华南理工大学概率论
华南理工2020年线性代数与概率统计随堂练习答案

当前页有8题,你已做8题,已提交8题,其中答对8题。
1.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题)%答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:C}问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:8.(单选题)·答题: A. B. C. D. (已提交)参考答案:B问题解析:1.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:-2.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:4.(单选题)答题: A. B. C. D. (已提交)>参考答案:D问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:)7.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:9.(单选题)答题: A. B. C. D. (已提交)|参考答案:B问题解析:10.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:【2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)、参考答案:A问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:》2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:C选题)答题: A. B. C. D. (已提交)参考答案:C[问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)"答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:C;问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:D选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)&参考答案:B问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:)5.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(单选题)答题: A. B. C. D. (已提交){参考答案:B问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:9.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:@10.(单选题)答题: A. B. C. D. (已提交)参考答案:B.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:D-问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题)'答题: A. B. C. D. (已提交)参考答案:A问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:C(问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:9.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:10.(单选题)&答题: A. B. C. D. (已提交)参考答案:D单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:A选题)'答题: A. B. C. D. (已提交)参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A!问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:6.(单选题).答题: A. B. C. D. (已提交)参考答案:C问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:D…问题解析:9.(单选题)答题: A. B. C. D. (已提交)参考答案:C题)答题: A. B. C. D. (已提交)参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)[参考答案:B单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题):答题: A. B. C. D. (已提交)参考答案:B(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:(3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)甲乙两人同时向目标射击,甲射中目标的概率为,乙射中目标的概率是,两人同时射中目标的概率为,则目标被射中的概率为()A.;B.;C.;D..<答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:D选题)答题: A. B. C. D. (已提交)]参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:A&4.(单选题)设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,则两粒都发芽的概率为()A.; B.; C.; D..答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,则至少有一粒发芽的概率为()"A.; B.; C.; D.答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题)设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,则恰有一粒发芽的概率为()A.; B.; C.; D.…答题: A. B. C. D. (已提交)参考答案:D选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:D?问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)(答题: A. B. C. D. (已提交)参考答案:C选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:·3.(单选题)答题: A. B. C. D. (已提交)参考答案:B单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C…问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题).从一副扑克牌(52张)中任意取出5张,求抽到2张红桃的概率A ;B ;C ;D答题: A. B. C. D. (已提交)参考答案:B选题)答题: A. B. C. D. (已提交))参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:%4.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:A1.(单选题)答题: A. B. C. D. (已提交)参考答案:B)问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)[答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:1.(单选题) 设随机变量X的分布列为则分别为().A.,;B., ;C., ;D., .答题: A. B. C. D. (已提交)参考答案:D…问题解析:2.(单选题) 一批产品分为一、二、三等品及废品,产值分别为6元、5元、4元、0元,各等品的概率分别为,,,,则平均产值为().A.元;B.元;C.元;D.元.答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 已知随机变量X在服从均匀分布,试求为()A.B.C.D.答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题) 设随机变量X的密度函数,则下列关于说法正确的是()A.=0B.C.D.@答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 设随机变量X的密度函数,则下列关于=?A. ;B. ;C. ;D. .答题: A. B. C. D. (已提交)参考答案:C1.(单选。
华南理工大学 2018-2019 学年度第二学期课程表

华南理工大学2018-2019 学年度第二学期课程表学院:电子与信息学院专业:信息工程年级:2017级(1)人数:39执行时间:2019年2月25日说明: 1.第一周模拟电子技术课程设计31401-402(甘伟明/赖丽娟);2.微机原理与接口课程设计在31312,实验时间由理论课老师指定(郭礼华)。
制表时间:2019年1月3日华南理工大学2018-2019 学年度第二学期课程表学院:电子与信息学院专业:信息工程年级:2017级(2)人数:38执行时间:2019年2月25日说明: 1.第一周模拟电子技术课程设计31403-404(袁炎成/张林丽);2.微机原理与接口课程设计在31312,实验时间由理论课老师指定(郭礼华)。
制表时间:2019年1月3日华南理工大学2018-2019 学年度第二学期课程表学院:电子与信息学院专业:信息工程年级:2017级(3)人数:39执行时间:2019年2月25日制表时间:2019年1月3日华南理工大学2018-2019 学年度第二学期课程表学院:电子与信息学院专业:信息工程年级:2017级(4)人数:37执行时间:2019年2月25日说明: 1.第二周模拟电子技术课程设计31403-404(袁炎成/张林丽);2.微机原理与接口课程设计在31312,实验时间由理论课老师指定(梁亚玲)。
制表时间:2019年1月3日华南理工大学2018-2019 学年度第二学期课程表学院:电子与信息学院专业:信息工程年级:2017级(5)人数:41执行时间:2019年2月25日说明: 1.第三周模拟电子技术课程设计31401-402(张林丽/吕念玲);2.微机原理与接口课程设计在31312,实验时间由理论课老师指定(傅娟)。
制表时间:2019年1月3日华南理工大学2018-2019 学年度第二学期课程表学院:电子与信息学院专业:信息工程年级:2017级(6)人数:31执行时间:2019年2月25日制表时间:2019年1月3日华南理工大学2018-2019 学年度第二学期课程表学院:电子与信息学院专业:信息工程年级:2017级(冯班)人数:49执行时间:2019年2月25日说明: 1.第四周电子线路基础课程设计31401-402(吕念玲/张林丽);2.微机原理与接口课程设计在31312,实验时间由理论课老师指定(林耀荣)。
概率论与数理统计答案(华南理工)

开讨论
例 对容量为n的样本,求下列密度函数中参数 a 的
2 2 (a x), (0 x a) f ( x) a 其它 0, a 2 a 解 由于 E [ X ] x 2 ( a x )dx 0 a 3 a 所以由矩法估计,得 X 3 3 n 解得 a 3 X X i n i 1 3 n 所以,参数 a 的矩估计量为 a X i n i 1
方差
1 50 ˆ X Xi 50 i 1 50 1 2 2 2 ˆ 2 S50 Xi ( X ) 50 i 1
此时,ˆ ,
ˆ
2
为两个统计量
根据大数定理,样本的矩和总体的矩应当非常接近 假若样本有观测值x1,x2,……x50,代入统计量中,有
用样本的统计量来估计分布的数字特征,进而得到参
数估计的办法也叫数字特征法,是矩法的特例。
思考一下,是否有其他求解的办法? 考虑泊松分布的二阶中心矩 得到矩法估计量
Var[ X ]
1 n ( X i X )2 n i 1
可见:同一个参数的矩估计量可以不同。 使用哪个更好一些? 矩法估计总能用低阶矩就不用高阶矩 之后会系统地介绍估计量优劣的评价,届时再展
解:设装袋的重量为随机变量X,即总体为X~N(μ, σ2)。
E[ X ] 2 2 2 Var [ X ] E [ X ] ( E [ X ])
此时,要估计参数,就转化为估计随机变量的矩 观测50次,即取X1,X2,……X50个样本,样本容量50 计算样本 的期望和
若总体的密度函数中有多个参数1,2,…,n,则将 ln L 第(3)步改为 0, (i 1, 2, , n) i 解方程组即可。
华南理工大学参考书

《交通工程学》王炜、过秀成,东南大学出版社2000年版
点击查看
820
概率论
《概率论与数理统计》(第2版)栾长福、梁满发著,华南理工大学出版社2007年8月出版
点击查看
821
传热学
《传热学》杨世铭、陶文铨等编,高等教育出版社2003年
点击查看
822
美学原理
《美学原理》张法、王旭晓著,中国人民大学出版社2005年版
点击查看
623
城市规划原理
《城市规划原理》(第三版)同济大学等编,中国建筑工业出版社2001;城市规划专业本科专业教材
624
微生物学
《现代工业微生物》杨汝德,华南理工大学出版社;
《微生物学教程》周德庆,高等教育出版社。
点击查看
625
数学分析
《数学分析》(上下册),复旦大学数学系编,高等教育出版社;《数学分析》(上下册),华东师范大学数学系编,高等教育出版社
点击查看
357
英语翻译基础
《英汉翻译基础教程》,冯庆华、穆雷主编,高等教育出版社,2008年;
《文体与翻译》,刘宓庆,中国对外翻译出版公司,1998
点击查看
397
法硕联考专业基础(法学)
全国统考科目,见国家统一的考试大纲
398
法硕联考专业基础(非法学)
全国统考科目,见国家统一的考试大纲
399
管理类联考综合能力
504
建筑设计2(做图)
点击查看
505
素描
506
工业设计快题设计
网上提供考试大纲
点击查看
601
高等数学(单考)
《高等数学》(上、下册)第五版 同济大学数学教研室主编,高等教育出版社
华南理工大学 概率论与数理统计 第5讲

目 录 前一页 后一页 退 出
n重贝努里概型
则 B A1 A2 A3 A1 A2 A3 A1 A2 A3 ,
且 A1,A2,A3相互独立 .
所以,
P( B) P( A1 A2 A3 ) P( A1 A2 A3 ) P( A1 A2 A3 )
P( A1 )P( A2 ) P( A3 ) P( A1 )P( A2 ) P( A3 ) P( A1 ) P( A2 )P( A3 )
1 1 1 1 1 1 1 1 1 (1 ) (1 ) (1 ) 6 6 6 6 6 6 6 6 6
5 1 2 5 C ( ) ( ) 72 6 6
后一页
退 出
第一章 小
结
1 阐述了随机试验的特征以及随机事件之间的关 系及运算。 2 给出了随机事件的频率及概率的含义和基本性 质。 3 给出了条件概率的定义及乘法公式、全概率公 式和贝叶斯公式。 4 给出了随机事件独立性的概念,会利用事件 独立性进行概率计算。 6 引进贝努里概型及n重贝努里试验的概念,要会 计算与之相关事件的概率。
2 3
目 录 前一页 后一页 退 出
定理1.3.4
n重贝努里概型
P A p,P A 1 p q. 设在 n 重Bernoulli 试验中,
Bn,k n重Bernoulli试验中事件 A 恰好发生 k次
则 P Bn,k C p q
k n k
n k
.
该公式的证明留给同学们思考,下一章还会讨论。
目 录
前一页
后一页
退 出
华南理工大学-2018年度第二学期授课时间表

学院:化学与化工学院专业:化学工程与工艺年级:级人数:人执行时间:年月日
上课周次:周考试周:周发表单位:化学与化工学院年月日
1 / 13
学院:化学与化工学院专业:制药工程年级:级人数:人执行时间:年月日
上课周次:周考试周:周发表单位:化学与化工学院年月日
2 / 13
华南理工大学年度第二学期授课时间表学院:化学与化工学院专业:能源化学工程年级:级人数:人执行时间:年月日
上课周次:周考试周:周发表单位:化学与化工学院年月日
3 / 13
华南理工大学年度第二学期授课时间表学院:化学与化工学院专业:化学工程与工艺年级:人数:人执行时间:年月日
上课周次:周考试周:、周其它:工程训练Ⅰ~周发表单位:化学与化工学院年月日
4 / 13
华南理工大学年度第二学期授课时间表
学院:化学与化工学院专业:制药工程年级:人数:人执行时间:年月日
5 / 13
上课周次:周考试周:、周其它:工程训练Ⅰ~周发表单位:化学与化工学院年月日
华南理工大学年度第二学期授课时间表学院:化学与化工学院专业:能源化学工程年级:人数:人执行时间:年月日
上课周次:周考试周:、周其它:工程训练Ⅰ~周发表单位:化学与化工学院年月日
6 / 13。
华南理工大学考研参考书目

点击查看
344
风景园林基础
网上提供考试大纲;《中国古典园林史》周维权,清华大学出版社1990;《西方现代景观设计的理论与实践》王向荣等,中国建筑工业出版社2002;《城市园林绿化规划》杨赉丽,中国林业出版社1997;《园林建筑设计》杜汝俭等,中国建筑工业出版社1986;《公园绿地规划设计》封云,中国建筑工业出版社1996
点击查看
626
英语综合水平测试
网上提供考试大纲
点击查看
627
马克思主义基本原理
网上提供考试大纲;《辩证唯物主义与历史唯物主义》李秀林主编,中国人民大学出版社1994年版;《马克思主义政治经济学》吴振坤主编,中央党校出版社2000年版
点击查看
628
中外美术史与设计史
《外国美术简史》中央美术学院美术史系外国美术史教研室编,高等教育出版社;《中国美术简史》中央美术学院美术史系中国美术史教研室编,中国青年出版社;《世界现代设计史》王受之著,中国青年出版社;《中国艺术设计史》赵农著,陕西美术出版社
点击查看
815
中外舞蹈史
《中国古代舞蹈史话》王克芬著,人民音乐出版社;《世界舞蹈史》库尔特.萨克斯著,郭明达译,北京舞蹈学院藏书;《中国近现当代舞蹈发展史》王克芬、隆荫培,人民音乐出版社
816
道路工程(含路基路面工程和道路勘测设计)
网上提供考试大纲;《路基路面工程》邓学钧主编,人民交通出版社;《道路勘测设计》杨少伟主编,人民交通出版社第二版
点击查看
640
土地资源管理学
网上提供考试大纲;《土地管理学总论》陆红生编著,中国农业出版社2002年
点击查看
642
政治学和经济学概论
华南理工大学概率论与数理统计试卷及参考解答2

,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷(A )1. 考前请将密封线内填写清楚;允许使用计算器,所有答案请直接答在试卷上; .考试形式:闭卷;(1.298)=0.9032, 错误!未找到引用源。
,错误!未找到引用源。
, !未找到引用源。
,错误!未找到引用源。
10分)已知在10件相同的玩具中有2件次品,从中随机取出两件,求以下事件的概率:(1) 两件都是正品(2) 一件是正品,一件是次品解: (1)取出两件玩具的样本数是错误!未找到引用源。
两件都是正品的概率错误!未找到引用源。
5分 (2)一件正品一件次品的概率错误!未找到引用源。
10分12分)今有两口箱子,第一箱装有2个红球1个白球,第二箱装有3个红球2个白球。
现1) 求第一次取到红球的概率;2) 在第一次取到红球的条件下,求第二次取到红球的概率;解:记{}(){})2,1(箱取到第;2,1次取到红球第A ====j j B i i j i533018)(,32)(,21)()(211121=====B A p B A p B p B p 4分 3019)()()()()(2211111=+=B p B A p B p B A p A p 6分(2)6019)()()()(222112121=+=B p B A A p B A A p A A p 10分21)()()(12112==A p A A p A A p 12分10分)某工厂甲、乙、丙三车间生产同一种产品,产量分别占25%,35%,40%,废品率分5%,4%和2%.产品混在一起,求:(1) 总的废品率(2)抽检到废品时,这只废品是由甲车间生产的概率.解:设1A ={产品由甲厂生产}, 2A ={产品由乙厂生产}, 3A ={产品由丙厂生产},B ={产品是废品},由题意%40)(%,35)(%,25)(321===A P A P A P ; %5)|(1=A B P , %4)|(2=A B P , %2)|(3=A B P . 3分 由全概率公式,∑==⨯+⨯+⨯==310345.002.040.004.035.005.025.0)|()()(i i i A B P A P B P ,5分从而由贝叶斯公式,36.00345.005.025.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P . 10分四(12分)设考生的外语成绩(百分制)X 服从正态分布,平均成绩(即参数μ之值)为72分,96分以上的人占考生总数的2.3%,今任取100个考生的成绩,以Y 表示成绩在60分至84分之间的人数,求(1)Y 的分布列.(2)EY 和DY.解:)1( Y ~B (100,p ),其中p=-72-84)8460(⎪⎪⎭⎫⎝⎛Φ=≤<σX P 1-12272-60⎪⎪⎭⎫⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛Φσσ由0.023=)24(172961)96(σσΦ-=⎪⎪⎭⎫⎝⎛-Φ-=>X p 4分 得112,故224即,997.024===⎪⎪⎭⎫⎝⎛Φσσσ 5分 所以6826.01-)1(2=Φ=p 6分 故Y 的分布列为kk k C k Y p -==100100)3174.0()6826.0()( 8分(2),26.686826.0100=⨯=EY 6657.213174.026.68=⨯=DY 12分五(12分)设ξ,η是两个随机变量,其联合概率密度为求:(1)求ξ,η边缘密度函数;错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章9-1 ①提出假设010:32.05H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.05α=,查表得0.025 1.96u =;对给定的0.01α=,查表 得0.005 2.575u =.④求观察值.31.13, 2.05X u ==-.⑤作出判断.当0.05α=时, 2.05 1.96u =>,所以拒绝0H ;当0.01α=时, u2.05 2.275=<,所以接受0H .9-2 ①提出假设00:5H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.01α=,查表得0.005 2.575u =. ④求观察值. 5.32, 3.2X u ==.⑤作出判断.当0.01α=时, 3.2 2.275u =>,所以拒绝0H . 9-3 (1)①提出假设00:50H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.05α=,查表得0.025 1.96u =. ④求观察值. 2.25u =.⑤作出判断.当0.05α=时, 2.25 1.96u =>,所以拒绝0H . (2)①提出假设00:50H μμ==. ②找统计量.()~1X t t n =-.③求临界值.对给定的0.05α=,查表得()0.0258 2.31t =. ④求观察值.48.5, 2.5, 1.8X S t ===-.⑤作出判断.当0.05α=时, 1.8 2.31t =<,所以接受0H .9-4 ①提出假设00: 2.7H μμ==.②找统计量.()~1X t t n =-.③求临界值.对给定的0.05α=,查表得()0.02529 2.04t =. ④求观察值.°0.18,301 2.05/29n S S t n ==-⨯. ⑤作出判断.当0.05α=时, 2.04t <,所以接受0H . 9-5 ①提出假设00:H μμ=.②找统计量.()~0,1X u N =.③求临界值.对给定的0.01α=,查表得0.005 2.575u =. ④求观察值. 1.5u =.⑤作出判断.当0.01α=, 1.5 2.575u =<,所以拒绝0H . 9-6 (1)①提出假设00:100H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.05α=,查表得0.025 1.96u =. ④求观察值.99.9,0.25X u ==.⑤作出判断.当0.05α=时,0.25 1.96u =<,所以接受0H .(2)①提出假设22200: 1.2H σσ==.②找统计量. ()92222101()~ii Xn χμχσ==-∑.③求临界值.对给定的0.05α=,查表得()()220.0250.975919.0,9 2.7χχ==.④求观察值. 28.2χ=.⑤作出判断. 当0.05α=时,22.719.0χ<<,所以接受0H .9-7 ①提出假设2200:0.04H σσ==.②找统计量. ()2222101()~1nii XX n χχσ==--∑.③求临界值. 对给定的0.05α=,查表得()()220.0250.9751426.1,14 5.63χχ==. ④求观察值. 21.84χ=.⑤作出判断. 当0.05α=时,25.63χ<,所以拒绝0H ,有显著差异. 9-8 ①提出假设00:9H σσ==.②找统计量. ()2222101()~1nii XX n χχσ==--∑.③求临界值. 对给定的0.05α=,查表得()()220.0250.975919.0,9χχ==2.7.④求观察值. 2221162.9,(62.9)9nii X Xχ===-∑.⑤作出判断. 当0.05α=时, 22.719χ<<,所以接受0H ,即可认为溶化时间 的标准差为9.9-9 (1)①提出假设00:500H μμ==.②找统计量. ()~0,1X u N =.③求临界值. 对给定的0.05α=,查表得0.025 1.96u =. ④求观察值. 501.3,0.82X u ==.⑤作出判断. 当0.05α=时, 0.82 1.96u =<,所以接受0H ,即包装机工作 正常.(2)①提出假设00: 2.7H μμ==.②找统计量. ()~1X t t n =-.③求临界值. 对给定的0.05α=,查表得()0.0259 2.26t =. ④求观察值. 2501.3,31.57,0.73X S t ===. ⑤作出判断. 当0.05α=时, 2.26t <,所以接受0H .9-10 (1)①提出假设2200:25H σσ==.②找统计量. ()2222101()~ni i X X n χχσ==-∑. ③求临界值.对给定的0.05α=,查表得()()220.0250.9751020.5,10 3.25χχ==.④求观察值. 212χ=.⑤作出判断. 当0.05α=时, 23.2520.5χ<<,所以接受0H . (2)①提出假设00:5H σσ==. ②找统计量. ()2222101()~1nii XX n χχσ==--∑.③求临界值. 对给定的0.05α=,查表得()()220.0250.975919.0,9χχ==2.7. ④求观察值. 22501.3,31.57,11.37X S χ===. ⑤作出判断. 当0.05α=时, 22.719χ<<,所以接受0H .9-11 ①提出假设02:0H μμ-=.②找统计量.()~0,1X Y u N μμ---=.③求临界值. 对给定的0.05α=,查表得0.025 1.96u =. ④求观察值. u =. ⑤作出判断. 当0.05α=时, 1.96u >,所以拒绝0H .9-12 (1)①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑.③求临界值.对给定的0.05α=,查表得()()0.0250.9755,57.15,5,50.14F F ==④求观察值. 222112221139.33,269,0.14655S S S F S =⨯=⨯==.⑤作出判断. 当0.05α=时, 0.147.15F <<,所以接受0H . (2)①提出假设012:0H μμ-=. ②找统计量.()12~2X Y t t n n μμ---=+-.③求临界值. 对给定的0.05α=,查表得()0.02510 2.23t =. ④求观察值. 0.14067,0.13883,0.57X Y t ===. ⑤作出判断. 当0.05α=时,0.57 2.23t =<,所以接受0H .9-13 (1)①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑.③求临界值.对给定的0.01α=,查表得()()0.0050.9958,9 6.69,8,9F F ==17.34. ④求观察值. 2221122264,226,0.28S S S F S ====.⑤作出判断.当0.01α=时,16.697.34F <<,所以接受0H . (2)①提出假设02:0H μμ-=.②找统计量.()12~2X Y t t n n μμ---=+-.③求临界值. 对给定的0.01α=,查表得()0.00517 2.9t =. ④求观察值. 533,562,X Y t ===.⑤作出判断. 当0.01α=时, 2.9t >,所以拒绝0H .9-14 ①提出假设012:0H μμ-=.②找统计量.()12~2X Y t t n n ---=+-.③求临界值. 对给定的0.05α=,查表得()0.02511 2.20t =. ④求观察值. 17.681,17.630,X Y t ===⑤作出判断. 当0.05α=时, 2.2t <,所以接受0H .9-15 (1)①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑.③求临界值.对给定的0.10α=,查表得()()0.050.9518,5 4.82,8,5 3.69F F ==. ④求观察值. 22211222113.69,19.2,0.1285S S S F S =⨯=⨯==.⑤作出判断. 当0.10α=时,13.69F <,所以拒绝0H . (2)①提出假设21022:1H σσ=.②找统计量. ()1221111222121()~,1()n i i n i i X n F F n n Y n μμ==-=-∑∑. ③求临界值.对给定的0.10α=,查表得()()0.050.9519,6 4.06,9,6 3.37F F == ④求观察值. 0.128F =. ⑤作出判断.当0.10α=时,13.37F <,所以拒绝0H . 9-16 ①提出假设02:0H μμ-=.②找统计量.()12~2X Y t t n n μμ---=+-.③求临界值.对给定的0.05α=,查表得()0.02513 2.16t =. ④求观察值. t =.⑤作出判断. 当0.05α=时, 2.16t <,所以接受0H .9-17 ①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑. ③求临界值.对给定的0.05α=,查表得()()0.0250.97516,751.2,6,7 5.7F F ==. ④求观察值. 222112220.1048,0.0272, 3.85S S S F S ====.⑤作出判断.当0.10α=时,15.125.7F <<,所以接受0H . 9-18 根据题目要求,考虑假设检验()()()()0010:,:H F x F x H F x F x =≠.其中0F 服从泊松分布,其分布律为{}() 0,1,2,!kP X k e k k λλ-===Lλ的极大似然估计为样本均值X ,其观察值为()106544940.61200X =++++= 则统计量为()25210.7853i i i in np np χ=-==∑其中200n =,i p 是按0.61λ=的泊松分布律计算出的X 的取值为0,1,2,3,4 这五种情况的概率.查表得()220.0549.49χχ=>,故接受0H .9-19 根据题目要求,考虑假设检验()()00:H F x F x =,其中0F 服从等概率分布,其 分布律为{}()11,2,,66P X k e k λ-===L由观测数据得120,20i n np ==,则统计量为()()26211936102525 4.820i i i in np np χ=-==+++++=∑其中120n =.查表得()220.05511.1χχ=>,故接受0H .。