一次函数的意义,提高解决实际问题的能力。
教材中给出了两个实际问题,分别是“工资问题”和“商品打折问题”,旨在让学生通过解决这两个问题,掌握一次函数模型的应用。
二. 学情分析学生在学习本节课之前,已经学习了一次函数的定义、性质和图像。
他们对于一次函数的概念和性质有一定的了解,能够画出一次函数的图像,但对于一次函数在实际问题中的应用还不够熟练。
因此,在教学过程中,教师需要引导学生将所学的一次函数知识与实际问题相结合,提高他们的应用能力。
三. 教学目标1.理解一次函数在实际问题中的意义和作用。
2.学会用一次函数模型解决实际问题。
3.提高学生的数学应用能力和解决问题的能力。
四. 教学重难点1.一次函数模型在实际问题中的应用。
2.如何将实际问题转化为一次函数模型。
五. 教学方法1.案例教学法:通过分析教材中的实际问题,让学生理解一次函数模型的应用。
2.问题驱动法:引导学生主动思考,将实际问题转化为一次函数模型。
3.小组合作法:让学生在小组内讨论、交流,共同解决问题,提高他们的合作能力。
六. 教学准备1.教材《沪科版数学八年级上册》。
2.课件或黑板。
3.实际问题素材。
4.计时器。
七. 教学过程1.导入(5分钟)教师通过引入“工资问题”和“商品打折问题”,激发学生的兴趣,引导学生思考一次函数在实际问题中的应用。
2.呈现(10分钟)教师展示教材中的两个实际问题,让学生明确本节课的学习目标。
3.操练(10分钟)教师引导学生用一次函数模型解决“工资问题”,学生独立思考,小组内交流讨论,共同解决问题。
教师巡回指导,帮助学生克服困难。
4.巩固(10分钟)教师引导学生用一次函数模型解决“商品打折问题”,学生独立思考,小组内交流讨论,共同解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数在生活中的应用
所谓一次函数在生活中的应用,就是指运用一次函数的有关概念、性质去解决实际问题。
它的基本思路是通过对题目的阅读理解,抽象出实际问题中的函数关系,将文字语言转化为数学语言,再运用函数的思想方法来建立实际问题中的变量间的函数关系。
下面,以中考题为例说明,希望能够对大家有所帮助。
例1 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。
根据下表提供的信息,解答以下问题:
(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。
分析:利用题中数量关系,先确定y 与x 之间的函数关系式,再分类讨论。
(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为()y x --20,则有:
()10020456=--++y x y x 整理得:202+-=x y
(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,由题意得:⎩⎨⎧≥+-≥4
2024x x ,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种。
方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;
方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;
方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;
方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;
方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车;
(3)设利润为W (百元)则:
()160048104162025126+-=⨯+⨯+-+⨯=x x x x W
∵048<-=k ∴W 的值随x 的增大而减小
要使利润W 最大,则4=x ,故选方案一
1600448+⨯-=最大W =1408(百元)=14.08(万元)
答:当装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车时,获利最大,最大利润为14.08万元。
点评:认真审题,根据图表中的数量关系代入所设的函数解析式求解,图表信息问题是近几年中考的热点问题。
一次函数结合不等式在实际生活中有着广泛的应用。
例2 某水产品市场管理部门规划建造面积为2400m 2的集贸大棚,大棚内设A 种类型和B 种类型的店面共80间,每间A 种类型的店面的平均面积为28m 2,月租费为400元;每间B 种类型的店面的平均面积为20m 2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.
(1)试确定A 种类型店面的数量;
(2)该大棚管理部门通过了解业主的租赁意向得知, A 种类型店面的出租率为75%,B 种类型店面的出租率为90%.为使店面的月租费最高,应建造A 种类型的店面多少间?
解:(1)设A 种类型店面的数量为x 间,则B 种类型店面的数量为(80-x )间,根据题意,得: ⎩⎨⎧⨯≤-+⨯≥-+%.
852400)80(2028%,802400)80(2028x x x x 解之,得⎩⎨
⎧≤≥.55,40x x ∴A 种类型店面的数量为40≤x ≤55,且x 为整数.
(2)设应建造A 种类型的店面x 间,则店面的月租费为:
W =400×75%·x +360×90%·(80-x )
=-24x +25920,
∵-24<0,40≤x ≤55,
∴为使店面的月租费最高,应建造A 种类型的店面40间.
点评:解本题的关键是要读懂图象的含义,
例3 我市一水果销售公司,需将一批孝感杨店产鲜桃运往某地,有汽车、火车运输工具可供选择,两种运输工具的主要参考数据如下:
若这批水果在运输过程中(含装卸时间)的损耗为150元/时,那么你认为采用哪种运输工具比较好(即运输所需费用与损耗之和较少)?
解:设运输路程为x (x >0)千米,用汽车运输所需总费用为y 1元,
用火车运输所需总费用为y 2 元.
y 1=(75
x +2) ×150+8x +1000 y 1=10x+1300
y 2=(100
x +4) ×150+6x +2000 ∴y 2=7.5x +2600
(1)当y 1> y 2时,即10x +1300>7.5x +2600 ∴x >520;
(2)当y 1= y 2时,即10x +1300=7.5x +2600 ∴x =520;
(3)当y 1< y 2时,即10x +1300<7.5x +2600 ∴x <520.
∴当两地路程大于520千米时,采用火车运输较好; 当两地路程等于520千米时,两种运输工具一样;当两地路程小于520千米时,采用汽车运输较好.。