九年级数学上册反比例函数的图象与性质的教学反思

合集下载

《反比例函数的图象和性质》教学反思

《反比例函数的图象和性质》教学反思

《反比例函数的图象和性质》教学反思《反比例函数的图象和性质》教学反思1在本节授课过程中,教学环节展开是顺畅的,学生在教师引导下,能够说出一次函数的图象特征及性质,并通过类比一次函数的研究方法,按照列表、描点、连线三个步骤画出反比例函数图象,通过观察所画出的反比例函数图象,得出该图象的“特征”和函数的“性质”。

但因为学生刚接触反比例函数图象,图象外在形式(双曲线)与一次函数图象(直线)之间存在较大的差异,学生还缺乏对反比例函数图象“整体形象”的把握。

一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图象“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的.两个函数值大小时,学生不能有意识地从“自变量的正负”来考虑问题,这导致学生课后“目标检测”时,对部分问题的解决出现偏差。

此外,展开本节课学习的一个重要的方法,就是“类比”。

在教学过程中,教师极力引导学生“类比一次函数学习的方法”,最大限度地调动学生“合情推理”因素,以确保学习知识的“正迁移”效应,实际也会带来一些负面的影响,学生往往对属于一次函数和反比例函数“共性”的结论印象比较深刻,而对于反比例函数“个性”的结论,理解上反而会受到一些干扰。

《反比例函数的图象和性质》教学反思2反比例函数的图像与性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。

为此应该有意识地加强反比例函数与正比例函数之间的对比。

对比可以从以下几个方面进行:(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。

此外,在学习反比例函数图像的性质(k大于0双曲线的两个分支在一、三象限,k小于0双曲线的两个分支在二、四象限)时,学生由画法观察图象可知;而增减性由解析式y等于k比_(k不等于0),学生也容易理解,但从图象观察增减性较难,借助计算机的动态演示就容易多了。

反比例函数的图象与性质教学反思

反比例函数的图象与性质教学反思

反比例函数的图象与性质教学反思反比例函数的图象与性质教学反思〔一〕刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图象,二是由图像得出比例函数的性质。

而难点是反比例函数图象的画法及探究反比例函数的性质。

首先,本节课在反比例函数图象的画法这一难点的处理上,我先让学生自学课本内容,根据自学指导完成练习,再由教师利用多媒体演示列表、描点、连线过程,特别注意自变量x的取值范围,然后,学生在给出的坐标纸中描点画图,我运用多媒体及时矫正,学生很容易发现自己画图中的错误,最后概括总结水到渠成。

本节课在探究反比例函数的性质这一难点的处理上,学生通过自主完成图像的画法,观察、比拟归纳出反比例函数的性质。

我感到课前确定的教学目标根本达成。

其次,通过引导学生自主探索反比例函数的性质,全班学生都能够主动地去观察、感受、讨论、发现、探究、总结,表现了他们的学习兴趣和信心。

实现了学习中让学生自己动手、主动探索、合作交流的目的。

同时通过练习让学生理解“在每个象限内〞这句话的必要性,学生再一次体会数学的严谨性。

根据新课标精神,“人人学有用的数学;人人都能获得必需的数学;不同的人在数学上得到不同的开展。

〞最后在练习时给出有梯度的练习,以满足不同层次学生学习的需要。

如应用性质“题组训练、稳固练习〞都能很好的表达分层教学的要求。

然而,由于学生刚刚接触反比例函数的图像,图像的外在形式〔双曲线〕与一次函数的图像〔直线〕之间存在较大的差异,学生还缺乏对反比例函数图像“整体形象〞的把握。

一方面,当反比例系数的绝对值较大时,局部学生画出的图形,不能完整地反映其图像“渐近〞的特征;另一方面,在应用反比例函数〔增或减〕的性质,比拟反比例函数的两个函数值的大小时,学生还不能有意识地从“自变量的正负〞来考虑问题,导致学生在课后完成作业时,对局部问题的解决可能出现偏差。

这些在接下来的教学中要加强引导。

通过引导学生对函数图象的分析,可以培养学生抓特征图形的能力,让他们在以后的学习中,对图形可以进行更好的分析,同时提高应用图形的能力。

反比例函数图象和性质教学反思

反比例函数图象和性质教学反思

《反比例函数图象和性质》教学反思一、关于数形结合的处理在“反比例函数的图象和性质”这一课的教学过程中,“数”与“形”的转化,是贯穿始终的一条主线。

主要反映在以下三个方面。

第一,反比例函数的图象和性质,是“数”与“形”的统一体,由“解析式”到“作图”,再到“性质”,都充分体现了由“数”到“形”,再由“形”到“数”的转化过程,是数形结合思想的具体应用。

本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。

第二,在“列表取值为何不能取零”、“反比例函数的图象为何与坐标轴不会相交”、“特殊的反比例函数性质能否推广到一般”这几个问题中,如果单纯依靠观察图象,是无法得出具有“说服力”的结论的,这就需要“回归”解析式,再引导学生进行分析。

即我们可以借助直观图形,帮助我们思考相关的问题,但仅有图形的直观是不够的,必须考虑“已经”形式化的“数”的本质“特征”,使“数”、“形”之间达到统一。

于是,在教学中,我们同样关注了对“解析式”的分析。

第三,在总结得出反比例函数的图象和性质之后,我们为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的过程。

二、关于教学效果的反思在实际授课过程中,教学环节的展开是自然、顺畅的,如“观察探究,形成新知”环节,学生能够在教师的引导下,说出一次函数的图象特征及性质,并通过类比一次函数的研究方法,完成列表、描点、画出反比例函数图象的过程,也可以通过观察所画出的反比例函数的图象,得出其图象的“特征”和函数的“性质”。

然而,由于学生刚刚接触反比例函数的图象,图象的外在形式(双曲线)与一次函数的图象(直线)之间存在较大的差异,学生还缺乏对反比例函数图象“整体形象”的把握。

一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图象“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的两个函数值的大小时,学生还不能有意识地从“自变量的正负”来考虑问题,这致使学生在课后“目标检测”时,对部分问题的解决出现偏差。

反比例函数的图像与性质教学设计与反思

反比例函数的图像与性质教学设计与反思

《反比例函数的图像与性质》教学案一、教材分析:本节课学习的主要内容是画反比例函数的图象,让学生经历画图、观察、猜测、思考等数学活动,初步理解具体的反比例函数图象的特征。

反比例函数的图象是在学生已经知道了研究函数图象的一般方法,以及一次函数的图象是一条直线的基础之上进一步去研究的。

同时,反比例函数的图象也与众不同。

针对教材及学生的实际情况,本节课的设计是让学生多动手去探索规律。

二、教学目标: 1:会画出反比例函数的图象。

2:经历画图、观察、猜测、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步理解具体的反比例函数图象的特征。

3:让学生体会事物是有规律地变化着的观点。

三、教学重点和难点:教学重点:会画出反比例函数的图象。

教学难点:会出画反比例函数的图象。

(因为前面学习过的一次函数的图象是一条直线,而反比例函数的图象有两个分支,并且是曲线。

学生初次接触有一定的难度。

)四、教学过程:(一)、创设情境、提出问题:我们已经知道一次函数的图象是一条直线,那么反比例函数 (k为常数,k≠0)的图象是什么呢?猜猜看,应该怎么画呢? 让学生根据已有的知识经验,回忆画函数图象的一般方法与步骤,类比一次函数的图象实行猜测(二)、动手实践、解决问题:1:画图:画出反比例函数的图象在教师的引导下,让学生通过亲自动脑、动手实践去科学地验证自己的猜测,培养学生科学的态度与精神。

师:画函数图象的第一个步骤是什么?生:列表。

师:(大屏幕投影:表格)根据前面学习一次函数的经验,列表时应注意什么?生:应注意自变量x的取值范围,此题当中x≠0。

师:是不是把所有的x不等于零的值全都列举出来?生:不是。

师:那怎么取值呢?(学生讨论)生:为了便于计算和描点,我们通常取x>0和x<0的一些整数值。

师:(大屏幕投影)那么,对应的y值分别是多少呢? (学生填表、口答答案。

)这里有同学们画的一些反比例函数的图象,我从中选出了四幅图象,请同学们仔细观察并实行讨论这四幅图象画得对还是不对?假如不对,它们分别错在哪里?为什么?(学生分析讨论)生:第一幅图象是对的;第二、三、四幅图象都是错误的,错误的原因是:没有注意到自变量x的取值范围是x≠0的全体实数师:一位同学有这样一种想法:“在相邻的两点之间用线段来连接。

反比例函数的图象与性质教学设计反思

反比例函数的图象与性质教学设计反思

反比例函数的图象与性质教学设计反思 1.学生在学习本节课前经历过一次函数图象和性质的探索过程,对函数图象和性质的探究方法有了初步的认识,这些对本节课知识的学习起到了很好的铺垫作用.本节课又不同于研究一次函数,由于反比例函数的图象相对于一次函数图象的特殊性,使得对反比例函数图象和性质的探索过程更加细致、全面.教学设计中,特别注重了比例函数性质的探索过程,通过问题的引领让生更全面的对函数进行观察和比较,给学生创设了充足的讨论时间和空间,鼓励学生用自己的语言对观察和概括的结论进行充分的表达和描述.
2.学生能做的让学生做,学生能说的让学生来说,教学设计中关注了学生主体作用的发挥,教师进行适时的引领和点拨,教学中教师要用鼓动性的语言,激发学生探究的热情,点燃学生学习的激情. 3.本节课学生的参与度较高,教师要了解学生参与活动中情感与智力的参与程度,及时进行多角度的积极评价,帮助学生建立自信,发挥评价的教育功能.
1。

《反比例函数的图象与性质》教学设计与反思

《反比例函数的图象与性质》教学设计与反思
02
反比例函数与正比例函数、一次 函数等基本概念密切相关,是后 续学习更复杂函数知识的基础。
教学目标与要求
知识与技能
使学生理解反比例函数的概念, 掌握反比例函数的图象特征,能 够运用反比例函数的性质解决实
际问题。
过程与方法
通过观察、比较、归纳等方法,培 养学生的数学思维能力,提高学生 的数学素养。
学生兴趣点
学生对函数图象的变化和 性质具有一定好奇心,可 通过实例和探究活动激发 学生的学习兴趣。
03
教学过程设计
导入环节
回顾旧知
通过提问方式,引导学生回顾正 比例函数、一次函数等相关知识 ,为学习反比例函数打下基础。
情境引入
结合生活实际,创设与反比例函 数相关的情境,如“购物打折” 、“速度与时间的关系”等,激 发学生的学习兴趣。
《反比例函数的图象与性质》教 学设计与反思
汇报人:XXX 2024-01-22
• 课程背景与目标 • 教学内容与方法 • 教学过程设计 • 教学效果评估与反思 • 教学资源开发与利用 • 教师专业发展与成长
01
课程背景与目标
反比例函数在数学中的地位
01
反比例函数是数学中的重要概念 ,它是描述两个变量之间关系的 数学模型,广泛应用于物理、化 学、经济等领域。
整合不同版本的教材资源,比较不同教材对反比例函数内容的处理方式和呈现方式 ,选择最适合学生的教学资源。
结合学生的认知特点和实际需求,对教材内容进行适当的调整和补充,使教学更加 贴近学生实际。
多媒体教学资源开发
利用多媒体技术制作反比例函 数的图象动画,帮助学生更直 观地理解反比例函数的图象特 征和性质。
02
教学内容与方法
教学内容及重点难点

九年级数学上册《反比例函数》教学反思范文(通用5篇)

九年级数学上册《反比例函数》教学反思范文(通用5篇)

九年级数学上册《反比例函数》教学反思范文(通用5篇)身为一位优秀的教师,课堂教学是重要的任务之一,对学到的教学新方法,我们可以记录在教学反思中,写教学反思需要注意哪些格式呢?以下是小编为大家整理的九年级数学上册《反比例函数》教学反思范文(通用5篇),仅供参考,大家一起来看看吧。

九年级数学上册《反比例函数》教学反思1首先是复习正比例函数的有关知识,目的是让学生回顾函数知识,为接下去学习反比例函数作好铺垫,其次给出了三个实际情景要求列出函数关系式,通过归纳总结这些函数都是反比例函数,以及反比例函数的几种形式,自变量的取值范围。

又通过列表格的方法对反比例函数和正比例函数进行类比,巩固反比例函数知识。

通过做一做的三个练习进一步巩固新知,但到这里用时接近25分钟,时间分配上没有很好把握为接下去没有完成教学任务埋下伏笔。

接下去是要进行例1的教学,先进行的是杠杆定理的背景知识的介绍,在学练习纸上让学生自己来独立完成三个问题,然后有学生回答,当进行到第二时,时间已经不够了,很仓促进行了小节。

这节课在设计过程中多多少少忽略了学生的想法,在备课过程中,没有备好学生,站在学生的角度去设计课堂,这方面做的很不够,有些问题的处理方式不是恰到好处,思考问题的时间不是很充分;还有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性;另外课堂中指教者的示范作用体现的不是很好,,肢体语言也不够丰富,鼓励的话显得很单一,而且投影片上在新课导入的时候还出现了差错,总之,我会在以后的教学中注意以上存在的问题。

综观整堂课,严谨亲切有余,但活泼激情不足,显得平铺直叙的感觉,缺少高潮和亮点;在今后的教学中要严格要求自己,方方面面进行改善!经过这节课的教学,让自己收获不少,反思更多。

教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将默默前行,提高自己,让我教的每一个孩子更加优秀.九年级数学上册《反比例函数》教学反思2本节课主要学习反比例函数,为了让学生更加容易接受新的知识,我首先简单复习了一次函数、正比例函数的表达式,目的是想让学生清楚每种函数都有其特有的表达与以前我们所学的y=kx+b和y=kx有什么联系时,居然有很多同学认为它们和正比例函数类似,当时在课堂上对于这个问题的处理过于仓促,现在想来应注意细节问题。

初三数学反比例函数的图象与性质教学反思

初三数学反比例函数的图象与性质教学反思

初三数学反比例函数的图象与性质教学反思(一)1、优点:(1)让学生经历“回忆——对比——猜想——分析——验证”的思维过程。

先让学生画一次函数y=2x+4的图象。

回忆函数图象的画法(列表,描点,连线),再让学生猜想的图象,并引导学生围绕图象点的横纵坐标的符号特征,来预测它的图象,并与y=2x+4的图象进行对比,最后,学生带着疑问进行探索,画的图象,并最终验证了自己的猜想。

(2)在学生亲手画出一次函数y=2x+4的图象后,通过对比辨析反比例函数的图象概念及其特点,使学生得到深刻的认识和理解。

(3)无限接近的理解。

这是难点,学生没有生活经验。

为了增加学生的感性认识,我拓展介绍了“无限可分和无限接近”的概念。

并用直尺进行演示,使学生对于“无限”的理解有了实例的依托。

(4)在讲解的图象是中心对称图形时,列举了特殊的点来对比认识其中心对称性,让学生真正理解。

2、不足:(1)反比例函数图象的概念出示过早,特别是图象的两个分支在“一、三或二、四”象限时,学生没有感性认识。

(2)学案设计有缺陷。

直角坐标系和表格准备不当,给学生在操作画图时带来了不必要的干扰。

影响了教学效果。

(3)习题练习不充分,讲解时学生的主动性没有发挥。

3、改进:(1)学生画函数图象时,细节不够重视,教师可在课前把范例准备好,以便学生能够对比发现自己的不足,进而改进。

(2)对于反比例函数图象的画法,可让学生先小组讨论完成,这样有助于学生对反比例函数的深入理解,也可为后续学习其性质和应用增加一些思维锻炼。

(3)学案设计要简明,要求和步骤应在学案上清楚表明,以便学生能够清楚认识学习的任务和步骤,也方便教师掌握教学进度。

初三数学反比例函数的图象与性质教学反思(二)《反比例函数图像的性质》教学反思王素娟反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。

课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作品编号:4862354798562348112533
学校:神兽山市国中镇代古小学*
教师:虎之名*
班级:白虎陆班*
反比例函数的图象与性质的教学反思
《新课程标准》强调教学过程是师生交往、共同发展的互动过程.在教学过程中要处理好传授知识与培养能力的关系,注重培养学生的独立性,引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程.课堂应较多地出现师生互动、平等参与的生动局面,学习方式开始逐步多样化,乐于探究、主动参与、勤于动手成为教学过程中教师的共识.为此,本节课主要通过开放式的提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点.用科学的方法解决问题,培养学生科学的态度与精神.借助于多媒体课件,让学生更能直观的知道图象的形成过程,有助于学生对数学知识的理解和掌握.
在“反比例函数的图象和性质”这一课的教学过程中,“数”与“形”的转化,是贯穿始终的一条主线。

主要反映在以下几个方面。

第一,反比例函数的图象和性质,是“数”与“形”的统一体,由“解析式”到“作图”,再到“性质”,都充分体现了由“数”到“形”,
再由“形”到“数”的转化过程,是数形结合思想的具体应用。

本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。

第二,在“列表取值为何不能取零”、“反比例函数的图象为何与坐标轴不会相交”、“特殊的反比例函数性质能否推广到一般”这几个问题中,如果单纯依靠观察图象,是无法得出具有“说服力”的结论的,这就需要“回归”解析式,再引导学生进行分析。

即我们可以借助直观图形,帮助我们思考相关的问题,但仅有图形的直观是不够的,必须考虑“已经”形式化的“数”的本质“特征”,使“数”、“形”之间达到统一。

于是,在教学中,我们同样关注了对“解析式”的分析。

第三,在总结得出反比例函数的图象和性质之后,我们为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的过程。

不足与改进:在整个课堂教学过程中,教师围绕主题、有针对性的提出问题,学生小组合作探讨问题得出结论,然而部分小组在合作探究上还有所欠缺,讨论的不够激烈完善。

我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征;在画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象
区别于一次函数的图象有那些不同的特征呢?”留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心.。

相关文档
最新文档