2010年普通高等学校招生全国统一考试(新课标全国卷)(文科数学)

合集下载

2010年高考新课标全国卷理科数学试题(附答案)

2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ42OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π (11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10) (B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。

做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。

1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。

2010年高考新课标全国卷文科数学试题(附答案)

2010年高考新课标全国卷文科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}R x x x A ∈≤=,2,{}Z x x xB ∈≤=,4,则A B =(A )(0,2) (B )[0,2] (C ) {}2,0 (D ){}2,1,0(2)a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665 (D )1665- (3)已知复数z =,则||z = (A)14 (B )12(C )1 (D )2 (4)曲线321y x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A(B(C(D(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为A B CD(7) 设长方体的长、宽、高分别为2,,a a a ,其顶点都在一个球面上,则该球的表面积为(A )23aπ(B )26aπ(C )212aπ(D )224aπ(8)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45(C )65 (D )56(9)设偶函数()f x 满足)0(42)(>-=x x f x ,则(){}20x f x ->=(A ){}24x x x <->或 (B ){}04x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或 (10)若4sin 5α=-,α是第三象限的角,则sin()4πα+=(A )-(B(C )(D(11)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是(A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数|lg |,010()16,102x x f x x x <⎧⎪=⎨-+>⎪⎩… 若a ,b ,c 均不相等,且()()()f a f b f c ==,则abc 的取值范围是(A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。

2010年高考新课标全国卷_文科数学(含答案)

2010年高考新课标全国卷_文科数学(含答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .23.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 46.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4007.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.568.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-210.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 211.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分1⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分1⎰f (x )d x 的近似值为________.14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.16.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知圆上的弧AC =BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ×CD . 23.(本小题满分10分) 选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年高校招生考试文数(新课标) 试题及答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。

十年(2012-2021)高考数学真题分项汇编(全国通用)-专题16 选修4-5不等式选讲(学生版)

十年(2012-2021)高考数学真题分项汇编(全国通用)-专题16 选修4-5不等式选讲(学生版)

专题16 选修4-5不等式选讲【2021年】1.(2021年全国高考乙卷数学(文)试题)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.2.(2021年全国高考甲卷数学(理)试题)已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +≥,求a 的取值范围.3.(2021年全国新高考Ⅰ卷数学试题)已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.2.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.3.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .4.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.5.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 7.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知()11f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.8.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤恒成立,求a 的取值范围.9.(2018年全国卷Ⅰ理数高考试题)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求+a b 的最小值.10.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.11.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.12.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知函数()f x =│x +1│–│x –2│. (1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.13.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))(2016高考新课标Ⅰ,理24)选修4-5:不等式选讲已知函数f (x )=|x +1|−|2x −3|.(Ⅰ)画出y =f (x )的图象;(Ⅰ)求不等式|f (x )|>1的解集.14.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ; (Ⅰ)证明:当a ,b M ∈时,1a b ab +<+.15.(2016年全国普通高等学校招生统一考试)已知函数()|2|f x x a a =-+.(1)当a=2时,求不等式()6f x ≤的解集;(2)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.16.(2015年全国普通高等学校招生统一考试理科数学(新课标))已知函数()|1|2||,0f x x x a a =+-->.(1)当1a =时,求不等式()1f x >的解集;(2)若()f x 的图象与x 轴围成的三角形面积大于6,求a 的取值范围.17.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))选修4-5不等式选讲设a b c d ,,,均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >>;(Ⅰ>是a b c d -<-的充要条件.18.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))若且 (I )求的最小值; (II )是否存在,使得?并说明理由.19.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.20.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))选修4—5:不等式选讲 已知函数f (x )=|2x -1|+|2x +a|,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当xⅠ1,22a ⎛⎫-⎪⎝⎭时,f (x )≤g (x ),求a 的取值范围.21.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))设a ,b ,c 均为正数,且a+b+c=1,证明:(Ⅰ)ab+bc+ac ≤13; (Ⅰ)2221a b c b c a++≥.22.(2012年全国普通高等学校招生统一考试文科数学(课标卷))已知函数()f x =2x a x ++-. (Ⅰ)当3a =-时,求不等式()f x ≥3的解集;(Ⅰ) 若()f x ≤4x -的解集包含[1,2],求a 的取值范围.(命题意图)本题主要考查含绝对值不等式的解法,是简单题.。

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅰ卷)含解析

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅰ卷)含解析

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅰ卷)1.已知集合,,则( ).{}355A x x =-<<∣{3,1,0,2,3}B =--A B = A. B. C. D.{1,0}-{2,3}{3,1,0}--{1,0,2}-2.若,则( ).1i 1zz =+-z =A. B. C. D.1i--1i-+1i-1i+3.已知向量,,若,则( ).(0,1)a =(2,)b x = (4)b b a ⊥- x =A.-2B.-1C.1D.24.已知,,则( ).cos()m αβ+=tan tan 2αβ=cos()αβ-=A. B. C.D.3m-3m -3m 3m5.,则圆锥的体积为( ).A. B. C. D.6.已知函数在R 上单调递增,则a 的取值范围是( ).22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩A. B. C. D.(,0]-∞[1,0]-[1,1]-[0,)+∞7.当时,曲线与的交点个数为( ).[0,2π]x ∈sin y x =π2sin 36y x ⎛⎫=- ⎪⎝⎭A.3B.4C.6D.88.已知函数的定义域为R ,,且当时,,则下列()f x ()(1)(2)f x f x f x >-+-3x <()f x x =结论中一定正确的是( ).A. B. C. D.(10)100f >(20)1000f >(10)1000f <(20)10000f <9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入X 服从正态分布2.1X =20.01S =,假设失去出口后的亩收入Y 服从正态分布,则( ).(若随机变量Z 服从()21.8,0.1N ()2,N X S 正态分布,则)()2,N μσ()0.8413P Z μμ<+≈A. B. C. D.(2)0.2P X >>()0.5P X Z ><()0.5P Y Z >>()0.8P Y Z ><10.设函数,则( ).2()(1)(4)f x x x =--A.是的极小值点B.当时,3x =()f x 01x <<()2()f x f x <C.当时, D.当时,12x <<4(21)0f x -<-<110x -<<(2)()f x f x ->11.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点的距离与到定直线的距离之积为4,则( ).(2,0)F (0)x a a =<A.2a =-B.点在C上C.C 在第一象限的点的纵坐标的最大值为1D.当点在C 上时,()00,x y 0042y x ≤+12.设双曲线的左右焦点分別为,,过作平行于y 轴的直线交2222:1x y C a b-=0a >0b >1F 2F 2F C 于A ,B 两点,若,,则C 的离心率为_________.113F A =||10AB =13.若曲线在点处的切线也是曲线的切线,则_________.e xy x =+(0,1)ln(1)y x a =++a =14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己持有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛比赛后,甲的总得分小于2的概率为_________.15.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知,ABC △sin C B =.222a b c +-=(1)求B ;(2)若的面积为,求c .ABC △3+16.已知和为椭圆上两点.(0,3)A 33,2P ⎛⎫⎪⎝⎭2222:1(0)x y C a b a b +=>>(1)求C 的率心率;(2)若过P 的直线l 交C 于另一点B ,且的面积为9,求l 的方程.ABP △17.如图,四棱锥中,底面,,,.P ABCD -PA ⊥ABCD 2PA PC ==1BC =AB =(1)若,证明:平面PBC ;AD PB ⊥//AD(2)若,且二面角,求AD .AD DC ⊥A CP D --18.已知函数.3()ln(1)2xf x ax b x x=++--(1)若,且,求a 的最小值;0b =()0f x '≥(2)证明:曲线是中心对称图形;()y f x =(3)若,当且仅当,求b 的取值范围.()2f x >-12x <<19.设m 为正整数,数列,,…,是公差不为0的等差数列,若从中删去两项和1a 2a 42m a +i a 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列,()j a i j <1a ,…,是——可分数列.2a 42m a +(,)i j (1)写出所有的,,使数列,,…,是——可分数列;(,)i j 16i j ≤<≤1a 2a 6a (,)i j (2)当时,证明:数列,,…,足——可分数列;3m ≥1a 2a 42m a +(2,13)(3)从1,2,…,中一次任取两个数i 和,记数列,,…,足—42m +()j i j <1a 2a 42m a +(,)i j —可分数列的概率为,证明.m P 18m P >答案1.A解析:,选A.{1,0}A B =- 2.C 解析:3.D解析:,,,,,选D.4(2,4)b a x -=-(4)b b a ⊥-(4)0b b a ∴-=4(4)0x x ∴+-=2x ∴=4.A解析:,,cos cos sin sin sin sin 2cos cos mαβαβαβαβ-=⎧⎪⎨=⎪⎩sin sin 2cos cos m m αβαβ=-⎧∴⎨=-⎩,选A.cos()cos cos sin sin 23m m m αβαβαβ-=+=--=-5.B解析:设它们底面半径为r ,圆锥母线l ,,,,2ππrl ∴=l ∴==3r ∴=,选B.1π93V =⋅⋅=6.B解析:在R 上↗,,,选B.()f x 0e ln1a a -≥⎧⎨-≤+⎩10a ∴-≤≤7.C解析:6个交点,选C.8.B解析:,,,,(1)1f =(2)2f =(3)(2)(1)3f f f >+=(4)(3)(2)5f f f >+>,,,(5)(4)(3)8f f f >+>(6)(5)(4)13f f f >+>(7)(6)(5)21f f f >+>,,,(8)(7)(6)34f f f >+>(9)(8)(7)55f f f >+>(10)(9)(8)89f f f >+>,,,(11)(10)(9)144f f f >+>(12)(11)(10)233f f f >+>(13)(12)(11)377f f f >+>,,,(14)(13)(12)610f f f >+>(15)(14)(13)987f f f >+>(16)1000f >(20)1000f ∴>,选B.9.BC解析:,,,()2~ 1.8,0.1X N ()2~ 2.1,0.1Y N 2 1.820.12μσ=+⨯=+,A 错.(2)(2)()10.84130.1587P X P X P X μσμσ>=>+<>+=-=,B 对.(2)( 1.8)0.5P X P X ><>=,,C 对.2 2.10.1μσ=-=-(2)( 2.1)0.5P Y P Y >>>=,D 错,所以选BC.(2)()()0.84130.8P Y P Y P Y μσμσ>=>-=<+=>10.ACD解析:A 对,因为;()3(1)(3)f x x x '=--B 错,因为当时且,所以;01x <<()0f x '>201x x <<<()2()f x f x <C 对,因为,,2(21)4(1)(25)0f x x x -=--<2(21)44(2)(21)0f x x x -+=-->,时,2223(2)()(1)(2)(1)(4)(1)(22)2(1)f x f x x x x x x x x --=------=--+=--11x -<<,,D 对.(2)()0f x f x -->(2)()f x f x ->11.ABD解析:A 对,因为O 在曲线上,所以O 到的距离为,而,x a =a -2OF =所以有,那么曲线的方程为.242a a -⋅=⇒=-(4x +=B 对,因为代入知满足方程;C 错,因为,求导得,那么有2224(2)()2y x f x x ⎛⎫=--= ⎪+⎝⎭332()2(2)(2)f x x x '=---+,,于是在的左侧必存在一小区间上满足,因此(2)1f =1(2)02f '=-<2x =(2,2)ε-()1f x >最大值一定大于1;D 对,因为.()22220000004442222y x y x x x ⎛⎫⎛⎫=--≤⇒≤ ⎪ ⎪+++⎝⎭⎝⎭12.32解析:由知,即,而,所以,即||10AB =25F A =2225b c a a a-==121F F F A ⊥1212F F =,代回去解得,所以.6c =4a =32e =13.ln 2解析:14.12解析:甲出1一定输,所以最多3分,要得3分,就只有一种组合、、、18-32-54-76-得2分有三类,分别列举如下:(1)出3和出5的赢,其余输:,,,16-32-54-78-(2)出3和出7的赢,其余输:,,,;,,,,14-32-58-76-18-32-56-74-,,,16-32-58-74-(3)出5和出7的赢,其余输:,,,;,,,;12-38-54-76-14-38-52-76-,,,;,,,;,,,;18-34-52-76-16-38-52-74-18-36-52-74-16-,,,;,,,38-54-72-18-36-54-72-共12种组合满足要求,而所有组合为24,所以甲得分不小于2的概率为1215.(1)π3B =(2)c =解析:(1)已知,根据余弦定理,222a b c +-=222cos 2a b c C ab+-=可得.cos C ==因为,所以.(0,π)C ∈π4C =又因为,即,解得.sin C B =πsin4B =B =1cos 2B =因为,所以.(0,π)B ∈π3B =(2)由(1)知,,则.π3B=π4C =ππ5πππ3412A B C =--=--=已知的面积为,ABC △31sin 2ABCS ab C =△则,.1πsin 324ab =132ab =+2(3ab =+又由正弦定理,可得.sin sin sin a b c A B C ==sin sin sin sin a C b Cc A B==则,,同理.π5πsin sin412c a =5πsin12πsin 4c a=πsin 3πsin 4c b =所以2225ππsin sin 421232(3π1sin42c c ab ⎝⎭===+解得c =16.(1)12(2)见解析解析:(1)将、代入椭圆,则(0,3)A 33,2P ⎛⎫⎪⎝⎭22220919941a b a b⎧+=⎪⎪⎨⎪+=⎪⎩22129a b ⎧=⎨=⎩.c=12ce a ∴===(2)①当L 的斜率不存在时,,,,A 到PB 距离,:3L x =33,2B ⎛⎫- ⎪⎝⎭3PB =3d =此时不满足条件.1933922ABP S =⨯⨯=≠△②当L 的斜率存在时,设,令、,3:(3)2PB y k x -=-()11,P x y ()22,B x y ,消y 可得223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩()()22224324123636270k x k k x k k +--+--=,2122212224124336362743k k x x k k k x x k ⎧-+=⎪⎪+⎨--⎪=⎪+⎩PB =17.(1)证明见解析(2)AD =解析:(1)面,平面,PA ⊥ABCD AD ⊂ABCD PA AD∴⊥又,,平面PABAD PB ⊥ PB PA P = ,PB PA ⊂面,平面,AD ∴⊥PAB AB ∴⊂PAB AD AB∴⊥中,,ABC △222AB BC AC +=AB BC∴⊥,B ,C ,D 四点共面,A //AD BC∴又平面,平面PBCBC ⊂ PBC AD ⊄平面PBC .//AD ∴(2)以DA ,DC 为x ,y 轴过D 作与平面ABCD 垂直的线为z 轴建立如图所示空间直角坐标系D xyz-令,则,,,,AD t =(,0,0)A t (,0,2)P t (0,0,0)D DC =()C 设平面ACP 的法向量()1111,,n x y z =不妨设,,1x =1y t =10z =)1,0n t =设平面CPD 的法向量为()2222,,n x y z =不妨设,则,,2200n DP n DC ⎧⋅=⎪⎨⋅=⎪⎩222200tx z +=⎧∴=2z t =22x =-20y =2(2,0,)n t =- 二面角A CP D --121212cos ,n n n n n n ⋅===.t ∴=AD ∴=18.(1)-2(2)证明见解析(3)23b ≥-解析:(1)时,,对恒成立0b =()ln2x f x ax x =+-11()02f x a x x '=++≥-02x ∀<<而,11222(2)a a a x x x x ++=+≥+--当且仅当时取“=”,1x =故只需,即a 的最小值为-2.202a a +≥⇒≥-(2)方法一:,(0,2)x ∈(2)()f x f x -+332ln (2)(1)ln (1)22x x a x b x ax b x a x x-=+-+-+++-=-关于中心对称.()f x ∴(1,)a 方法二:将向左平移一个单位关于中心对称平移()f x 31(1)ln(1)1x f x a x bx x+⇒+=+++-(0,)a 回去关于中心对称.()f x ⇒(1,)a (3)当且仅当,()2f x >- 12x <<(1)22f a ∴=-⇒=-对恒成立3()ln 2(1)22x f x x b x x∴=-+->--12x ∀<<222112(1)2()23(1)3(1)(1)32(2)(2)x f x b x b x x b x x x x x x ⎡⎤-'=+-+-=+-=-+⎢⎥---⎣⎦令,必有(必要性)2()3(2)g x b x x =+-∴2(1)2303g b b =+≥⇒≥-当时,对,23b ≥-(1,2)x ∀∈32()ln 2(1)()23x f x x x h x x ≥---=-2222(1)1()2(1)2(1)10(2)(2)x h x x x x x x x ⎡⎤-'=--=-->⎢⎥--⎣⎦对恒成立,符合条件,(1,2)x ∀∈()(1)2h x h ∴>=-综上.23b ≥-19.(1),,(1,2)(1,6)(5,6)(2)证明见解析(3)证明见解析解析:(1)以下满足:,,(,)i j (1,2)(1,6)(5,6)(2)易知:,,,等差等差p a q a r a s a ,,,p q r s ⇔故只需证明:1,3,4,5,6,7,8,9,10,11,12,14可分分组为,,即可(1,4,7,10)(3,6,9,12)(5,8,11,14)其余,,按连续4个为一组即可k a 1542k m ≤≤+(3)由第(2)问易发现:,,…,是可分的是可分的.1a 2a 42m a +(,)i j 1,2,42m ⇔+ (,)i j 易知:1,2,…,是可分的42m +(41,42)k r ++(0)k r m ≤≤≤因为可分为,…,与(1,2,3,4)(43,42,41,4)k k k k ---,…,(4(1)1,4(1),4(1)1,4(1)2)r r r r +-+++++(41,4,41,42)m m m m -++此时共种211C (1)(1)(2)2m m m m +++=++再证:1,2,…,是可分的42m +(42,41)k r ++(0)k r m ≤<≤易知与是可分的1~4k 42~42r m ++只需考虑,,,…,,,41k +43k +44k +41r -4r 42r +记,只需证:1,3,5,…,,,可分*N p r k =-∈41p -4p 42p +去掉2与1~42p +41p +观察:时,1,3,4,6无法做到;1p =时,1,3,4,5,6,7,8,10,可以做到;2p =时,1,3,4,5,6,7,8,9,10,11,12,143p =时,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,184p =,,,满足(1,5,9,13)(3,7,11,15)(4,8,12,16)(6,10,14,18)故,可划分为:2p ∀≥,,,(1,1,21,31)p p p +++(3,3,23,33)p p p +++(4,4,24,34)p p p +++,…,,,共p 组(5,5,25,35)p p p +++(,2,3,4)p p p p (2,22,32,42)p p p p ++++事实上,就是,,且把2换成(,,2,3)i p i p i p i +++1,2,3,,i p = 42p +此时,均可行,共组(,)k k p +2p ≥211C (1)2m m m m +-=-,,…,不可行(0,1)(1,2)(1,)m m -综上,可行的与至少组(42,41)k r ++(41,42)k r ++11(1)(1)(2)22m m m m -+++故,得证!()222224212221112C (21)(41)8618m m m m m m m m P m m m m +++++++≥==>++++。

2023年普通高等学校招生全国统一考试(全国甲卷)_文科数学_解析版

2023年普通高等学校招生全国统一考试(全国甲卷)_文科数学_解析版

2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M =ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð,故选:A.2.()()()351i 2i 2i +=+-()A.1- B.1C.1i- D.1i+【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】()()351i 51i 1i(2i)(2i)5+-==-+-故选:C.3.已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A.117B.17C.55D.255【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得()(),,a b a b a b a b +-+⋅-,从而利用平面向量余弦的运算公式即可得解.【详解】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则a b a b +==-== ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()cos ,17a b a b a b a b a b a b+⋅-+-==+-.故选:B.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.23【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件,其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=.故选:D.5.记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A.25 B.22 C.20D.15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出;方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出.【详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选:C.6.执行下边的程序框图,则输出的B =()A .21B.34C.55D.89【答案】B 【解析】【分析】根据程序框图模拟运行即可解出.【详解】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=;当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=;当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=;当4k =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.7.设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;方法二:根据椭圆的定义以及勾股定理即可解出.【详解】方法一:因为120PF PF ⋅= ,所以1290FPF ∠=,从而122121tan 4512FP F S b PF PF ===⨯⋅,所以122PF PF ⋅=.故选:B.方法二:因为120PF PF ⋅= ,所以1290FPF ∠= ,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==2212121221620PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选:B.8.曲线e 1=+xy x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A.e 4y x =B.e 2y x =C.e e 44y x =+ D.e 3e24y x =+【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()e 12y k x -=-,因为e 1xy x =+,所以()()()22e 1e e 11x xxx x y x x +-'==++,所以1e|4x k y ='==所以()e e124y x -=-所以曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为e e 44y x =+.故选:C9.已知双曲线22221(0,0)x y a b a b-=>>22(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A.B.C.355D.455【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由e =,则22222215c b a a==+=,解得2ba=,所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离5d ==,所以弦长45||5AB ===.故选:D10.在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,PA PB PC ===,则该棱锥的体积为()A.1B.C.2D.3【答案】A 【解析】【分析】证明AB ⊥平面PEC ,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取AB 中点E ,连接,PE CE ,如图,ABC 是边长为2的等边三角形,2PA PB ==,,PE AB CE AB ∴⊥⊥,又,PE CE ⊂平面PEC ,PE CE E = ,AB ∴⊥平面PEC ,又322PE CE ==⨯=,PC =故222PC PE CE =+,即PE CE ⊥,所以11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯⨯=△,故选:A11.已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.b c a>> B.b a c>> C.c b a>> D.c a b>>【答案】A 【解析】【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,因为4112222⎛⎫+---= ⎪ ⎪⎝⎭,而22491670+-=+-=->,所以41102222⎛⎫---=-> ⎪ ⎪⎝⎭,即1122->-由二次函数性质知63)22g g <,因为62624112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0-=+==<,即621122-<-,所以62)22g g >,综上,263222g g g <<,又e x y =为增函数,故a c b <<,即b c a >>.故选:A.12.函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1 B.2C.3D.4【答案】C 【解析】【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.【答案】12-【解析】【分析】先分析1q ≠,再由等比数列的前n 项和公式和平方差公式化简即可求出公比q .【详解】若1q =,则由6387S S =得118673a a ⋅=⋅,则10a =,不合题意.所以1q ≠.当1q ≠时,因为6387S S =,所以()()6311118711a q a q qq--⋅=⋅--,即()()638171q q ⋅-=⋅-,即()()()33381171q q q ⋅+-=⋅-,即()3817q ⋅+=,解得12q =-.故答案为:12-14.若()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a ________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.【详解】()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭ ,且函数为偶函数,20a ∴-=,解得2a =,故答案为:215.若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数322zy x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:1516.在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.【答案】【解析】【分析】当球是正方体的外接球时半径最大,当边长为4的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为R .当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径2R '为体对角线长1AC =,即2R R ''==,故max R =;分别取侧棱1111,,,AA BB CC DD 的中点,,,M H G N ,显然四边形MNGH 是边长为4的正方形,且O 为正方形MNGH 的对角线交点,连接MG ,则MG =MNGH 的外接圆,球的半径达到最小,即R 的最小值为.综上,R ∈.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【解析】【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc A bc A A+-===,解得:1bc =.【小问2详解】由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B a B b A c A B B A C ---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC 的面积为1133sin 12224ABC S bc A ==⨯⨯=△.18.如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.【答案】(1)证明见解析.(2)1【解析】【分析】(1)由1A C ⊥平面ABC 得1A C BC ⊥,又因为AC BC ⊥,可证BC ⊥平面11ACC A ,从而证得平面11ACC A ⊥平面11BCC B ;(2)过点1A 作11A O CC ⊥,可证四棱锥的高为1AO ,由三角形全等可证1A C AC =,从而证得O 为1CC 中点,设1A C AC x ==,由勾股定理可求出x ,再由勾股定理即可求1AO .【小问1详解】证明:因为1A C ⊥平面ABC ,BC ⊂平面ABC ,所以1A C BC ⊥,又因为90ACB ∠= ,即ACBC ⊥,1,A C AC ⊂平面11ACC A ,1AC AC C ⋂=,所以BC ⊥平面11ACC A ,又因为BC ⊂平面11BCC B ,所以平面11ACC A ⊥平面11BCC B .【小问2详解】如图,过点1A 作11A O CC ⊥,垂足为O .因为平面11ACC A ⊥平面11BCC B ,平面11ACC A 平面111BCC B CC =,1A O ⊂平面11ACC A ,所以1A O ⊥平面11BCC B ,所以四棱锥111A BB C C -的高为1AO .因为1A C ⊥平面ABC ,,AC BC ⊂平面ABC ,所以1A C BC ⊥,1A C AC ⊥,又因为1A B AB =,BC 为公共边,所以ABC 与1A BC 全等,所以1A C AC =.设1A C AC x ==,则11A C x =,所以O 为1CC 中点,11112OC AA ==,又因为1A C AC ⊥,所以22211A C AC AA +=,即2222x x +=,解得x =,所以11A O ==,所以四棱锥111A BB C C -的高为1.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m<m≥对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.8416.635【答案】(1)19.8(2)(i )23.4m =;列联表见解析,(ii )能【解析】【分析】(1)直接根据均值定义求解;(2)(i )根据中位数的定义即可求得23.4m =,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为18.8,后续依次为19.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, ,故第20位为23.2,第21位数据为23.6,所以23.223.623.42m +==,故列联表为:m<m≥合计对照组61420试验组14620合计202040(ii )由(i )可得,2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20.已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭.(1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.【答案】(1)()f x 在π0,2⎛⎫⎪⎝⎭上单调递减(2)0a ≤【解析】【分析】(1)代入1a =后,再对()f x 求导,同时利用三角函数的平方关系化简()f x ',再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数()()sin g x f x x =+,从而得到()0g x <,注意到()00g =,从而得到()00g '≤,进而得到0a ≤,再分类讨论0a =与a<0两种情况即可得解;法二:先化简并判断得2sin sin 0cos xx x-<恒成立,再分类讨论0a =,a<0与0a >三种情况,利用零点存在定理与隐零点的知识判断得0a >时不满足题意,从而得解.【小问1详解】因为1a =,所以()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭,则()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx xf x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==,令cos t x =,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以()cos 0,1t x =∈,所以()()()23233222cos cos 22221211x x t t t t t t t t t +-=+-=-+-=-++-()()2221t t t =++-,因为()2222110t t t ++=++>,10t -<,33cos 0x t =>,所以()233cos cos 20cos x x f x x +-'=<在π0,2⎛⎫ ⎪⎝⎭上恒成立,所以()f x 在π0,2⎛⎫⎪⎝⎭上单调递减.【小问2详解】法一:构建()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭,则()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭,若()()sin 0g x f x x =+<,且()()00sin 00g f =+=,则()0110g a a '=-+=≤,解得0a ≤,当0a =时,因为22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭,又π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,则211cos x>,所以()2sin sin sin 0cos xf x x x x+=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<,满足题意;综上所述:若()sin 0f x x +<,等价于0a ≤,所以a 的取值范围为(],0-∞.法二:因为()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x---===-,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,故2sin sin 0cos x x x-<在π0,2⎛⎫⎪⎝⎭上恒成立,所以当0a =时,()2sin sin sin 0cos xf x x x x+=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<,满足题意;当0a >时,因为()322sin sin sin sin cos cos x xf x x ax x ax x x+=-+=-,令()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭,则()22433sin cos 2sin cos x x xg x a x +'=-,注意到()22433sin 0cos 02sin 000cos 0g a a +'=-=>,若π02x ∀<<,()0g x '>,则()g x 在π0,2⎛⎫⎪⎝⎭上单调递增,注意到()00g =,所以()()00g x g >=,即()sin 0f x x +>,不满足题意;若0π02x ∃<<,()00g x '<,则()()000g g x ''<,所以在π0,2⎛⎫⎪⎝⎭上最靠近0x =处必存在零点1π20,x ⎛⎫∈ ⎪⎝⎭,使得()10g x '=,此时()g x '在()10,x 上有()0g x '>,所以()g x 在()10,x 上单调递增,则在()10,x 上有()()00g x g >=,即()sin 0f x x +>,不满足题意;综上:0a ≤.【点睛】关键点睛:本题方法二第2小问讨论0a >这种情况的关键是,注意到()00g '>,从而分类讨论()g x '在π0,2⎛⎫⎪⎝⎭上的正负情况,得到总存在靠近0x =处的一个区间,使得()0g x '>,从而推得存在()()00g x g >=,由此得解.21.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,AB =(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅=,求MFN △面积的最小值.【答案】(1)2p =(2)12-【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出p ;(2)设直线MN :x my n =+,()()1122,,,,M x y N x y 利用0MF NF ⋅=,找到,m n 的关系,以及MNF 的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设()(),,,A A B B A x y B x y ,由22102x y y px-+=⎧⎨=⎩可得,2420y py p -+=,所以4,2A B A B y y p y y p +==,所以A B AB y ==-==即2260p p --=,因为0p >,解得:2p =.【小问2详解】因为()1,0F ,显然直线MN 的斜率不可能为零,设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n ⎧=⎨=+⎩可得,2440y my n --=,所以,12124,4y y m y y n +==-,22161600m n m n ∆=+>⇒+>,因为0MF NF ⋅=,所以()()1212110x x y y --+=,即()()1212110my n my n y y +-+-+=,亦即()()()()2212121110m y y m n y y n ++-++-=,将12124,4y y m y y n +==-代入得,22461m n n =-+,()()22410m n n +=->,所以1n ≠,且2610n n-+≥,解得3n ≥+或3n ≤-.设点F 到直线MN 的距离为d,所以d =12MN y y =-=1==-,所以MNF的面积()2111122S MN d n =⨯⨯=-=-,而3n ≥+或3n≤-,所以,当3n =-时,MNF的面积(2min 212S =-=-【点睛】本题解题关键是根据向量的数量积为零找到,m n 的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1)3π4(2)cos sin 30ραρα+-=【解析】【分析】(1)根据t 的几何意义即可解出;(2)求出直线l 的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<,令0x =,12cos t α=-,令0y =,21sin t α=-,所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±,即π2π2k α=+,解得π1π,42k k α=+∈Z ,因为ππ2α<<,所以3π4α=.【小问2详解】由(1)可知,直线l 的斜率为tan 1α=-,且过点()2,1,所以直线l 的普通方程为:()12y x -=--,即30x y +-=,由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+-=.[选修4-5:不等式选讲](10分)23.已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫⎪⎝⎭(2)263【解析】【分析】(1)分x a ≤和x a >讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3ax a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭.【小问2详解】2,()23,x a x af x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与坐标轴围成ADO △与ABCABC 的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以||=AB a所以21132224OAD ABC S S OA a AB a a +=⋅+⋅== ,解得263a =。

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅱ卷)含答案

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅱ卷)含答案

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅱ卷)1.已知,则( ).1i z =--||z =A.0B.1 D.22.已知命题:,,命题,,则( ).:R p x ∀∈|1|1x +>:0q x ∃>3x x =A.p 和q 都是真命题 B.和q 都是真命题p ⌝C.p 和都是真命题D.和都是真命题q ⌝p ⌝q ⌝3.已知向量,满足,,且,则( ).a b ||1a = |2|2a b += (2)b a b -⊥ ||b =A. D.1124.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:)并部分整理如下表所示.kg 亩产[900,950)[950,1000)[1000,1050)[1050,1150)[1150,1200)频数612182410根据表中数据,下列结论正确的是( )A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于的稻田所占比例超过1100kg 40%C.100块稻田亩产量的极差介于到之间200kg 300kg D.100块稻田亩产量的平均值介于到之间900kg 1000kg 5.已知曲线,从C 上任意一点P 向x 轴作垂线,为垂足,则线段22:16(0)C x y y +=>PP 'P '的中点M 的轨迹方程为( ).PP 'A. B.221(0)164x y y +=>221(0)168x y y +=>C. D.221(0)164y x y +=>221(0)168y x y +=>6.设函数,,当时,曲线和2()(1)1f x a x =+-()cos 2g x x ax =+(1,1)x ∈-()y f x =恰有一个交点,则( )()y g x =a =A.-1 B. C.1 D.2127.已知正三棱台的体积为,,,则与平面ABC 所成角的正111ABC A B C -5236AB =112A B =1A A 切值为( ).A. B.1 C.2D.3128.设函数,若,则的最小值为( ).()()ln()f x x a x b =++()0f x ≥22a b +A. B. C. D.11814129.对于函数和,下列正确的有( ).()sin 2f x x =π()sin 24g x x ⎛⎫=-⎪⎝⎭A.与有相同零点B.与有相同最大值()f x ()g x ()f x ()g xC.与有相同的最小正周期D.与的图像有相同的对称轴()f x ()g x ()f x ()g x 10.拋物线的准线为l ,P 为C 上的动点,对P 作的一条切线,Q2:4C y x =22:(4)1A x y +-= 有切点,对P 作C 的垂线,垂足为B .则( ).A.l 与相切B.当P ,A ,B 三点共线时,A ||PQ =C.当时,D.满足的点A 有且仅有2个||2PB =PA AB⊥||||PA PB =11.设函数,则( ).32()231f x x ax =-+A.当时,有一个零点1a >()f x B.当时是的极大值点0a <0x =()f x C.存在a ,b 使得为曲线的对称轴x b =()y f x =D.存在a 使得点为曲线的对称中心(1,(1))f ()y f x =12.记为等差数列的前n 项和,若,,则__________.n S {}n a 347a a +=2535a a +=10S =13.已知为第一象限角,为第三象限角,,,则αβtan tan 4αβ+=tan tan 1αβ=+__________.sin()αβ+=14.在如图的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有44⨯__________种选法,在所有符合上述要求的选法中,选中方格的4个数之和的最大值是__________.15.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知.ABC △sin 2A A +=(1)求A ;(2)若,求周长.2a =sin 2C c B =ABC △16.已知函数.3()e x f x ax a =--(1)当时,求曲线在点处的切线方程;1a =()y f x =(1,(1))f (2)若有极小值,且极小值小于0,求a 的取值范围.()f x 17.如图,平面四边形ABCD 中,,,,,,点E ,F 满足,8AB =3CD =AD =90APC ∠=︒30BAD ∠=︒25AE AD =,将沿EF 对折至,使得,12AF AB = AEF △PEF △PC =(1)证明::EF PD ⊥(2)求面PCD 与PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分,若至少被投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分,该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若,,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5的概率;0.4p =0.5q =(2)假设,0p q <<(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,则该由谁参加第一阶段的比赛?(ii )为使得甲、乙,所在队的比赛成绩的数与期望最大,应该由谁参加第一阶段比赛?19.已知双曲线,点在C 上,k 为常数,,按照如下公式依22:(0)C x y m m -=>1(5,4)P 01k <<次构造点,过点作斜率为k 的直线与C 的左支点交于点,令为关于(2,3,)n P n = 1n P -1n Q -n P 1n Q -y 轴的对称点,记的坐标为.n P (),n n x y (1)若,求,;12k =2x 2y (2)证明:数列是公比为的等比数列;{}n n x y -11k k +-(3)设为的面积,证明:对任意的正整数n ,.n S 12n n n P P P ++△1n n S S +=2024年普通高等学校招生全国统一考试数学答案答案:C解析.||z =1.答案:B解析:时,,错误,和q 是真命题.1x =-|1|1x +<p ∴P ∴⌝2.答案:A解析:,(2)0b a b -⋅= 220b a b ∴-⋅= 又,,||1a = |2|4a b += 得.1||2b = 3.答案:C解析:中位数错误,标差介于之间,选C.200kg ~300kg ∴4.答案:A解析:设,将坐标代入原方程联立,得M 方程.(,)P x y 221(0)164x y y +=>5.答案:D解析:联立,,代入方程,恰好得到一个极点,()()f x g x =2(1)1cos 2a x x ax ∴+-=+2a =.2a ∴=6.答案:B解析:,.πtan 4α=tan 1α∴=7.答案:C 解析:,,,()()ln()f x x a x b =++()()()f x x a h x =+⋅(1)0g b -=,,10b a -+= 1a b ∴=-.222221(1)2212a b b b b b +=-+=-+=8.答案:BC 解析:A.令,,零点不同;()0f x =()0g x =B.,最大值相同;()f x ()g x C.,,C 正确;π()sin 22f x x Tf ===π()2g x =∴D.,对称轴显然不同,D 错误.()f x ()g x ∴9.答案:ABD解析:依次代入抛物线方程,联立求解,所以C 错,ABD 对.10.答案:D解析:依次带入质检即可后为直角三角形,,,,12AF F△12212c F F =≥=6C =22||8a AF AF =-=4a =.32c e a ==11.答案:95解析:命题意图是考察正确应用等差数列的通项公式和求和公式以及会解相关方程得,3412512573475a a a d a a a d +=+=⎧⎨+=+=⎩143a d =-⎧⎨=⎩10110931040135952S a ⨯⨯∴=+=-+=12.解析:考察三角恒等式变形tan tan tan()1tan tan αβαβαβ⋅+===--⋅222sin ()cos ()19cos ()1a αββαβ+++=⇒+=1cos()3αβ∴+=-1sin()3αβ⎛⎫+=--= ⎪⎝⎭13.答案:24;58解析:(1)41432124=⨯⨯⨯=(2)分别列出,13,14,15,16最大,.1314151658+++=14.答案:(1)π6A =(2)2ABC C =+△解析:(1)sin 2A A=2R ===2sin()2A φ+=π2A φ+=.tan φ=π6A =(2)24πsin 6aR ==sin 2sin cos C c B B=⋅,2cos B =π4B ∴=54sin π12c=⋅22ABC C a b c ∴=++=++=+△15.答案:(1)(e 3)2y x =-+(2)2e 8a >解析:(1)(1)e 1f =-当,时1a =1x =(1)e 3f '=-(e 1)(e 3)(1)y x --=--(e 3)3e e 1y x ∴=-+-+-;(e 3)2x =-+(2),2()e 3x f x ax '=-()0f x '=2e 30x ax -=2e 3x ax =,,()e 6x f x ax ''=-2e 3x ax = ()3(2)f x ax x ''=-时,2x =2e 12a =232(2)e 2e 8f a a=-⋅=-代入,得2222e 2e (2)e 8e e 1233k f =-⋅=-=(2)0f < 2e 80a ∴-<28e a >2e 8a >.2e ,8a ⎡⎫∴∈+∞⎪⎢⎣⎭16.答案:(1)EF PD⊥(2)正弦值为0解析:(1)证明:设A 的坐标为,则B 为,(0,0)(8,0)依次求出,,,E (4,0)F (1,EF = 152D ⎛ ⎝P 关于EF 的中点M 对称,34722M ⎛⎛+== ⎝⎝设,,(,)P xy 7(2x t =+⋅1y t =⋅15922C ⎛⎛=-= ⎝⎝PC ∴=将x ,y表达式代PC ==152PD x y ⎛⎫∴=-- ⎪ ⎪⎝⎭0EF PD ⋅= EF PD∴⊥建立坐标系求出各点坐标,再利用向量相乘之积为0证明垂直(2)(8,0)PC = 求出面PCD 与面PBF 的法向量,1a 2a 又1212sin 0||a a a a θ⋅==⋅ 正弦值为0.∴17.答案:(1)0.686(2)(i )乙(ii )甲18.答案:(1),23x =20y =(2)证明见解析(3)证明见解析解析:(1)设(),n n n P x y 2221n n x x a m∴-=()n n y y k x x -=-.()12n n y y x x -=--22211221n n x x y x a m⎛⎫-++ ⎪⎝⎭-=1122n y x xn yn -=-++2n nx x y =-代入得,.222()1x yn y a m+-=23x =20y =(2)()2221n n kx y kx x a m +--=22222222221n n n n n n k x kxx kx y k x y k x x a m++-+∴-=111n n x k x k++=-利用等性证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国新课标统一考试
文科数学
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第22~24题为选考题,其他题为必考题.
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A ={x | |x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( )
A .(0,2)
B .[0,2]
C .{0,2}
D .{0,1,2}
2.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665
3.已知复数z =3+i (1-3i )2,则|z |=( ) A.14 B.12
C .1
D .2 4.曲线y =x 3-2x +1在点(1,0)处的切线方程为( )
A .y =x -1
B .y =-x +1
C .y =2x -2
D .y =-2x +2
5.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )
A. 6
B.5
C.62
D.52
6.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )
7.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为
( )
A .3πa 2
B .6πa 2
C .12πa 2
D .24πa 2
8.如果执行右面的框图,输入N =5,则输出的数等于( )
A.54
B.45
C.65
D.56
9.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( )
A .{x |x <-2或x >4}
B .{x |x <0或x >4}
C .{x |x <0或x >6}
D .{x |x <-2或x >2}
10.若cos α=-45,α是第三象限的角,则sin(α+π4
)=( ) A .-7210 B.7210 C .-210 D.210
11.已知▱ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在▱ABCD 的内部,则z =2x -5y 的取值范围是( )
A .(-14,16)
B .(-14,20)
C .(-12,18)
D .(-12,20)
12.已知函数f (x )=⎩⎪⎨⎪⎧
|lg x |,0<x ≤10,-12
x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A .(1,10) B .(5,6) C .(10,12) D .(20,24)
第Ⅱ卷(非选择题 共90分)
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分.
13.圆心在原点且与直线x +y -2=0相切的圆的方程为________.
14.设函数y =f (x )在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得S 的近似值为________.
15.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________.(填入所有可能的几何体前的编号)
①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱
16.在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°.若AC =2AB ,则BD =________.
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分12分)设等差数列{a n }满足a 3=5,a 10=-9.
(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.
18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,
PH 是四棱锥的高.(1)证明:平面PAC ⊥平面PBD ;(2)若AB =6,∠APB =∠ADB =60°,求四棱锥P -ABCD 的体积.
19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区
的老年人中,需要志愿者提供帮助的老年人的比例?说明理由. 附:K 2
=n (ad -bc )2
(a +b )(c +d )(a +c )(b +d )
20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2
+y 2
b 2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值. 性别 是否需要志愿者 男 女 需要 40 30 不需要 160 270 P (K 2≥k ) 0.050 0.010 0.001
k 3.841 6.635 10.828
21.(本小题满分12分)设函数f(x)=x(e x-1)-ax2.(1)若a=1
2,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,
求a的取值范围.
请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.
22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE×CD.
23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:
⎩⎪⎨⎪⎧ x =1+t cos α, y=t sin , (t 为参数),圆⎩⎪⎨⎪⎧
x =cos θ,y =sin θ,(θ为参数). (1)当α=π3
时,求C 1与C 2的交点坐标;(2)当坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.
24.(本小题满10分)选修4-5:不等式选讲
设函数f (x )=|2x -4|+1.(1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.。

相关文档
最新文档