【高考二模】河北省石家庄市2015届高三下学期二模考试数学(理)试题及答案

合集下载

河北省“五个一名校联盟”2015届高考数学二模试卷(理科)(解析版)

河北省“五个一名校联盟”2015届高考数学二模试卷(理科)(解析版)

2015年河北省“五个一名校联盟”高考二模试卷数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上.1.设集合M ={x |x 2+2x ﹣15<0},N ={x |x 2+6x ﹣7≥0},则M ∩N =( ) A .(﹣5,1] B .[1,3) C .[﹣7,3) D .(﹣5,3)2.已知i 是虚数单位,m 和n 都是实数,且m (1+i )=5+ni ,则=( )A .iB .﹣iC .1D .﹣13.设若f (x )=,f (f (1))=8,则a 的值是( )A .﹣1B .2C .1D .﹣24.设为两个非零向量,则“•=|•|”是“与共线”的( )A .充分而不必要条件B .必要而不充要条件C .充要条件D .既不充分也不必要条5.如图中,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,P 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于( ) A .11 B .10 C .8D .76.已知θ为锐角,且sin(θ﹣)=,则tan2θ=( )A .B .C .﹣D .7.||=1,||=,•=0,点C 在∠AOB 内,且∠AOC =30°,设=m+n(m 、n ∈R ),则等于( )A .B .3C .D .8.等差数列{a n }的前n 项和为S n ,且S 2=10,S 4=36,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的一个方向向量的坐标可以是( )A .(﹣1,﹣1)B .C .D .9.函数y =log a (x +3)﹣1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则的最小值为( )A.2B .4C .D .10.在区间[1,5]和[2,4]分别取一个数,记为a ,b ,则方程表示焦点在x 轴上且离心率小于的椭圆的概率为( )A.B.C.D.11.多面体的三视图如图所示,则该多面体的表面积为(单位:cm)()A.28+4B.30+4C.30+4D.28+412.若曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则a的取值范围为()A.B.C.[,+∞)D.二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题卡上.13.(x2﹣x+2)5的展开式中x3的系数为.14.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为.15.设点P(x,y)满足条件,点Q(a,b)(a≤0,b≥0)满足•≤1恒成立,其中O是坐标原点,则Q点的轨迹所围成图形的面积是.16.在△ABC中,tan=2sinC,若AB=1,则AC+BC的最大值为.三、解答题:解答应写出文字说明,证明过程和演算步骤.17.已知数列{a n}的各项均为正数,前n项和为S n,且(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求T n.18.(12分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)19.已知四棱锥中,PA⊥平面ABCD,底面ABCD是边长为a的菱形,∠BAD=120°,PA=b.(Ⅰ)求证:平面PBD⊥平面PAC;(Ⅱ)设AC与BD交于点O,M为OC中点,若二面角O﹣PM﹣D的正切值为,求a:b的值.20.已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△A O B面积的最大值.21.已知函数f(x)=ax2﹣e x(a∈R)(Ⅰ)当a=1时,判断函数f(x)的单调区间并给予证明;(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2),证明:﹣<f(x1)<﹣1.请考生在第22、23、24题中任选一道作答,如果多做,则按所做的第1题计分.作答时请写清题号.选修4-1几何证明选讲22.选修4﹣1几何证明选讲已知△ABC中AB=AC,D为△ABC外接圆劣弧,上的点(不与点A、C重合),延长BD至E,延长AD交BC的延长线于F.(I)求证.∠CDF=∠EDF(II)求证:AB•AC•DF=AD•FC•FB.选修4-4:极坐标与参数方程选讲23.已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是(t为参数).(1)将曲线C的极坐标方程转化为直角坐标方程;(2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.选修4-5:不等式选讲24.选修4﹣5《不等式选讲》.已知a+b=1,对∀a,b∈(0,+∞),使+≥|2x﹣1|﹣|x+1|恒成立,求x的取值范围.2015年河北省“五个一名校联盟”高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上.1.设集合M={x|x2+2x﹣15<0},N={x|x2+6x﹣7≥0},则M∩N=()A.(﹣5,1]B.[1,3)C.[﹣7,3)D.(﹣5,3)【考点】交集及其运算.【专题】集合.【分析】分别求出M与N中不等式的解集,确定出M与N,找出两集合的交集即可.【解答】解:由M中不等式变形得:(x﹣3)(x+5)<0,解得:﹣5<x<3,即M=(﹣5,3),由N中不等式变形得:(x﹣1)(x+7)≥0,解得:x≤﹣7或x≥1,即N=(﹣∞,﹣7]∪[1,+∞),则M∩N=[1,3),故选:B.【点评】此题考查了交集及其运算,熟练掌握运算法则是解本题的关键.2.已知i是虚数单位,m和n都是实数,且m(1+i)=5+ni,则=()A.i B.﹣i C.1 D.﹣1【考点】复数代数形式的乘除运算.【专题】计算题.【分析】利用复数相等的条件求出m和n的值,代入后直接利用复数的除法运算进行化简.【解答】解:由m(1+i)=5+ni,得,所以m=n=5.则=.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.3.设若f(x)=,f(f(1))=8,则a的值是()A.﹣1 B.2 C.1 D.﹣2【考点】分段函数的应用;函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用分段函数,以及方程求解即可.【解答】解:f(x)=,f(f(1))=8,f(1)=lg1=0,f(f(1))=f(0)=0=t3=a3=8,解得a=2.故选:B.【点评】本题考查分段函数的应用,函数的零点以及定积分的运算,考查计算能力.4.设为两个非零向量,则“•=|•|”是“与共线”的()A.充分而不必要条件 B.必要而不充要条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据充分条件和必要条件的定义,利用向量共线的等价条件,即可得到结论.【解答】解:若•=|•|,则||•||cos<,>=|||||cos<,>|,即cos<,>=|cos<,>|,则cos<,>≥0,则与共线不成立,即充分性不成立.若与共线,当<,>=π,cos<,>=﹣1,此时•=|•|不成立,即必要性不成立,故“•=|•|”是“与共线”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的应用,利用向量共线的等价条件是解决本题的关键.5.如图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分.当x1=6,x2=9,p=8.5时,x3等于()A.11 B.10 C.8 D.7【考点】选择结构.【专题】创新题型.【分析】利用给出的程序框图,确定该题最后得分的计算方法,关键要读懂该框图给出的循环结构以及循环结构内嵌套的条件结构,弄清三个分数中差距小的两个分数的平均分作为该题的最后得分.【解答】解:根据提供的该算法的程序框图,该题的最后得分是三个分数中差距小的两个分数的平均分.根据x1=6,x2=9,不满足|x1﹣x2|≤2,故进入循环体,输入x3,判断x3与x1,x2哪个数差距小,差距小的那两个数的平均数作为该题的最后得分.因此由8.5=,解出x3=8.故选C.【点评】本题考查学生对算法基本逻辑结构中的循环结构和条结构的认识,考查学生对赋值语句的理解和认识,考查学生对程序框图表示算法的理解和认识能力,考查学生的算法思想和简单的计算问题.6.已知θ为锐角,且sin(θ﹣)=,则tan2θ=()A.B.C.﹣D.【考点】两角和与差的正弦函数;二倍角的正切.【专题】三角函数的求值.【分析】由条件利用同角三角函数的基本关系求得cos(θ﹣),可得tan(θ﹣),解方程求得tanθ,可得tan2θ=的值.【解答】解:∵θ为锐角,且sin(θ﹣)=,∴cos(θ﹣)=,∴tan(θ﹣)==,∴tanθ=,∴tan2θ==﹣,故选:C.【点评】本题主要考查同角三角函数的基本关系,两角差的正切公式、二倍角公式的应用,属于中档题.7.||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于()A.B.3 C.D.【考点】向量的共线定理;向量的模.【专题】计算题;压轴题.【分析】将向量沿与方向利用平行四边形原则进行分解,构造出三角形,由题目已知,可得三角形中三边长及三个角,然后利用正弦定理解三角形即可得到答案.此题如果没有点C在∠AOB内的限制,应该有两种情况,即也可能为OC在OA顺时针方向30°角的位置,请大家注意分类讨论,避免出错.【解答】解:法一:如图所示:=+,设=x,则=.=∴==3.法二:如图所示,建立直角坐标系.则=(1,0),=(0,),∴=m+n=(m,n),∴tan30°==,∴=3.故选B【点评】对一个向量根据平面向量基本定理进行分解,关键是要根据平行四边形法则,找出向量在基底两个向量方向上的分量,再根据已知条件构造三角形,解三角形即可得到分解结果.8.等差数列{a n}的前n项和为S n,且S2=10,S4=36,则过点P(n,a n)和Q(n+2,a n+2)(n∈N*)的直线的一个方向向量的坐标可以是()A.(﹣1,﹣1) B.C.D.【考点】直线的斜率.【专题】计算题;直线与圆.【分析】由题意求出等差数列的通项公式,得到P,Q的坐标,写出向量的坐标,找到与向量共线的坐标即可.【解答】解:等差数列{a n}中,设首项为a1,公差为d,由S2=10,S4=36,得,解得a1=3,d=4.∴a n=a1+(n﹣1)d=3+4(n﹣1)=4n﹣1.则P(n,4n﹣1),Q(n+2,4n+7).∴过点P和Q的直线的一个方向向量的坐标可以是(2,8)=﹣4().即为.故选B.【点评】本题考查了直线的斜率,考查了等差数列的通项公式,训练了向量的坐标表示,是中档题.9.函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+2=0上,其中m>0,n>0,则的最小值为()A.2B.4 C.D.【考点】对数函数的图象与性质.【专题】计算题;函数的性质及应用;不等式的解法及应用.【分析】由题意可得点A(﹣2,﹣1);故﹣2m﹣n+2=0;从而得=+=++2+;利用基本不等式求解.【解答】解:由题意,点A(﹣2,﹣1);故﹣2m﹣n+2=0;故2m+n=2;=+=++2+≥4+=;当且仅当m=n=时,等号成立;故选D.【点评】本题考查了函数的性质应用及基本不等式的应用,属于基础题.10.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】表示焦点在x轴上且离心率小于的椭圆时,(a,b)点对应的平面图形的面积大小和区间[1,5]和[2,4]分别各取一个数(a,b)点对应的平面图形的面积大小,并将他们一齐代入几何概型计算公式进行求解.【解答】解:∵表示焦点在x轴上且离心率小于,∴a>b>0,a<2b它对应的平面区域如图中阴影部分所示:则方程表示焦点在x轴上且离心率小于的椭圆的概率为P==1﹣=,故选B.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.11.多面体的三视图如图所示,则该多面体的表面积为(单位:cm)()A.28+4B.30+4C.30+4 D.28+4【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.其中平面PAB⊥平面ABC,PB⊥AB,PB=AB=4,D为AB的中点,CD⊥AB,CD=4.即可得出.【解答】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.其中平面PAB⊥平面ABC,PB⊥AB,PB=AB=4,D为AB的中点,CD⊥AB,CD=4.∴该多面体的表面积S=+++=28+4.故选:A.【点评】本题考查了三棱锥的三视图的表面积、勾股定理、三角形的面积计算公式,考查了推理能力与计算能力,属于基础题.12.若曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则a的取值范围为()A.B.C.[,+∞)D.【考点】利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为两函数图象有交点求得a的范围.【解答】解:由y=ax2(a>0),得y′=2ax,由y=e x,得y′=e x,∵曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则设公切线与曲线C1切于点(),与曲线C2切于点(),则,将代入,可得2x2=x1+2,∴a=,记,则,当x∈(0,2)时,f′(x)<0.∴当x=2时,.∴a的范围是[).故选:C.【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,是中档题.二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题卡上.13.(x2﹣x+2)5的展开式中x3的系数为﹣200.【考点】二项式系数的性质.【专题】二项式定理.【分析】先求得二项式展开式的通项公式,再令x的幂指数等于3,求得r、r′的值,即可求得x3项的系数.【解答】解:式子(x2﹣x+2)5 =[(x2﹣x)+2]5的展开式的通项公式为T r+1=•(x2﹣x)5﹣r•2r,对于(x2﹣x)5﹣r,它的通项公式为T r′+1=(﹣1)r′••x10﹣2r﹣r′,其中,0≤r′≤5﹣r,0≤r≤5,r、r′都是自然数.令10﹣2r﹣r′=3,可得,或,故x3项的系数为•22•(﹣)+•23•(﹣)=﹣200,故答案为:﹣200.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设出双曲线的一个焦点和一条渐近线,运用点到直线的距离公式,即可得到c=2b,再由a,b,c的关系和离心率公式,即可计算得到.【解答】解:设双曲线的一个焦点为(c,0),一条渐近线为y=x,则===b=×2c,即有c=2b,即有c=2,即有3c2=4a2,即有e==.故答案为:.【点评】本题考查双曲线的方程和性质,考查离心率的求法,考查运算能力,属于基础题.15.设点P(x,y)满足条件,点Q(a,b)(a≤0,b≥0)满足•≤1恒成立,其中O是坐标原点,则Q点的轨迹所围成图形的面积是.【考点】简单线性规划;平面向量数量积的运算.【分析】由已知中在平面直角坐标系中,点P(x,y),则满足•≤1的点Q的坐标满足,画出满足条件的图形,即可得到点Q的轨迹围成的图形的面积.【解答】解:∵•≤1,∴ax+by≤1,∵作出点P(x,y)满足条件的区域如图,且点Q(a,b)满足•≤1恒成立,只须点P(x,y)在可行域内的角点处:A(﹣1,0),B(0,2),ax+by≤1成立即可,∴,即,它表示一个长为1宽为的矩形,其面积为:.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,考查了数形结合的解题思想方法,是中档题.16.在△ABC中,tan=2sinC,若AB=1,则AC+BC的最大值为.【考点】正弦定理;同角三角函数基本关系的运用.【专题】解三角形.【分析】由已知式子化简变形讨论可得C=,再由正弦定理可得AC+BC=sin(﹣A)+sinA=cosA+sinA,由三角函数的最值可得.【解答】解:∵在△ABC中,tan=2sinC,∴tan(﹣)=2sinC,∴=2sinC,∴=4sin cos,即cos(4sin2﹣1)=0,解得cos=0或4sin2﹣1=0,∴C=π(舍去),或C=(舍去),或C=,又∵AB=1,∴==,∴AC=sinB,BC=sinA,又B=﹣A,∴AC+BC=sin(﹣A)+sinA=cosA+sinA,∴AC+BC的最大值为=故答案为:【点评】本题考查解三角形,涉及正弦定理和同角三角函数的基本关系,以及三角函数的化简求最值,属中档题.三、解答题:解答应写出文字说明,证明过程和演算步骤.17.已知数列{a n}的各项均为正数,前n项和为S n,且(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设,求T n .【考点】数列的求和.【专题】计算题;等差数列与等比数列.【分析】(Ⅰ)由,知,,所以(a n +a n﹣1)(a n ﹣a n ﹣1﹣1)=0,由此能求出a n =n .(Ⅱ)由,知,由此能求出T n .【解答】解:(Ⅰ)∵,∴,①,②由①﹣②得:,(2分)(a n +a n ﹣1)(a n ﹣a n ﹣1﹣1)=0,∵a n >0,∴,又∵,∴a 1=1,∴,(5分)当n=1时,a 1=1,符合题意. 故a n =n .(6分) (Ⅱ)∵,∴,(10分)故.(12分)【点评】本题考查数列的通项公式和前n 项和公式的求法,解题时要认真审题,注意迭代法和裂项求和法的合理运用.18.(12分)(2015•雅安模拟)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (Ⅰ)求直方图中x 的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(I)由题意,可由直方图中各个小矩形的面积和为1求出x值.(II)再求出小矩形的面积即上学所需时间不少于1小时组人数在样本中的频率,再乘以样本容量即可得到此组的人数即可.(Ⅲ)求出随机变量X可取得值,利用古典概型概率公式求出随机变量取各值时的概率,列出分布列,利用随机变量的期望公式求出期望.【解答】解:(Ⅰ)由直方图可得:20×x+0.025×20+0.0065×20+0.003×2×20=1.所以x=0.0125.(Ⅱ)新生上学所需时间不少于1小时的频率为:0.003×2×20=0.12,因为600×0.12=72,所以600名新生中有72名学生可以申请住宿.(Ⅲ)X的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为,,,,,.0 1 2 3 4.(或)所以X的数学期望为1.【点评】本题考查频率分布直方图,考查离散型随机变量及其分布列、离散型随机变量的期望等,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,考查了识图的能力.19.已知四棱锥中,PA⊥平面ABCD,底面ABCD是边长为a的菱形,∠BAD=120°,PA=b.(Ⅰ)求证:平面PBD⊥平面PAC;(Ⅱ)设AC与BD交于点O,M为OC中点,若二面角O﹣PM﹣D的正切值为,求a:b的值.【考点】平面与平面垂直的判定;与二面角有关的立体几何综合题.【专题】综合题;空间向量及应用.【分析】(I)根据线面垂直的判定,证明BD⊥平面PAC,利用面面垂直的判定,证明平面PBD⊥平面PAC.(II)过O作OH⊥PM交PM于H,连HD,则∠OHD为A﹣PM﹣D的平面角,利用二面角O﹣PM﹣D的正切值为,即可求a:b的值.【解答】解:(I)证明:因为PA⊥平面ABCD,所以PA⊥BD,又ABCD为菱形,所以AC⊥BD,因为PA∩AC=A,所以BD⊥平面PAC,因为BD⊂平面PBD,所以平面PBD⊥平面PAC.(II)解:过O作OH⊥PM交PM于H,连HD,因为DO⊥平面PAC,由三垂线定理可得DH⊥PM,所以∠OHD为A﹣PM﹣D的平面角又,且从而∴所以9a2=16b2,即.【点评】本题考查线面垂直、面面垂直的判定,考查面面角,解题的关键是掌握线面垂直、面面垂直的判定,作出面面角.20.已知抛物线y2=4x,直线l:y=﹣x+b与抛物线交于A,B两点.(Ⅰ)若x轴与以AB为直径的圆相切,求该圆的方程;(Ⅱ)若直线l与y轴负半轴相交,求△AOB面积的最大值.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)联立得y2+8y﹣8b=0.由此利用根的判别式、弦长公式,结合已知条件能求出圆的方程.(Ⅱ)由直线l与y轴负半轴相交,得﹣1<b<0,由点O到直线l的距离d=,得S△AOB=|AB|d=4.由此利用导数性质能求出△AOB的面积的最大值.【解答】解:(Ⅰ)联立得:y2+8y﹣8b=0.依题意应有△=64+32b>0,解得b>﹣2.设A(x1,y1),B(x2,y2),设圆心Q(x0,y0),则应有x0=,y0==﹣4.因为以AB为直径的圆与x轴相切,得到圆半径为r=|y0|=4,又|AB|==.所以|AB|=2r,即=8,解得b=﹣.所以x0==2b+8=,所以圆心为(,﹣4).故所求圆的方程为(x﹣)2+(y+4)2=16..(Ⅱ)因为直线l与y轴负半轴相交,∴b<0,又l与抛物线交于两点,由(Ⅰ)知b>﹣2,∴﹣2<b<0,直线l:y=﹣x+b整理得x+2y﹣2b=0,点O到直线l的距离d==,所以∴S△AOB=|AB|d=﹣4b=4.令g(b)=b3+2b2,﹣2<b<0,g′(b)=3b2+4b=3b(b+),∴g(b)在(﹣2,﹣)增函数,在(﹣,0)是减函数,∴g(b)的最大值为g(﹣)=.∴当b=﹣时,△AOB的面积取得最大值.【点评】本题主要考查圆的方程的求法,考查三角形面积的最大值的求法,考查直线与抛物线、圆等知识,同时考查解析几何的基本思想方法和运算求解能力.21.已知函数f(x)=ax2﹣e x(a∈R)(Ⅰ)当a=1时,判断函数f(x)的单调区间并给予证明;(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2),证明:﹣<f(x1)<﹣1.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【专题】导数的综合应用.【分析】(Ⅰ)a=1时,f(x)=x2﹣e x,f′(x)=2x﹣e x,f″(x)=2﹣e x,利用导数研究其单调性可得当x=ln2时,函数f′(x)取得最大值,f′(ln2)=2ln2﹣2<0,即可得出.(II)f(x)有两个极值点x1,x2(x1<x2),可得f′(x)=2ax﹣e x=0有两个实根x1,x2(x1<x2),由f″(x)=2a﹣e x=0,得x=ln2a.f′(ln2a)=2aln2a﹣2a>0,得ln2a>1,解得2a>e.又f′(0)=﹣1<0,f′(1)=2a﹣e >0,可得0<x1<1<ln2a,进而得出.【解答】(Ⅰ)解:a=1时,f(x)=x2﹣e x,f′(x)=2x﹣e x,f″(x)=2﹣e x,令f″(x)>0,解得x<ln2,此时函数f′(x)单调递增;令f″(x)<0,解得x>ln2,此时函数f′(x)单调递减.∴当x=ln2时,函数f′(x)取得最大值,f′(ln2)=2ln2﹣2<0,∴函数f(x)在R上单调递减.(Ⅱ)证明:f(x)有两个极值点x1,x2(x1<x2),∴f′(x)=2ax﹣e x=0有两个实根x1,x2(x1<x2),由f″(x)=2a﹣e x=0,得x=ln2a.f′(ln2a)=2aln2a﹣2a>0,得ln2a>1,解得2a>e.又f′(0)=﹣1<0,f′(1)=2a﹣e>0,∴0<x1<1<ln2a,由f′(x1)==0,可得,f(x1)===(0<x1<1).∴可知:x1是f(x)的极小值点,∴f(x1)<f(0)=﹣1.f(x1)>=﹣2ax1>.【点评】本题考查了利用导数(两次求导)研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.请考生在第22、23、24题中任选一道作答,如果多做,则按所做的第1题计分.作答时请写清题号.选修4-1几何证明选讲22.选修4﹣1几何证明选讲已知△ABC中AB=AC,D为△ABC外接圆劣弧,上的点(不与点A、C重合),延长BD至E,延长AD交BC的延长线于F.(I)求证.∠CDF=∠EDF(II)求证:AB•AC•DF=AD•FC•FB.【考点】与圆有关的比例线段;圆周角定理.【专题】综合题.【分析】(I)根据A,B,C,D 四点共圆,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,从而得解.(II)证明△BAD∽△FAB,可得AB2=AD•AF,因为AB=AC,所以AB•AC=AD•AF,再根据割线定理即可得到结论.【解答】证明:(I)∵A,B,C,D 四点共圆,∴∠ABC=∠CDF又AB=AC∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF,7分对顶角∠EDF=∠ADB,故∠EDF=∠CDF;(II)由(I)得∠ADB=∠ABF∵∠BAD=∠FAB∴△BAD∽△FAB∴∴AB2=AD•AF∵AB=AC∴AB•AC=AD•AF∴AB•AC•DF=AD•AF•DF根据割线定理DF•AF=FC•FB∴AB•AC•DF=AD•FC•FB【点评】本题以圆为载体,考查圆的内接四边形的性质,考查等腰三角形的性质,考查三角形的相似,属于基础题.选修4-4:极坐标与参数方程选讲23.已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是(t为参数).(1)将曲线C的极坐标方程转化为直角坐标方程;(2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.【考点】直线和圆的方程的应用;点的极坐标和直角坐标的互化;参数方程化成普通方程.【专题】转化思想.【分析】(1)极坐标直接化为直角坐标,可求结果.(2)直线的参数方程化为直角坐标方程,求出M,转化为两点的距离来求最值.【解答】解:(1)曲C的极坐标方程可化为:ρ2=2ρsinθ,又x2+y2=ρ2,x=ρcosθ,y=ρsinθ.所以,曲C的直角坐标方程为:x2+y2﹣2y=0.(2)将直线L的参数方程化为直角坐标方程得:.令y=0得x=2即M点的坐标为(2,0)又曲线C为圆,圆C的圆心坐标为(0,1)半径,∴.【点评】本题考查极坐标和直角坐标的互化,直线的参数方程化为直角坐标方程,转化的数学思想的应用,是中档题.选修4-5:不等式选讲24.选修4﹣5《不等式选讲》.已知a+b=1,对∀a,b∈(0,+∞),使+≥|2x﹣1|﹣|x+1|恒成立,求x的取值范围.【考点】绝对值三角不等式;基本不等式.【专题】分类讨论;不等式的解法及应用.【分析】利用基本不等式求得+的最小值等于9,由题意可得|2x﹣1|﹣|x+1|≤9,分x≤﹣1时,﹣1<x<时,x≥时三种情况分别求出不等式的解集,再取并集,即得结果.【解答】解:∵a+b=1,且a>0,b>0,∴+=(a+b)(+)=5++≥5+2=9,故+的最小值等于9.要使+≥|2x﹣1|﹣|x+1|恒成立,所以,|2x﹣1|﹣|x+1|≤9.当x≤﹣1时,2﹣x≤9,∴﹣7≤x≤﹣1.当﹣1<x<时,﹣3x≤9,∴﹣1<x<.当x≥时,x﹣2≤9,∴≤x≤11.综上,﹣7≤x≤11.【点评】本题考查基本不等式的应用,绝对值不等式的解法,体现了分类讨论的数学思想,关键是去掉绝对值,化为与之等价的不等式组来解,属于基础题.。

2015届高三质检二数学(理)试卷及答案剖析

2015届高三质检二数学(理)试卷及答案剖析

石家庄市2015届高三复习教学质量检测(二)高三数学(理科)(时间120分钟,满分150分)第I 卷 (选择题,60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数iiz 42+=(i 为虚数单位)对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如果0a b <<,那么下列不等式成立的是A .11a b-<- B .2ab b < C .2ab a -<- D .b a < 3.某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生性别与支持活动有关系”的犯错误的概率不超过 A .0.1% B .1% C .99% D .99.9% 附:4.已知实数,x y 满足条件11y x xy x ≥⎧⎪+≥⎨⎪≥⎩,则2z x y =+的最小值为A .3B .2C .32D .05.运行如图所示的程序框图,如果输出的(2,2]t ∈-,则输入x 的范围是A .[-B .(-C .[D .( 6.已知等差数列{}n a 中,100720144,2014a S ==,则2015S =A .2015-B .2015C .4030-D .40307.一排有6个座位,三个同学随机就坐,任何两人不相邻的坐法种数为 A .120 B .36 C .24 D .728.若圆222)1()5(r y x =-+-上有且仅有两点到直线0234=++y x 的距离等于1,则r 的取值范围为A .[4,6]B .(4,6)C .[5,7]D .(5,7)10.某几何体的三视图如右图所示,则该几何体的表面积为 B .4+ C .2+ D .4+11.已知函数()f x 的定义域为2(43,32)a a --,且(23)y f x =-是偶函数. 又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足条件的k 的个数为A .3B .2C .4D .112.已知定义在R 上的函数()f x 满足:21)()()1(2+-=+x f x f x f ,数列{}n a 满足 *2),()(N n n f n f a n ∈-=,若其前n 项和为1635-,则n 的值为 A .16 B .17 C .18 D .19第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.双曲线2241x y -=的渐近线方程为_____. 14.已知212(1)4k dx ≤+≤⎰,则实数k 的取值范围是_____.16.三棱锥中有四条棱长为4,两条棱长为a ,则a 的取值范围为_____.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,c b a ,,分别为内角C B A ,,的对边长,且222cos ()a bc A b c -=+.(Ⅰ)求A 的大小;(Ⅱ)若sin sin 1,2B C b +==,试求ABC ∆的面积. 18.(本小题满分12分)我国城市空气污染指数范围及相应的空气质量类别见下表:我们把某天的空气污染指数在0-100时称作A 类天,101--200时称作B 类天,大于200时称作C类天.右图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十、个位为叶) (Ⅰ)从这18天中任取3天,求至少含2个A 类天的概率;(Ⅱ)从这18天中任取3天,记X 是达到A 类或B 类天的天数,求X 的分布列及数学期望. 19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,1A A AB =,90ABC ∠=︒,侧面11A ABB ⊥底面ABC . (I )求证:1AB ⊥平面1A BC ;(II )若5AC =,3BC =,160A AB ∠=︒,求二面角11B AC C --的余弦值.20.(本小题满分12分)已知椭圆22122:1(0)4x y C b b b+=>,抛物线22:4()C x y b =-.过点(01)F b +,作x 轴的平行线,与抛物线2C 在第一象限的交点为G ,且该抛物线在点G 处的切线经过坐标原点O . (Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线:l y kx =与椭圆1C 相交于两点C 、D 两点,其中点C 在第一象限,点A 为椭圆1C 的右顶点,求四边形ACFD 面积的最大值及此时l 的方程. 21.(本小题满分12分) 已知21()ln ,2f x x x mx x m R =--∈. (Ⅰ)当2m =-时,求函数()f x 的所有零点; (Ⅱ)若()f x 有两个极值点12,x x ,且12x x <,求证:212x x e >(e 为自然对数的底数). 请考生在22~24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.几何证明选讲(本小题满分10分) 如图:已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B C 、,APC ∠的平分线分别交AB AC 、于点D E 、,.点G 是线段ED 的中点,AG 的延长线与CP 相交于点F .(Ⅰ)证明:AF ED ⊥; (Ⅱ)当F 恰为PC 的中点时,求PCPB的值. 23.坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为24(4x t y t⎧=⎨=⎩其中t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线2C 的极坐标方程为cos()42πρθ+=. (Ⅰ)把曲线1C 的方程化为普通方程,2C 的方程化为直角坐标方程;(Ⅱ)若曲线1C ,2C 相交于B A ,两点,AB 的中点为P ,过点P 做曲线2C 的垂线交曲线1C 于F E ,两点,求PE PF ⋅.24.不等式选讲(本小题满分10分) 已知1()33f x x x a a=++-.(Ⅰ)若1a =,求8)(≥x f 的解集;(Ⅱ)对任意()+∞∈,0a ,任意R x ∈,()m x f ≥恒成立,求实数m 的最大值.80907873635267934738386730121290683243210B 1C 1C2014-2015学年度高三数学质检二答案(理科)一、 选择题1-5 DABAD 6-10 CCBCB 11-12 AB 二、填空13. 20x y ±= 14. [1,3] 15 -1016. ()2262,0+注意:此题如果写成(也可以 三、解答题(解答题如果和标准答案不一样,可依据本标准酌情给分) 17.解:(Ⅰ)∵222cos ()a bc A b c -=+,又根据余弦定理A bc c b a cos 2222-+=,∴22222cos 2cos 2b c bc A bc A b bc c +--=++,…………………………2分 化简得4cos 2bc A bc -=,可得1cos 2A =-, ……………………………………………………………………4分 ∵0A π<<,∴23A π=.……………………………………………………………………5分(Ⅱ)∵1sin sin =+C B , ∴1)3sin(sin =-+B B π,∴1sin 3cos cos 3sin sin =-+B B B ππ, ∴1sin 3cos cos 3sin =+B B ππ,∴1)3sin(=+πB , ……………………………………………………………………8分又∵B 为三角形内角, 故6B C π==,所以2==c b , ……………………………………………………………………………10分 所以3sin 21==∆A bc S ABC . …………………………………………………………12分 18. 解:(Ⅰ) 从这18天中任取3天,取法种数有 318816C =,3天中至少有2个A 类天的取法种数213315346C C C += , ..... ....2分所以这3天至少有2个A 类天的概率为23408; .............................. ..4分 (Ⅱ)X 的一切可能的取值是3,2,1,0. ……………… 5分当X=3时,1027)3(31838===C C X P …………………… 6分当X=2时,10235)2(31811028===C C C X P …………………… 7分 当X=1时,341510245)1(31821018====C C C X P ……………… 8分 当X=0时,34510215)0(318310====C C X P …………… 9分数学期望为34102136102457021==++ . ……………12分 19.解:(Ⅰ)证明:在侧面A 1ABB 1中,因为A 1A=AB ,所以四边形A 1ABB 1为菱形,所以对角线AB 1⊥A 1B ,…………………………………2分 因为侧面A 1ABB 1⊥底面ABC ,∠ABC=900,所以CB ⊥侧面A 1ABB 1, 因为AB 1⊂平面A 1ABB 1内,所以CB ⊥AB 1,…………………………4分 又因为A 1B ∩BC=B ,所以AB 1⊥平面A 1BC . …………………………………6分(Ⅱ)在Rt △ABC 中, AC=5, BC=3, 所以AB=4,又菱形A 1ABB 1中,因为∠A 1AB=600,所以△A 1AB 为正三角形,如图,以菱形A 1ABB 1的对角线交点O 为坐标原点OA 1方向为x 轴,OA 方向为y 轴,过O 且与BC 平行的方向为z 轴建立如图空间直角坐标系,则1(2,0,0)A ,(2,0,0)B -,(2,0,3)C -,1(0,B -,1(0,C -,所以1(2,0)C C =-,113)C A =-,设(,,)n x y z =为平面11ACC的法向量,则11100n C C n C A ⎧=⎪⎨=⎪⎩,所以20230x x z ⎧-+=⎪⎨+-=⎪⎩,令3x =,得(3,3,4)n =为平面11ACC 的一个法向量,…………………………………9分又1(0,OB =-为平面1A BC 的一个法向量,111cos ,2723n OB n OB n OB <>===,……………………………11分所以二面角B —A 1C —C 1的余弦值为.…………………………………12分 法2:在平面BC A 1中过点O 作OH ⊥C A 1于H ,连接AH ,则C A 1⊥平面AOH ,所以∠AHO 即为二面角B —A 1C —A 的平面角,……………………………………………………8分在△BC A 1中5611=⋅=C A BC O A OH , 又Rt △AOH 中32=AO ,所以521422=+=OH AO AH , 所以1421cos =∠AHO ,………………………………………………………………11分 因为二面角B —A 1C —C 1与二面角B —A 1C —A 互补,所以二面角B —A 1C —C 1的余弦值为二面角B —A 1C —A 的余弦值的相反数,则二面角B —A 1C —C 1的余弦值为1421-.………………………………12分 20.解:(Ⅰ)由24()x y b =-得214y x b =+,当1y b =+得2x =±, ∴ G 点的坐标为(2,1)b +,则1'2y x =,2'|1x y ==,过点G 的切线方程为(1)2y b x -+=-即1y x b =+-,………………………2分 令0y =得10x b =-=,∴ 1b =。

河北省石家庄市2015届高三下学期二模考试数学(理)试题

河北省石家庄市2015届高三下学期二模考试数学(理)试题

2015届石家庄高中毕业班第二次模拟考试试卷数学(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合21{|log ,1},{|,2}U y y x x P y y x x==>==>,则U C P = ( ) A .1(0,)2 B .(0,)+∞ C .1[,)2+∞ D .1(,0)[,)2-∞+∞【答案】C 【解析】试题分析:由题意{|0}U y y =>,1{|0}2P y y =<<,则1{|}2U C P y y =≥,选C. 考点:集合的运算.2.下列四个函数中,既是奇函数又是定义域上的单调递增的是 ( ) A .2xy -= B .tan y x = C .3y x = D .3log y x = 【答案】C考点:函数的奇偶性与单调性.3.已知复数z 满足2015(1)i z i --0= (其中i 为虚数单位),则z 的虚部为 ( ) A .12 B .12- C .12i D .12i - 【答案】A 【解析】试题分析:由题意2015(1)1111(1)(1)22i i i i z i i i i i --+====----+,1122z i =+,z 虚部为12.考点:复数的概念与运算.4.等比数列{}n a 的前n 项和为n S ,已知32175,2S a a a =+=,则5a = ( )A .12 B .12- C .2 D .2- 【答案】A 【解析】试题分析:3211235S a a a a a =+=++,所以314a a =,即24q =,所以7522142a a q ===. 考点:等比数列的性质.5.设变量,x y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+的最小值为 ( )A .6B .7C .8D .23 【答案】B 【解析】试题分析:作出约束条件表示的可行域,如图ABC ∆内部(含边界),作直线:230l x y +=,平移直线l ,当l 过点(2,1)C 时,z 取得最小值7.考点:线性规划.6.投掷两枚骰子,则点数之和是8的概率为 ( ) A .536B .16C .215D .112【答案】A【解析】试题分析:投掷两枚骰子,点数形成的事件空间有6636⨯=种,其中点数和为8的事件有(2,6),(3,5),(4,4),(5,3),(6,2)共5种,因此所求概率为536P=.考点:古典概型.7.某几何体的三视图如图所示,则该几何体的体积为()A.103B.53C.203D.4【答案】A【解析】试题分析:由三视图知该几何体是一个三棱柱截去了一块,如图,它可以看作是一个三棱柱ABC MNF-与四棱锥F MNDE-组合而成,1110221212233V=⨯⨯⨯+⨯⨯⨯=.NFD考点:三视图,几何体的体积.8.执行下方的程序框图,如果输入的4N=,那么输出的S的值为()A .1111234+++ B .1111232432+++⨯⨯⨯ C .111112345++++ D .111112324325432++++⨯⨯⨯⨯⨯⨯【答案】B 【解析】试题分析:由程序框图,每次循环中,参数,,T S k 的值依次为(1,1,2),11(,1,3)22+,111(,1,4)23223++⨯⨯,1111(,1,5)234223234+++⨯⨯⨯⨯⨯,这里54k =>结束循环,输出结果为B. 考点:程序框图.9.在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点(sin,cos )88P ππ,则sin(2)12πα-= ( )A ..12 D .12-【答案】A 【解析】试题分析:由已知得cos sin8πα=,sin cos8πα=,所以32,8k k Z παπ=+∈,所以32sin(2)sin[2(2)]sin 1281232k ππππαπ-=+-==. 考点:三角函数的定义与求值.10.在四面体S-ABC 中,SA ⊥平面,120,2,1ABC BAC SA AC AB ∠====,则该四面体的外接球的表面积为 ( ) A .11π B .7π C .103π D .403π【答案】D 【解析】试题分析:设ABC ∆的外心为1O ,222222cos 12212cos120BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯︒7=,BC =12sin120BC O A ==︒,该四面体外接球半径为R ,由于SA ⊥平面ABC ,则有22222140(2)(2)23R SA O A =+=+=,所以24043S R ππ==球.考点:球与多面体,球的表面积.11.已知F 是抛物线24x y =的焦点,直线1y kx =-与该抛物线交于第一象限内的点,A B ,若3AF FB =,则k 的值是 ( )A C【答案】D 【解析】试题分析:设1122(,),(,)A x y B x y ,由241x yy kx ⎧=⎨=-⎩消去x 得22(24)10y k y +-+=,则21224y y k +=-①,121y y =②,又11AF y =+,21BF y =+,由已知1213(1)y y +=+③,由②③得1213,3y y ==,代入①得3k =(,A B 在第一象限). 考点:直线和抛物线位置关系. 12.设函数()()2212,2(),,0,1,2,,9999i if x x f x x x a i ==-==,记102|()()||()()|k kkkkS f a f a fa f a =-+- 9998|()()|,1,2k k f a f a k ++-=,则下列结论正确的是 ( )A .121S S =<B .121S S =>C .121S S >>D .121S S << 【答案】B考点:函数的单调性,比较大小.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2,1),(,1)a b x ==-,且a b -与b 共线,则x 的值为 【答案】2- 【解析】试题分析:a b -(2,2)x =-,由a b -与b 共线得2(2)x x =--,解得2x =-. 考点:向量的共线.14.已知8280128(1)(1)(1)x a a x a x a x =+-+-++-,则7a =【答案】8 【解析】试题分析:88880[1(1)](1)k k k x x Cx ==+-=-∑,7788a C ==.考点:二项式定理.15.设点P 、Q 分别是曲线(xy xe e -=是自然对数的底数)和直线3y x =+上的动点,则P 、Q两点间距离的最小值为试题分析:'(1)x x x y e xe x e ---=-=-,令(1)1x x e --=,即1xe x =-,10xe x +-=,令()1x h x e x =+-,显然()h x 是增函数,且(0)0h =,即方程10x e x +-=只有一解0x =,曲线x y xe -=在0x =处的切线方程为y x =,两平行线0x y -=和30x y -+=间的距离为2d ==. 考点:导数与切线,方程的解,平行线间的距离. 16.在平面直角坐标系中有一点列111222(,),(,),,(,),n n n P a b P a b P a b 对n N *∀∈,点n P 在函数(01)xy a a =<<的图象上,又点1(,0),(,),(1,0)n n n n n A n P a b A n ++构成等腰三角形,且1n n n n P A P A +=若对n N *∀∈,以12,,n n n b b b ++为边长能构成一个三角形,则a 的取值范围是【答案】1215<<-a 【解析】试题分析:由题意点1(,0),(,),(1,0)n n n n n A n P a b A n ++构成以(,)n n n P a b 为顶点的等腰三角形,则(1)2122n n n n a +++==,212n n b a +=,以12,,n n n b b b ++为边长能构成一个三角形,因为01a <<,则有212325222n n n a a a +++<+,210a a +->1a <<. 考点:等腰三角形的性质,解一元二次不等式.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足cos (2)cos()b A c a B π=+- (1)求角B 的大小;(2)若4,b ABC =∆a c +的值.【答案】(1)23B π=;(2)试题分析:(1)题设已知条件是边角的关系,要求的是角,因此利用正弦定理把边化为角,得sin cos (2sin sin )cos B A C A B ∴=--(同时用诱导公式化简),整理得sin()2sin cos A B C B +=-,在三角形中有sin()sin 0A B C +=≠,因此得1cos 2B =-,23B π=;(2)由面积公式有1sin 2S ac B ==4ac =,再结合余弦定理可得a c +=试题解析:(1) ()cos (2)cosb Ac a B π=+-Q cos (2)cos b A c a B ∴=--…………………………1分sin cos (2sin sin )cos B A C A B ∴=--…………………………3分 sin()2sin cos A B C B ∴+=- ∴ 1cos 2B =-…………………………5分 ∴ 23B π=…………………………6分(2) 由1=sin 2ABC S ac B ∆= a c =4…………………………8分. 由余弦定理得b 2=a 2+c 2+ac216(a+c )ac -==…………………10分∴ a +c =…………………………12分考点:正弦定理,两角和与差的正弦公式,三角形的面积公式,余弦定理. 18.(本小题满分12分)4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面22⨯的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X )【答案】(1)见解析,与性别有关; (2)分布列为期望为5,方差为25【解析】试题分析:(1)根据频率分布直方图,读书迷占比为40%,非读书迷占比为60%,再由表格中的两个数字可填全表格,根据计算公式得28.249K ≈ 6.635>,因此有99%的把握认为“读书迷”与性别有关;(2)题意可知X ~B (3,52),P(x=i)=3323()()55i i i-ð (i=0,1,2,3),可得X 的分布列,由公式可得期望与方差.试题解析:(1)完成下面的22⨯列联表如下……………… 3分22100(40251520)60405545K ⨯-⨯=⨯⨯⨯≈8.2498.249 > 6.635,故有99%的把握认为“读书迷”与性别有关.……………..6分 (2)视频率为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率为52. 由题意可知X ~B (3,52),P(x=i)=3323()()55i i i -ð (i=0,1,2,3)………………8分 从而分布列为.……………… 10分 E(x)=np=56 (或0.6),D(x)=np(1-p )=2518 (或0.72) ……………… 12分 考点:(1)频率分布直方图,独立性检验,随机变量的分布列,数学期望与方差. 19.(本小题满分12分)已知PA ⊥平面,,,4,1ABCD CD AD BA AD CD AD AP AB ⊥⊥====. (1)求证:CD ⊥平面ADP ;(2)M 为线段CP 上的点,当BM AC ⊥时,求二面角C AB M --的余弦值.【答案】(1)证明见解析;(2)102.【解析】试题分析:(1)证线面垂直,就是要证线线垂直,已有CD AD ⊥,寻找题设条件还有PA ⊥平面ABCD ,从而有PA CD ⊥,因此可以证得线面垂直;(2)要求二面角的大小,由于图形中有,,AB AD AP 三直线两两垂直,因此可以以它们为坐标轴建立空间直角坐标系,利用空间向量法求出二面角,建立如图所示的坐标系后,关键是要求出点M 的坐标(因为其它点.,,,A B C D P 的坐标都易得),设(,,)M x y z ,利用PM 与PC 共线,及BM PC ⊥就能求出M 点的坐标,然后求出平面ABC 平面ABM 的法向量,由法向量夹角求得相应的二面角. 试题解析:(1)证明:因为PA ⊥平面ABCD ,PA ⊂平面ADP ,所以平面ADP ⊥平面ABCD. …………………………………………2分 又因为平面ADP ∩平面ABCD=AD ,CD ⊥AD ,所以CD ⊥平面ADP. ……………………………………………………4分(2)AD ,AP ,AB 两两垂直,建立如图所示空间坐标系,则A (0,0,0),B (0,0,1),C (4,0,4),P (0,4,0),则)1,0,0(=,)4,0,4(=,)0,4,0(=,)4,4,4(-=PC .………………………………6分设M (x, y , z), λ=)10(≤≤λ,则),4,(z y x -=.zxy所以),4,(z y x -λ=)4,4,4(-,⎪⎩⎪⎨⎧=-==λλλ4444z y x ,)4,44,4(λλλ-M ,)14,44,4(--=λλλBM .因为BM ⊥AC ,所以0=⋅,⋅--)14,44,4(λλλ0)4,0,4(=,解得81=λ,法2:在平面ABCD 内过点B 作BH ⊥AC 于H ,在平面ACP 内过点H 作HM ∥AP 交PC 于点M ,连接MB ………6分, 因为AP ⊥平面ABCD , 所以HM ⊥平面ABCD. 又因为AC ⊂平面ABCD , 所以HM ⊥AC.又BH ∩HM=H, BH ⊂平面BHM ,HM ⊂平面BHM , 所以AC ⊥平面BHM.所以AC ⊥BM ,点M 即为所求点. …………………………………………8分 在直角ABH ∆中,AH=2222=AB , 又AC=2422=+DA CD ,所以81=AC AH . 又HM ∥AP ,所以在ACP ∆中,81=PC PM . 在平面PCD 内过点M 作MN ∥CD 交DP 于点N ,则在PCD ∆中, 81=PD PN . 因为AB ∥CD ,所以MN ∥BA.连接AN ,由(1)知CD ⊥平面ADP ,所以AB ⊥平面ADP. 所以AB ⊥AD ,AB ⊥AN.所以∠DAN 为二面角C —AB —M 的平面角.………………………10分在PAD ∆中,过点N 作NS ∥PA 交DA 于S ,则81=AD AS , 所以AS=21,2787==PA NS ,所以NA=225.所以102cos cos ==∠=∠NA AS SAN DAN .所以二面角C —AB —M 的余弦值为102. …………………………………………12分 考点:线面垂直,二面角. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>经过点. (1)求椭圆C 的方程;(2)不垂直与坐标轴的直线l 与椭圆C 交于,A B 两点,线段AB 的垂直平分线交y 轴于点1(0,)3P ,若1cos 3APB ∠=,求直线l 的方程.【答案】(1)2214x y +=;(2)1y =-或1y =-. 【解析】试题分析:(1)本题求椭圆的标准方程比较简单,只要把坐标代入椭圆方程22221x y a b +=,再由离心率c e a ==222a b c =+联立方程组可解得;(2)本题属于直线与椭圆相交问题,主要考查学生的运算能力,及分析问题解决问题的能力,这类问题的一般方法都是设直线AB 方程为为y kx t =+,设交点为1122(,),(,)A x y B x y ,把直线方程与椭圆方程联立2214y kx tx y =+⎧⎪⎨+=⎪⎩消去y 得222(14)8440k x ktx t +++-= 则有122814kt x x k -+=+,21224414t x x k-=+,同时有22041k t ∆>⇒+>;从而有12121222()214ty y kx t kx t k x x t k+=+++=++=+ ,目的是为了表示出中点坐标,设,A B 的中点为(),D m n ,则1224214x x kt m k +-==+,122214y y tn k +==+,因为直线PD 于直线l 垂直,所以113PD nk k m -=-=-得21149t k =-+ ,结合2204190k t t ∆>⇒+>⇒-<<,由条件1cos3APB∠=可得t a n2APD∠=,2tanABAPDPD∠=,其中AB==,PD为点P到直线AB的距离,由引可求得()19,0t=-∈-,k=试题解析:(1)由1题意得22=21314caa b⎧⎪⎪⎨⎪+=⎪⎩,解得=2a,1b=.所以椭圆C的方程是2214xy+=.……………………… 4分(2)设直线l的方程设为y kx t=+,设1122(,),(,)A x yB x y,联立2214y kx txy=+⎧⎪⎨+=⎪⎩消去y得222(14)8440k x ktx t+++-=则有122814ktx xk-+=+,21224414tx xk-=+,由22041k t∆>⇒+>;12121222()214ty y kx t kx t k x x tk+=+++=++=+…………… 6分设,A B的中点为(),D m n,则1224214x x ktmk+-==+,122214y y tnk+==+因为直线PD于直线l垂直,所以113PDnkk m-=-=-得21149tk=-+………… 8分2204190k t t∆>⇒+>⇒-<<因为21cos2cos13APB APD∠=∠-=-所以cos3APD∠=,tan APD⇒∠=所以2ABPD=PD=,AB===………10分由2ABPD==21149tk=-+解得()19,0t=-∈-,k=直线l的方程为1y=-或1y=-. ………… 12分解法二(2)设直线l的斜率为k,设1122(,),(,)A x yB x y,,A B的中点为()00,D x y,所以1212y ykx x-=-,1202x xx+=,1202y yy+=由题意221122221(1)41(2)4xyxy⎧+=⎪⎪⎨⎪+=⎪⎩,(1)式(2)-式得()()()()121212124x x x xy y y y-++-+=⇒()()()()1212121214y y y yx x x x-++=⇒-+14ykx+=又因为直线PD与直线l垂直,所以131ykx-=-由0000104131y k x y k x ⎧+=⎪⎪⎨-⎪=-⎪⎩解得001949y x k ⎧=-⎪⎪⎨⎪=⎪⎩ …………… 6分 因为21cos 2cos 13APB APD ∠=∠-=-所以cos APD ∠=,tan APD ⇒∠=所以2ABPD= ………8分PD ==设直线l 的方程设为()200419k y y k x x y kx +-=-⇒=-,联立22241914k y kx x y ⎧+=-⎪⎪⎨⎪+=⎪⎩消去y 得()2222284141(14)44099k k k k x x +⎛⎫++-+-= ⎪⎝⎭ 120829x x x k +==,221224144914k x x k⎛⎫+- ⎪⎝⎭=+, 由2020k ∆>⇒<AB ==………10分2AB PD==k =2020k ∆>⇒<.由2419k y kx +=-得直线l的方程为1y =-或1y =-. ……… 12分考点:椭圆的标准方程,直线和椭圆的位置关系. 21.(本小题满分12分)已知函数()2,(x f x e ax e =--是自然对数的底数,)a R ∈. (1)求函数()f x 的单调递增区间; (2)若k 为整数,1a =,且当0x >时,()11k xf x x -'<+恒成立,其中()f x '为()f x 的导函数,求k 的最大值.故)(/x g 在()+∞,0上存在唯一的零点. .............................8分设此零点为α,则()2,1∈α.当()α,0∈x 时,0)(/<x g ;当()+∞∈,αx 时,0)(/>x g ;所以,)(x g 在()+∞,0上的最小值为)(αg .由,0)(/=αg 可得,2+=ααe ........10分所以,().3,21)(∈+=ααg 由于①式等价于)(αg k <.故整数k 的最大值为2. ....................................12分 考点:导数与单调性,不等式恒成立,函数的零点.请考生在第(22)、(23)(24)三体中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.22.(本小题满分10分)选修4-1:几何证明选讲 如图:O 的直径AB 的延长线于弦CD 的延长线相交于点P ,E 为O 上一点,,AE AC DE =交AB 于点F. (1)求证:,,,O C D F 四点共圆; (2)求证:PF PO PA PB ⋅=⋅.【答案】证明见解析. 【解析】试题分析:(1)证四点共圆,可证明四边形的对角互补或外角等于内对角等,本题中,由于AE AC =,因此有12CDE EOC AOE ∠=∠=∠,从而得证四点共圆;(2)有了(1)中的四点共圆,由割线定理得PF PO PD PC ⋅=⋅,又在圆O 中有PD PC PB PA ⋅=⋅,故结论成立.试题解析:(1)连接OC ,OE , 因为AE AC =,所以12AOC AOE COE ∠=∠=∠,.................2分 又因为12CDE COE ∠=∠, 则AOC CDE ∠=∠,所以,,,O C D F 四点共圆.………………5分(2)因为PBA 和PDC 是O 的两条割线,所以PD PC PA PB =⋅,……………7分因为,,,O C D F 四点共圆,所以PDF POC ∠=∠,又因为DPF OPC ∠=∠,则PDF ∆∽POC ∆, 所以PD PF PO PC=,即PF PO PD PC =⋅ 则PF PO PA PB =⋅.………………10分考点:四点共圆,切割线定理.23.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程122(2x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:4cos ρθ=.(1)直线l 的参数方程化为极坐标方程;(2)求直线l 的曲线C 交点的极坐标(0,02ρθπ≥≤<)【答案】(1cos sin 0θρθ--=;(2)5(2,)3π,)6π 【解析】试题分析:(1)首先消去参数方程的参数,可把参数方程化为普通方程,然后利用公式cos sin x y ρθρθ=⎧⎨=⎩可把直角坐标方程化为极坐标方程;(2)可把曲线C 的极坐标方程化为直角坐标方程,然后把直线与圆的直角坐标方程联立解得交点坐标,再把交点的直角坐标化为极坐标,也可把直线与圆的两个极坐标方程联立方程组解得交点的极坐标.试题解析:(1)将直线:l 122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)消去参数t ,化为普通方程0y --=,……………………2分将cos sin x y ρθρθ=⎧⎨=⎩0y --=cos sin 0θρθ--=.…………4分 (2)方法一:C 的普通方程为2240x y x +-=.………………6分由22040y x y x --=+-=⎪⎩解得:1x y =⎧⎪⎨=⎪⎩3x y =⎧⎪⎨=⎪⎩8分 所以l 与C 交点的极坐标分别为:5(2,)3π,)6π.………………10分方法二:由cos sin 04cos θρθρθ--==⎪⎩,……………6分 得:sin(2)03πθ-=,又因为0,02ρθπ≥≤<………………8分 所以253ρπθ=⎧⎪⎨=⎪⎩或6ρπθ⎧=⎪⎨=⎪⎩所以l 与C 交点的极坐标分别为:5(2,)3π,)6π.………………10分 考点:参数方程与普通方程的互化,直角坐标方程与极坐标方程的互化,直线与圆交点.24.(本小题满分10分)选修4-5:不等式选讲设函数()()221(0),2f x x a x a g x x =-++>=+.(1)当1a =时,求不等式()()f x g x ≤的解集;(2)若()()f x g x ≥恒成立,求实数a 的取值范围.【答案】(1)2{0}3x x ≤≤;(2)2a ≥.【解析】试题分析:(1)不等式为|21||21|2x x x -++≤+,用分类讨论的思想可求得解集,分类讨论的标准由绝对值的定义确定;(2)不等式()()f x g x ≥恒成立,同样不等式为|2||21|2x a x x -++≥+,转化为|2||21|20x a x x -++--≥,令()|2||21|2h x x a x x =-++--,因为0a >,所以153,21()1,2231,2x a x a h x x a x a x a x ⎧-+-≤-⎪⎪⎪=-+--<<⎨⎪⎪--≥⎪⎩,只要求出()h x 最小值()h x 最小值,然后解不等式()0h x 最小值>得所求范围.试题解析:(1)当1a =时,|21||21|2x x x -++≤+,1242x x x ⎧≤-⎪⇒⎨⎪-≤+⎩无解, 111022222+x x x ⎧-<<⎪⇒≤<⎨⎪≤⎩, 11222342x x x x ⎧≥⎪⇒≤≤⎨⎪≤+⎩………………………3分 综上,不等式的解集为2{0}3x x ≤≤.………………5分(2)|2||21|2x a x x -++≥+,转化为|2||21|20x a x x -++--≥, 令()|2||21|2h x x a x x =-++--, 因为a>0,所以153,21()1,2231,2x a x a h x x a x a x a x ⎧-+-≤-⎪⎪⎪=-+--<<⎨⎪⎪--≥⎪⎩, ………………8分在a>0下易得min ()12a h x =-,令10,2a -≥a 得 2.a ≥a ………………10分 考点:解绝对值不等式,不等式恒成立,函数的最值.。

河北省石家庄二中高考数学二点五模试卷 理(含解析)

河北省石家庄二中高考数学二点五模试卷 理(含解析)

2015年河北省石家庄二中高考数学二点五模试卷(理科)一、选择题(共14小题,每小题5分,满分70分)1.已知集合M={x|x2﹣4x<0},N={x|m<x<5},若M∩N={x|3<x<n},则m+n等于()A.9 B.8 C.7 D.62.若复数Z=(a2﹣1)+(a+1)i为纯虚数,则的值为()A.1 B.﹣1 C.i D.﹣i3.根据如下样本数据得到的回归方程为=bx+a.若a=7.9,则x每增加1个单位,y就()x 3 4 5 6 7y 4 2.5 ﹣0.5 0.5 ﹣2A.增加1.4个单位B.减少1.4个单位C.增加1.2个单位D.减少1.2个单位.4.执行如图所示的算法,则输出的结果是()A.1 B.C.D.25.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递增区间是()A.[6k﹣1,6k+2](k∈z)B.[6k﹣4,6k﹣1](k∈z)C.[3k﹣1,3k+2](k∈z)D.[3k﹣4,3k﹣1](k∈z)6.如图,矩形ABCD的四个顶点的坐标分别为A(0,﹣1),B(π,﹣1),C(π,1),D(0,1),正弦曲线f(x)=sinx和余弦曲线g(x)=cosx在矩形ABCD内交于点F,向矩形ABCD区域内随机投掷一点,则该点落在阴影区域内的概率是()A.B.C.D.7.六名大四学生(其中4名男生、2名女生)被安排到A、B、C三所学校实习,每所学校2人,且2名女生不到同一学校,也不到C学校,男生甲不到A学校,则不同的安排方法共有()A.9种B.12种C.15种D.18种8.设不等式组,表示的平面区域为D,若圆C:(x+1)2+(y+1)2=r2(r>0)经过区域D上的点,则r的取值范围是()A.[2,2] B.(2,3] C.(3,2] D.(0,2)∪(2,+∞)9.如图是某几何体的三视图,则该几何体的体积等于()A.B.C.1 D.10.已知四面体P﹣ABC中,PA=4,AC=2,PB=BC=2,PA⊥平面PBC,则四面体P﹣ABC的内切球半径与外接球半径的比()A.B.C.D.11.设函数f(x)=(x﹣a)2+(lnx2﹣2a)2,其中x>0,a∈R,存在x0使得f(x0)成立,则实数a值是()A.B.C.D.112.若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为()A.1 B.C.3 D.413.在△ABC中,C=90°,且CA=CB=3,点M满足等于()A.2 B.3 C.4 D.614.已知定义在R上的函数f(x)是奇函数且满足f(﹣x)=f(x),f(﹣2)=﹣3,数列{a n}满足a1=﹣1,且=2×+1,(其中S n为{a n}的前n项和).则f(a5)+f(a6)=()A.﹣3 B.﹣2 C.3 D.2二、填空题(共2小题,每小题5分,满分10分)15.过点M(1,1)作斜率为﹣的直线与椭圆C: +=1(a>b>0)相交于A,B两点,若M 是线段AB的中点,则椭圆C的离心率等于.16.已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=(x>0),则给出以下四个结论:①函数f(x)的值域为[0,1];②函数f(x)的图象是一条曲线;③函数f(x)是(0,+∞)上的减函数;④函数g(x)=f(x)﹣a有且仅有3个零点时.其中正确的序号为.三、解答题(共8小题,满分92分)17.在△ABC中,a,b,c分别为内角A,B,C的对边,且.(1)求角A的大小;(2)若a=3,求△ABC的周长的最大值.18.某高校经济管理学院在2014年11月11日“双11购物节”期间,对[25,55]岁的人群随机抽取了100人进行调查,得到各年龄段人数频率分布直方图.同时对这100人是否参加“商品抢购”进行统计,结果如下表:(1)求统计表中a和p的值;(2)从年龄落在(40,50]内的参加“商品抢购”的人群中,采用分层抽样法抽取6人参加满意度调查,在抽取的6人中,有随机的2人感到“满意”,设感到“满意”的2人中年龄在(40,45]内的人数为X,求X的分布列和数学期望.(3)通过有没有95%的把握认为,进行“商品抢购”与“年龄低于40岁”有关?说明你的理由.组数分组抢购商品的人数占本组的频率第一组[25,30) 12 0.618 p第二组[30,35)10 0.5第三组[35,40)第四组a 0.4[40,45)3 0.3第五组[45,50)第六组 1 0.2[50,55)附:K2=P(χ2≥k)0.100 0.050 0.010 0.001k 2.706 3.841 6.635 10.82819.在等腰梯形ABCD中,AD∥BC,AD=BC,∠ABC=60°,N是BC的中点.将梯形ABCD绕AB旋转90°,得到梯形ABC′D′(如图).(Ⅰ)求证:AC⊥平面ABC′;(Ⅱ)求证:C′N∥平面ADD′;(Ⅲ)求二面角A﹣C′N﹣C的余弦值.20.已知椭圆C: =1(a>b>0)的焦距为4,其长轴长和短轴长之比为:1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的右焦点,T为直线x=t(t∈R,t≠2)上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求t的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.21.设函数g(x)=x2﹣2x+1+mlnx,(m∈R)(Ⅰ)当m=1时,求过点P(0,1)且与曲线y=g(x)﹣(x﹣1)2相切的切线方程(Ⅱ)求函数y=g(x)的单调增区间(Ⅲ)若函数y=g(x)有两个极值点a,b,且a<b,记[x]表示不大于x的最大整数,试比较sin与cos[g(a)][g(b)]的大小.22.如图,⊙O1和⊙O2公切线AD和BC相交于点D,A、B、C为切点,直线DO1与⊙O1与E、G两点,直线DO2交⊙O2与F、H两点.(1)求证:△DEF~△DHG;(2)若⊙O1和⊙O2的半径之比为9:16,求的值.23.长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线 T的极坐标方程为ρ=﹣4sinθ.( I)以直线AB的倾斜角α为参数,求曲线C的参数方程;(Ⅱ)若D为曲线 T上一点,求|PD|的最大值.24.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.2015年河北省石家庄二中高考数学二点五模试卷(理科)参考答案与试题解析一、选择题(共14小题,每小题5分,满分70分)1.已知集合M={x|x2﹣4x<0},N={x|m<x<5},若M∩N={x|3<x<n},则m+n等于()A.9 B.8 C.7 D.6【考点】交集及其运算.【专题】集合.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:M={x|x2﹣4x<0}={x|0<x<4},∵N={x|m<x<5},∴若M∩N={x|3<x<n},则m=3,n=4,故m+n=3+4=7,故选:C【点评】本题主要考查集合的基本运算,比较基础.2.若复数Z=(a2﹣1)+(a+1)i为纯虚数,则的值为()A.1 B.﹣1 C.i D.﹣i【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】利用复数是纯虚数,求出a,然后利用复数的幂运算求解,化简分母为实数即可.【解答】解:Z=(a2﹣1)+(a+1)i为纯虚数,可得a=1,则====﹣i.故选:D.【点评】本题考查复数的基本概念,复数的基本运算,考查计算能力.3.根据如下样本数据得到的回归方程为=bx+a.若a=7.9,则x每增加1个单位,y就()x 3 4 5 6 7y 4 2.5 ﹣0.5 0.5 ﹣2A.增加1.4个单位B.减少1.4个单位C.增加1.2个单位D.减少1.2个单位.【考点】线性回归方程.【专题】概率与统计.【分析】由题意可得和,由回归直线过点(,)可得b值,可得答案.【解答】解:由题意可得=(3+4+5+6+7)=5,=(4+2.5﹣0.5+0.5﹣2)=0.9,∵回归方程为=bx+a.若a=7.9,且回归直线过点(5,0.9),∴0.9=5b+7.9,解得b=﹣1.4,∴x每增加1个单位,y就减少1.4个单位,故选:B.【点评】本题考查线性回归方程,涉及平均值的计算和回归方程的性质,属基础题.4.执行如图所示的算法,则输出的结果是()A.1 B.C.D.2【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的n,M,S的值,当S=1时,满足条件S∈Q,退出循环,输出S的值为1.【解答】解:模拟执行程序框图,可得S=0,n=2n=3,M=,S=不满足条件S∈Q,n=4,M=,S=+不满足条件S∈Q,n=5,M=,S=++=1满足条件S∈Q,退出循环,输出S的值为1.故选:A.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.5.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递增区间是()A.[6k﹣1,6k+2](k∈z)B.[6k﹣4,6k﹣1](k∈z)C.[3k﹣1,3k+2](k∈z)D.[3k﹣4,3k﹣1](k∈z)【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.【专题】计算题;三角函数的图像与性质.【分析】由图象可求函数f(x)的周期,从而可求得ω,继而可求得φ,利用正弦函数的单调性即可求得f(x)的递增区间.【解答】解:|AB|=5,|y A﹣y B|=4,所以|x A﹣x B|=3,即=3,所以T==6,ω=;∵f(x)=2sin(x+φ)过点(2,﹣2),即2sin(+φ)=﹣2,∴sin(+φ)=﹣1,∵0≤φ≤π,∴+φ=,解得φ=,函数为f(x)=2sin(x+),由2kπ﹣≤x+≤2kπ+,得6k﹣4≤x≤6k﹣1,故函数单调递增区间为[6k﹣4,6k﹣1](k∈Z).故选B【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查复合三角函数的单调性,属于中档题.6.如图,矩形ABCD的四个顶点的坐标分别为A(0,﹣1),B(π,﹣1),C(π,1),D(0,1),正弦曲线f(x)=sinx和余弦曲线g(x)=cosx在矩形ABCD内交于点F,向矩形ABCD区域内随机投掷一点,则该点落在阴影区域内的概率是()A.B.C.D.【考点】几何概型.【专题】概率与统计.【分析】利用定积分计算公式,算出曲线y=sinx与y=cosx围成的区域包含在区域D内的图形面积为S=2π,再由定积分求出阴影部分的面积,利用几何概型公式加以计算即可得到所求概率.【解答】解根据题意,可得曲线y=sinx与y=cosx围成的区域,其面积为(sinx﹣cosx)dx=(﹣cosx﹣sinx)|=1﹣(﹣)=1+;又矩形ABCD的面积为2π,由几何概型概率公式得该点落在阴影区域内的概率是;故选B.【点评】本题给出区域和正余弦曲线围成的区域,求点落入指定区域的概率.着重考查了定积分计算公式、定积分的几何意义和几何概型计算公式等知识,属于中档题.7.六名大四学生(其中4名男生、2名女生)被安排到A、B、C三所学校实习,每所学校2人,且2名女生不到同一学校,也不到C学校,男生甲不到A学校,则不同的安排方法共有()A.9种B.12种C.15种D.18种【考点】排列、组合及简单计数问题.【专题】计算题.【分析】由题意确定2名女生在A、B学校个一人,A、B学校选男生个一人,C学校2名男生,然后求解即可.【解答】解:因为六名大四学生(其中4名男生、2名女生)被安排到A、B、C三所学校实习,每所学校2人,且2名女生不到同一学校,也不到C学校,男生甲不到A学校,所以2名女生在A、B学校各一人,A、B学校选男生各一人,C学校2名男生,不同的安排方法:=18种.故选D.【点评】本题考查排列组合的综合应用,注意有限制条件的排列组合问题的处理方法,有限制条件需要首先安排的原则.8.设不等式组,表示的平面区域为D,若圆C:(x+1)2+(y+1)2=r2(r>0)经过区域D上的点,则r的取值范围是()A.[2,2] B.(2,3] C.(3,2] D.(0,2)∪(2,+∞)【考点】简单线性规划;圆的标准方程.【专题】数形结合.【分析】由约束条件作出可行域,求出圆C:(x+1)2+(y+1)2=r2的圆心坐标,数形结合可得r的取值范围.【解答】解:由约束条件作出平面区域如图,由C:(x+1)2+(y+1)2=r2,得圆心C(﹣1,﹣1),联立,得A(1,1),联立,得B(2,2),联立,得D(1,3).由图可知,半径r的最小值为|OA|=,半径r的最大值为|OD|=.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,关键是正确作出可行域,是中档题.9.如图是某几何体的三视图,则该几何体的体积等于()A.B.C.1 D.【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】几何体是三棱柱削去一个同高的三棱锥,根据三视图判断相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱柱削去一个同高的三棱锥,其中三棱柱的高为2,底面是直角边长为1的等腰直角三角形,三棱锥的底面是直角边长为1的等腰直角三角形,∴几何体的体积V=×1×1×2﹣××1×1×2=.故选:A.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.10.已知四面体P﹣ABC中,PA=4,AC=2,PB=BC=2,PA⊥平面PBC,则四面体P﹣ABC的内切球半径与外接球半径的比()A.B.C.D.【考点】球的体积和表面积;球内接多面体.【专题】计算题;空间位置关系与距离.【分析】确定△PBC为等边三角形,△ABC为等腰三角形,分别求出四面体P﹣ABC的内切球半径与外接球半径,即可得出结论.【解答】解:由题意,已知PA⊥面PBC,PA=4,PB=BC=2,AC=2所以,由勾股定理得到:AB=2,PC=2所以,△PBC为等边三角形,△ABC为等腰三角形等边三角形PBC所在的小圆的直径PD==4那么,四面体P﹣ABC的外接球直径2R==4,所以,R=2V P﹣ABC=S△PBC•PA=••12•4=4表面积S=•2•4•2+•12+•2•5=16设内切球半径为r,那么4=•16r,所以r=,所以四面体P﹣ABC的内切球半径与外接球半径的比=.故选:C.【点评】本题考查四面体P﹣ABC的内切球半径与外接球半径,考查学生分析解决问题的能力,属于中档题.11.设函数f(x)=(x﹣a)2+(lnx2﹣2a)2,其中x>0,a∈R,存在x0使得f(x0)成立,则实数a值是()A.B.C.D.1【考点】导数在最大值、最小值问题中的应用.【专题】数形结合;导数的综合应用.【分析】把函数看作是动点M(x,lnx2)与动点N(a,2a)之间距离的平方,利用导数求出曲线y=2lnx 上与直线y=2x平行的切线的切点,得到曲线上点到直线距离的最小值,结合题意可得只有切点到直线距离的平方等于,然后由两直线斜率的关系列式求得实数a的值.【解答】解:函数f(x)可以看作是动点M(x,lnx2)与动点N(a,2a)之间距离的平方,动点M在函数y=2lnx的图象上,N在直线y=2x的图象上,问题转化为求直线上的动点到曲线的最小距离,由y=2lnx得,y'==2,解得x=1,∴曲线上点M(1,0)到直线y=2x的距离最小,最小距离d=,则f(x)≥,根据题意,要使f(x0)≤,则f(x0)=,此时N恰好为垂足,由k MN=,解得a=.故选:A.【点评】本题考查利用导数求曲线上过某点切线的斜率,考查了数形结合和数学转化思想方法,训练了点到直线的距离公式的应用,是中档题.12.若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为()A.1 B.C.3 D.4【考点】二项式定理的应用.【专题】二项式定理.【分析】直接利用二项式定理的通项公式,求出x3项的系数为20,得到ab关系,然后利用基本不等式求解最小值即可.【解答】解:(ax2+)6的展开式的通项公式为 T r+1=•a6﹣r•b r•x12﹣3r,令12﹣3r=3,求得r=2,故(ax2+)6的展开式中x3项的系数为•a4•b2=20,∴a4•b2=,即 b2=,∴a2+b2 =a2+=++≥3=,当且仅当a6=时等号成立.故选:B.【点评】本题考查二项式定理的应用,基本不等式的应用,考查计算能力.13.在△ABC中,C=90°,且CA=CB=3,点M满足等于()A.2 B.3 C.4 D.6【考点】平面向量数量积的运算.【专题】计算题.【分析】由•=()•,再利用向量和的夹角等于45°,两个向量的数量积的定义,求出•的值.【解答】解:由题意得 AB=3,△ABC是等腰直角三角形,•=()•=+=0+||•||cos45°=×3×3×=3,故选B.【点评】本题考查两个向量的数量积的定义,注意向量和的夹角等于45°这一条件的运用.14.已知定义在R上的函数f(x)是奇函数且满足f(﹣x)=f(x),f(﹣2)=﹣3,数列{a n}满足a1=﹣1,且=2×+1,(其中S n为{a n}的前n项和).则f(a5)+f(a6)=()A.﹣3 B.﹣2 C.3 D.2【考点】数列与函数的综合;函数的周期性.【专题】综合题;压轴题;函数的性质及应用;等差数列与等比数列.【分析】先由函数f(x)是奇函数,f(﹣x)=f(x),推知f(3+x)=f(x),得到f(x)是以3为周期的周期函数.再由a1=﹣1,且S n=2a n+n,推知a5=﹣31,a6=﹣63计算即可.【解答】解:∵函数f(x)是奇函数∴f(﹣x)=﹣f(x)∵f(﹣x)=f(x),∴f(﹣x)=﹣f(﹣x)∴f(3+x)==﹣f()=﹣f[]=﹣f(﹣x)=f(x)∴f(x)是以3为周期的周期函数.∵数列{a n}满足a1=﹣1,且=2×+1,∴a1=﹣1,且S n=2a n+n,∴a5=﹣31,a6=﹣63∴f(a5)+f(a6)=f(﹣31)+f(﹣63)=f(2)+f(0)=f(2)=﹣f(﹣2)=3故选C.【点评】本题主要考查函数性质的转化与应用以及数列的通项及求和公式,在函数性质综合应用中相互结合转化中奇偶性,对称性和周期性之间是一个重点.二、填空题(共2小题,每小题5分,满分10分)15.过点M(1,1)作斜率为﹣的直线与椭圆C: +=1(a>b>0)相交于A,B两点,若M 是线段AB的中点,则椭圆C的离心率等于.【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用点差法,结合M是线段AB的中点,斜率为﹣,即可求出椭圆C的离心率.【解答】解:设A(x1,y1),B(x2,y2),则①,②,∵M是线段AB的中点,∴=1, =1,∵直线AB的方程是y=﹣(x﹣1)+1,∴y1﹣y2=﹣(x1﹣x2),∵过点M(1,1)作斜率为﹣的直线与椭圆C: +=1(a>b>0)相交于A,B两点,M是线段AB的中点,∴①②两式相减可得,即,∴a=b,∴=b,∴e==.故答案为:.【点评】本题考查椭圆的离心率,考查学生的计算能力,正确运用点差法是关键.16.已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=(x>0),则给出以下四个结论:①函数f(x)的值域为[0,1];②函数f(x)的图象是一条曲线;③函数f(x)是(0,+∞)上的减函数;④函数g(x)=f(x)﹣a有且仅有3个零点时.其中正确的序号为④.【考点】根的存在性及根的个数判断;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】通过举特例,可得①、②、③错误;数形结合可得④正确,从而得出结论.【解答】解:由于符号[x]表示不超过x的最大整数,函数f(x)=(x>0),取x=﹣1.1,则[x]=﹣2,∴f(x)=>1,故①不正确.由于当0<x<1,[x]=0,此时f(x)=0;当1≤x<2,[x]=1,此时f(x)=;当2≤x<3,[x]=2,此时f(x)=,此时<f(x)≤1,当3≤x<4,[x]=3,此时f(x)=,此时<g(x)≤1,当4≤x<5,[x]=4,此时f(x)=,此时<g(x)≤1,故f(x)的图象不会是一条曲线,且 f(x)不会是(0,+∞)上的减函数,故排除②、③.函数g(x)=f(x)﹣a有且仅有3个零点时,函数f(x)的图象和直线y=a有且仅有3个交点,此时,,故④正确,故答案为:④.【点评】本题主要考查方程的根的存在性及个数判断,体现了化归与转化、数形结合的数学思想,属于基础题.三、解答题(共8小题,满分92分)17.在△ABC中,a,b,c分别为内角A,B,C的对边,且.(1)求角A的大小;(2)若a=3,求△ABC的周长的最大值.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(1)利用两角和的正弦函数公式及三角形内角和定理化简已知等式可得sinB=2sinBcosA,sinB≠0,解得:,又结合范围A∈(0,π),即可求A的值;(2)由(1)及正弦定理可解得:,从而化简a+b+c=6sin(B+)+3,结合B的范围,利用正弦函数的图象和性质即可得解.【解答】(本题满分为12分)解:(1)∵,∴acosC=2bcosA﹣ccosA,∴acosC+ccosA=2bcosA,∴sinAcosC+sinCcosA=2sinBcosA,∴sin(A+C)=2sinBcosA,sinB≠0,∴解得:,又A∈(0,π),所以A=.….5分(2)∵由(1)及正弦定理可解得:,…10分所以当时,周长最大为9.…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦定理,三角形内角和定理,考查了正弦函数的图象和性质,熟练掌握公式及定理是解题的关键,属于中档题.18.某高校经济管理学院在2014年11月11日“双11购物节”期间,对[25,55]岁的人群随机抽取了100人进行调查,得到各年龄段人数频率分布直方图.同时对这100人是否参加“商品抢购”进行统计,结果如下表:(1)求统计表中a和p的值;(2)从年龄落在(40,50]内的参加“商品抢购”的人群中,采用分层抽样法抽取6人参加满意度调查,在抽取的6人中,有随机的2人感到“满意”,设感到“满意”的2人中年龄在(40,45]内的人数为X,求X的分布列和数学期望.(3)通过有没有95%的把握认为,进行“商品抢购”与“年龄低于40岁”有关?说明你的理由.组数分组抢购商品的人数占本组的频率第一组[25,30) 12 0.6第二组18 p[30,35)10 0.5第三组[35,40)第四组[40,45)a 0.4第五组[45,50)3 0.3第六组[50,55)1 0.2附:K2=P(χ2≥k)0.100 0.050 0.010 0.001k 2.706 3.841 6.635 10.828【考点】独立性检验的应用.【专题】应用题;概率与统计.【分析】(1)根据频率、频数与样本容量的关系,利用频率分布直方图和频率分布表,求出a、p 的值;(2)依题意,求出X的可能取值,计算对应的概率,即得X的分布列,计算数学期望值E(X);(3)画出2×2列联表,计算观测值K2,对照数值表即可得出统计结论.【解答】解:(1)因为总人数为100,所以在[40,45)岁的人数为100×5×0.03=15,所以a=15×0.4=6;因为年龄在[30,35)岁的人数的频率为1﹣5×(0.04+0.04+0.03+0.02+0.01)=0.3,所以年龄在[30,35)岁的人数为100×0.3=30,所以p==0.6;(2)依题意,抽取年龄在[40,45)岁之间4人,抽取年龄在[45,50)岁之间2人,X可以取0,1,2;P(X=0)==,P(X=1)==,P(X=2)==;所以X的分布列为X 0 1 2P所以E(X)=0×+1×+2×=;(3)可得2×2列联表为年龄在40以下年龄不在40以下合计参加抢购40 10 50未参加抢购30 20 50合计70 30 100计算K2=,因此有95%的把握认为,进行“商品抢购”与“年龄低于40岁”有关.【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了独立性检验的应用问题,是综合性题目.19.在等腰梯形ABCD中,AD∥BC,AD=BC,∠ABC=60°,N是BC的中点.将梯形ABCD绕AB旋转90°,得到梯形ABC′D′(如图).(Ⅰ)求证:AC⊥平面ABC′;(Ⅱ)求证:C′N∥平面ADD′;(Ⅲ)求二面角A﹣C′N﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由梯形的性质和N是BC的中点可得四边形ANCD是平行四边形,得到AN=DC;利用等腰梯形可得AN=AB,又∠ABC=60°,得到△ABN是等边三角形,于是AN=BN=NC,由出可得△ABC是直角三角形,即AC⊥AB,再利用面面垂直的性质即可得到结论;(Ⅱ)由已知可得:AD∥BC,AD′∥BC′,利用面面平行的判定定理即可得出;(Ⅲ)如图所示的空间直角坐标系,求出两个平面的法向量,利用法向量的夹角即可得到二面角的一余弦值.【解答】(Ⅰ)证明:∵,N是BC的中点,∴AD=N C,又AD∥BC,∴四边形ANCD是平行四边形,∴AN=DC.又∵等腰梯形,∴AN=AB.又∠ABC=60°,∴△ABN是等边三角形.∴,∴△ABC是直角三角形,且∠BAC=90°.∴AC⊥AB.∵平面C′BA⊥平面ABC,∴AC⊥平面ABC′.(Ⅱ)证明:∵AD∥BC,AD′∥BC′,AD′∩AD=A,BC∩BC′=B,∴平面ADD′∥平面BCC′,∴C′N∥平面ADD′.(Ⅲ)∵AC⊥平面ABC′,同理AC′⊥平面ABC,建立如图如示坐标系设AB=1,则B(1,0,0),C,,,则,.设平面C′NC的法向量为,则,即,令z=1,则x=,y=1,得.∵AC′⊥平面ABC,∴平面C′AN⊥平面ABC.又BD⊥AN,平面C′AN∩平面ABC=AN,∴BD⊥平面C′AN,设BD与AN交于点O,O则为AN的中点,O.所以平面C′AN的法向量.∴=.由图形可知二面角A﹣C′N﹣C为钝角.所以二面角A﹣C′N﹣C的余弦值为.【点评】熟练掌握等腰梯形的性质、平行四边形的判定与性质、等边三角形及直角三角形的判定与性质、面面垂直与平行的判定及性质、通过建立空间直角坐标系利用法向量的夹角求空间角是解题的关键.20.已知椭圆C: =1(a>b>0)的焦距为4,其长轴长和短轴长之比为:1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的右焦点,T为直线x=t(t∈R,t≠2)上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求t的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线中的最值与范围问题.【分析】(Ⅰ)由已知可得,由此能求出椭圆C的标准方程.(Ⅱ)(ⅰ)设直线PQ的方程为x=my+2.将直线PQ的方程与椭圆C的方程联立,得(m2+3)y2+4my ﹣2=0,由此利用根的判别式、韦达定理、中点坐标公式,结合已知条件能求出t=3.(ⅱ)T点的坐标为(3,﹣m).,|PQ|=.由此能求出当最小时,T点的坐标是(3,1)或(3,﹣1).【解答】解:(Ⅰ)由已知可得,解得a2=6,b2=2.所以椭圆C的标准方程是.(Ⅱ)(ⅰ)由(Ⅰ)可得,F点的坐标为(2,0).由题意知直线PQ的斜率存在且不为0,设直线PQ的方程为x=my+2.将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2+4my﹣2=0,其判别式△=16m2+8(m2+3)>0.设P(x1,y1),Q(x2,y2),则,.于是.设M为PQ的中点,则M点的坐标为.因为TF⊥PQ,所以直线FT的斜率为﹣m,其方程为y=﹣m(x﹣2).当x=t时,y=﹣m(t﹣2),所以点T的坐标为(t,﹣m(t﹣2)),此时直线OT的斜率为,其方程为.将M点的坐标为代入,得.解得t=3.(ⅱ)由(ⅰ)知T点的坐标为(3,﹣m).于是,====.所以==.当且仅当,即m=±1时,等号成立,此时取得最小值.故当最小时,T点的坐标是(3,1)或(3,﹣1).【点评】本题考查椭圆C的标准方程的求法,考查满足条件的实数值的求法,查满足条件的点的坐标的求法,解题时要认真审题,注意根的判别式、韦达定理、中点坐标公式、弦长公式的合理运用.21.设函数g(x)=x2﹣2x+1+mlnx,(m∈R)(Ⅰ)当m=1时,求过点P(0,1)且与曲线y=g(x)﹣(x﹣1)2相切的切线方程(Ⅱ)求函数y=g(x)的单调增区间(Ⅲ)若函数y=g(x)有两个极值点a,b,且a<b,记[x]表示不大于x的最大整数,试比较sin与cos[g(a)][g(b)]的大小.【考点】利用导数研究函数的极值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】(Ⅰ)先求出曲线y=lnx,设切点为(x0,lnx0),这样曲线的斜率为,所以能表示出过点P(0,1)的切线方程,再根据切线过切点即可求出x0,从而求得切线方程.(Ⅱ)求g′(x),解g′(x)≥0,通过讨论m即可求得该函数的单调增区间.(Ⅲ)令g′(x)=0,便得2x2﹣2x+m=0,该方程的根便是a,b,且b=,(<b<1),并通过求g′(b),判断g′(x)的符号,从而判断该函数在()上的单调性,求得g(b)的取值范围,根据取值范围便能求得[g(b)];用同样的办法求出[g(a)],求出sin与cos[g(a)][g(b)],即可比较二者的大小.【解答】解:(Ⅰ)曲线方程为y=lnx,设切点为(x0,lnx0);由得切线的斜率,则切线方程为;∵切线过点P(0,1),∴1﹣lnx0=﹣1,即x0=e2;∴所求切线方程为e﹣2x﹣y+1=0.(Ⅱ)函数y=g(x)的定义域为(0,+∞),.令g′(x)>0,并结合定义域得2x2﹣2x+m>0;对应一元二次方程的判别式△=4(1﹣2m).①当△≤0,即时,g′(x)≥0,则函数g(x)的增区间为(0,+∞);②当时,函数g(x)的增区间为(0,;③当m≤0时,函数g(x)的增区间为.(Ⅲ),令g′(x)=0得2x2﹣2x+m=0;由题意知方程有两个不相等的正根a,b(a<b),则解得0<,解方程得,则.又由2b2﹣2b+m=0得m=﹣2b2+2b,所以g(b)=b2﹣2b+1+mlnb=b2﹣2b+1+(﹣2b2+2b)lnb;.当时,g′(b)>0,即函数g(b)是上的增函数;所以,故g(b)的取值范围是.则[g(b)]=﹣1.同理可求,g(a)=a2﹣2a+1+(﹣2a2+2a)lna;a,,即函数g(a)是上的减函数;∴,故g(a)的取值范围是则[g(a)]=﹣1或[g(a)]=0;当[g(a)]=﹣1时,>cos([g(a)][g(b)]);当[g(a)]=0时,<cos([g(a)][g(b)]).【点评】本题考查函数在函数曲线上一点处的导数和过该点的切线的斜率的关系,函数导数的符号和函数单调性的关系,函数的极值点和函数导数的关系.对于第三问,能正确求出a,b的取值范围是求解本问的关键.22.如图,⊙O1和⊙O2公切线AD和BC相交于点D,A、B、C为切点,直线DO1与⊙O1与E、G两点,直线DO2交⊙O2与F、H两点.(1)求证:△DEF~△DHG;(2)若⊙O1和⊙O2的半径之比为9:16,求的值.【考点】圆的切线的性质定理的证明;相似三角形的判定.【专题】计算题;证明题.【分析】(1)欲求证:△DEF~△DHG,根据AD是两圆的公切线得出线段的乘积式相等,再转化成比例式相等,最后结合角相等即得;(2)连接O1A,O2A,AD是两圆的公切线结合角平分线得到:AD2=O1A×O2A,设⊙O1和⊙O2的半径分别为9x和16x,利用AD2=DE×DG,AD2=DF×DH,分别用x表示出DE和DF,最后算出即可.【解答】解:(1)证明:∵AD是两圆的公切线,∴AD2=DE×DG,AD2=DF×DH,∴DE×DG=DF×DH,∴,又∵∠EDF=∠HDG,∴△DEF∽△DHG.(2)连接O1A,O2A,∵AD是两圆的公切线,∴O1A⊥AD,O2A⊥AD,∴O1O2共线,∵AD和BC是⊙O1和⊙O2公切线,DG平分∠ADB,DH平分∠ADC,∴DG⊥DH,∴AD2=O1A×O2A,设⊙O1和⊙O2的半径分别为9x和16x,则AD=12x,∵AD2=DE×DG,AD2=DF×DH,∴144x2=DE(DE+18x),144x2=DF(DF+32x)∴DE=6x,DF=4x,∴.【点评】本题主要考查了圆的切线的性质定理的证明、相似三角形的判定,考查计算能力和逻辑推理能力.23.长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线 T的极坐标方程为ρ=﹣4sinθ.( I)以直线AB的倾斜角α为参数,求曲线C的参数方程;(Ⅱ)若D为曲线 T上一点,求|PD|的最大值.【考点】简单曲线的极坐标方程.【专题】数形结合;转化思想;坐标系和参数方程.【分析】利用即可把:(1)设P(x,y),由题设可知,则,,即可得出参数方程;(2)利用即可把曲线 T的极坐标方程ρ=﹣4sinθ即ρ2=﹣4ρsinθ,化为直角坐标方程,再利用两点之间的距离公式、三角函数的单调性与值域即可得出.【解答】解:(1)设P(x,y),由题设可知,则,,∴曲线C的参数方程为(α为参数,).(2)由曲线 T的极坐标方程为ρ=﹣4si nθ,化为ρ2=﹣4ρsinθ,可得:直角坐标方程为x2+y2=﹣4y,即x2+(y+2)2=4,是圆心为A(0,﹣2)半径为2的圆,故|PA|2=(﹣2cosα)2+(sinα+2)2=4cos2α+sin2α+4sinα+4=.当时,|PA|取得最大值.∴|PD|的最大值为+2.【点评】本题考查了极坐标方程化为直角坐标方程、椭圆的参数方程、圆的标准方程、两点之间的距离公式、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.24.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.【考点】不等式的证明;带绝对值的函数.【专题】综合题;压轴题.【分析】(Ⅰ)将函数写成分段函数,再利用f(x)<4,即可求得M;(Ⅱ)利用作差法,证明4(a+b)2﹣(4+ab)2<0,即可得到结论.【解答】(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.。

石家庄市2015届高三二模考试

石家庄市2015届高三二模考试
二、形而上学的否定观 基本特征是“在绝对不相容的对立中思维”,要么肯定一切,要么 否定一切。
典型例题
典型例题 (2)结合材料,运用所学文化生活知识,回答国家应如何推进 “全民阅读”。(12分)
中国特色社会主义文化
1.作用:中国特色社会主义文化,始终坚持以科学的理论 武装人,以正确的舆论引导人,以高尚的精神塑造人,以优秀 的作品鼓舞人,无论是思想内容还是表现形式,都发挥着强有 力的导向和示范作用。
影响价格的因素
1.正确认识价值与供求对价格变化所起的作用 (1)价值与供求都对价格变化产生影响,但它们的地位和作用 是不同的。价值对价格起决定作用,是基础性的影响;供求对 价格起影响作用,是多变的,不是基础性的。 (2)商品价格围绕价值上下波动,主要是由商品供求关系的变 化引起的。
影响价格的因素 2.供求与价格是相互影响、相互制约的关系

()
①现代传媒具有文化传递、共享的强大功能
②文字是文化的基本载体,是人类文明程度的标志
③文化在交流中融合发展,具有明显的时代特征
④面向世界、博采众长是文化创新的源泉和动力
A.①②
B.②④
C.①③
D.③④
典型例题 39.(26分)阅读材料,完成下列要求。
2015年政府工作报告提出要“倡导全民阅读,建设书香社会”。 随着信息技术的进步,电子阅读成为时尚,阅读越来越快餐化、
内容
供求关系 影响价格
表现 供过于求
供不应求
结果 价格下跌
价格上涨
价格影响 供求关系
价格下跌 价格上涨
需求增加 供给增加
影响价格的因素 3.图解影响价格变动的因素
典型例题
下图反映的是一定时期某普通商品供求量(Q)随价格(P)变化的 情况。其中,D为需求曲线,S为供给曲线。假定其他因素不变,下列判 断正确的是( )

河北省石家庄市2015届高三下学期一模考试数学(理)试题 (Word版含答案)

河北省石家庄市2015届高三下学期一模考试数学(理)试题 (Word版含答案)

2015届石家庄市高中毕业班第一次模拟考试试卷数学(理科)A 卷(时间120分钟,满分150分)注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答第1卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效. 3.答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第1卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则复数131ii-+= A.2+i B.2-i C.-l-2i D.-1+2i2.已知集合 {}{}0,1,2,|3xP Q y y ===,则 错误!未定义书签。

A. {}0,1B.{}1,2C. {}0,1,2D. ∅ 3.已知 cos ,,(,)2a k k R a ππ=∈∈,则 sin()a π+=A .B .C .D . k - 4.下列说法中,不正确的是A .已知 ,,a b m R ∈,命题“若 22am bm <,则a<b ”为真命题; B .命题“ 2000,0x R x x ∃∈->”的否定是:“ 2,0x R x x ∃∈-≤”; C .命题“p 或q ”为真命题,则命题p 和q 命题均为真命题; D .“x>3”是“x>2”的充分不必要条件.5.已知偶函数f(x),当 [)0,2x ∈时, ()sin f x x =,当 [)2,x ∈+∞时, 2()log f x x =则 ()(4)3f f π-+=A .2 B.1 C .3 D . 26.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S 为A .2B .C .4D .67.如图,在三棱柱 111ABC A B C -中,侧棱垂直于底面,底面是边长为 2的正三角形,侧棱长为3,则 1BB 与平面 11ABC 所成的角的大 小为 A .6π B . 4π C . 3π D .2π8.已知O 、A 、B 三地在同一水平面内,A 地在D 地正东方向2km 处,B 地在O 地正北方向2km 处,某测绘队员在A 、B 之间的直线公路上任选一点C 作为测绘点,用测绘仪进行测绘.O的范围内会对测绘仪等电子仪器形成干扰,使测量结果不准确.则该测绘队员能够得到准确数据的概率是A .12 B . 2 c . 12- D . 12- 9.已知抛物线 22(0)y px p =>的焦点F 恰好是双曲线 22221(0,0)x y a b a b-=>>的一个焦点,两条曲线的交点的连线过点F ,则双曲线的离心率为A .B .C 1+D 1+10. 一个几何体的三视图如图所示,则该几何体的体积是A.64B.72C.80D.11211.已知平面图形ABCD 为凸四边形(凸四边形即任取平面四边形 一边所在的直线,其余各边均在此直线的同侧),且AB=2,BC=4, CD=5.DA =3,则四边形ABCD 面积.s 的最大值为A .B .C .D . 12.已知函数 ln x>0()241,0x f x x x x ⎧⎪=⎨++≤⎪⎩,若关于戈的方程 2()()0f x bf x c -+=(,b c R ∈)有8个不同的实数根,则由点(b ,c)确定的平面区域的面积为 A .16 B . 13 C . 12 D . 23第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分. 13.已知平面向量a ,b 的夹角为22,13a b π==,,则 a b +=__________. 14.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为_________(用数字作答). 15.设过曲线 ()x f x e x =--(e 为自然对数的底数)上任意一点处的切线为 1l ,总存在过曲线 ()2cos g x ax x =+上一点处的切线 2l ,使得 12l l ⊥,则实数a 的取值范围为______.16.已知椭圆 22221(0)x y a b a b+=>>的两个焦点分别为 12,F F ,设P 为椭圆上一点,12F PF ∠的外角平分线所在的直线为 l ,过 1,F F 分别作 l 的垂线,垂足分别为R ,S ,当P 在椭圆上运动时,R ,S 所形成的图形的面积为_______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 设数列{}n a 的前n 项和为 11,1,1(,1)n n n S a a S n N λλ*+==+∈≠-,且12323a a a +、、为等差数列 {}n b 的前三项.(I)求数列 {}n a 、 {}n b 的通项公式; (II)求数列 {}n n a b 的前n 项和.18.(本小题满分12分)集成电路E 由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为112,,223,且每个电子元件能否正常工作相互独立.若三个电子元件中至少有2个正常工作,则E 能正常工作,否则就需要维修,且维修集成电路E 所需费用为100元. (I)求集成电路E 需要维修的概率;(II)若某电子设备共由2个集成电路E 组成,设X 为该电子设备需要维修集成电路所需的费用,求X 的分布列和期望. 19.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 为梯形,∠BAC=∠BAD=90,∠PAB=∠PAD=α(I)当 t =试在棱PA 上确定一个点E ,使得PC ∥平面BDE ,并求出此时 AEEP的值; (II)当α=60 时,若平面PAB ⊥平面PCD ,求此时棱BC 的长.20.(本小题满分12分)在平面直角坐标系xOy 中,一动圆经过点 1(,0)2且与直线 12x =-相切,设该动圆圆心的轨迹为曲线E.(I)求曲线E 的方程;(II)设P 是曲线E 上的动点,点B 、C 在y 轴上,△PBC 的内切圆的方程为 22(1)1x y -+= 求△PBC 面积的最小值. 21.(本小题满分12分) 已知函数 22()ln f x x a x x=++ (I)若以 ()f x 在区间[2,3]上单调递增,求实数a 的取值范围;(II)设 ()f x 的导函数 '()f x 的图象为曲线C ,曲线C 上的不同两点 1111(,)(,)A x y B x y 、所在直线的斜率为k ,求证:当 4a ≤时 1k >.请考生在第22—24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,已知O 和 M 相交于A 、B 两点,AD 为 M 的直径,延长DB 交 O 于C ,点G 为弧BD 中点,连结AG 分别交 O 、BD 于点E 、F ,连结CE. (I)求证: AG EF CD GD ⋅=⋅(II)求证: 22GF EF AG CE =23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线 1C 的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线 2C 的极坐标方程为ρ=2. (I)分别写出 1C 的普通方程, 2C 的直角坐标方程.(n)已知M ,N 分别为曲线 1C 的上、下顶点,点P 为曲线 2C 上任意一点,求 PM PN +的最大值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()f x =R .(I)求实数m 的取值范围.(II)若m 的最大值为n ,当正数a 、b 满足 2132n a b a b+=++时,求7a+4b 的最小值.2015年石家庄市高中毕业班第一次模拟考试高三数学(理科答案)一、 选择题(A 卷)1-5 CBACD 6-10 BADCB 11-12BA 一、选择题(B 卷)1-5 DBADC 6-10 BACDB 11-12BA 二、 填空题1314 815 []1,2- 16 2aπ三、 解答题(阅卷时发现的正确解答,请教师参阅此评分标准酌情给分)17解:(1)解法1∵11(),n n a S n N λ*+=+∈∴11n n a S λ-=+(2)n ≥∴1n n n a a a λ+-=,即1(1)n n a a λ+=+(2),10n λ≥+≠, 又1211,11,a a S λλ==+=+∴数列{}n a 为以1为首项,公比为1λ+的等比数列,…………………………………2分 ∴23(1)a λ=+,∴24(1)1(1)3λλ+=+++,整理得2210λλ-+=,得1λ=……………………4分∴12n n a -=,13(1)32n b n n =+-=-………………………………………………6分解法2:∵111,1(),n n a a S n N λ*+==+∈∴2111,a S λλ=+=+2321(11)121,a S λλλλλ=+=+++=++∴24(1)1213λλλ+=++++,整理得2210λλ-+=,得1λ=………………………2分∴11(),n n a S n N *+=+∈ ∴11n n a S -=+(2)n ≥∴1n n n a a a +-=,即12n n a a +=(2)n ≥, 又121,2a a ==∴数列{}n a 为以1为首项,公比为2的等比数列,………………………………………4分 ∴12n n a -=,13(1)32n b n n =+-=- (6)分(2)1(32)2n n n a b n -=-∴121114272(32)2n n T n -=⋅+⋅+⋅++-⋅………………………①∴12312124272(35)2(32)2n n n T n n -=⋅+⋅+⋅++-⋅+-⋅………②…………8分 ① —②得12111323232(32)2n n n T n --=⋅+⋅+⋅++⋅--⋅12(12)13(32)212n n n -⋅-=+⋅--⋅-…………………………………10分整理得:(35)25nn T n =-⋅+…………………………………………………………12分18解:(Ⅰ)三个电子元件能正常工作分别记为事件,,A B C ,则112(),(),()223p A p B p C ===. 依题意,集成电路E 需要维修有两种情形:①3个元件都不能正常工作,概率为11111()()()()22312p p ABC p A p B p C ===⨯⨯=; …………2分②3个元件中的2个不能正常工作,概率为2()()()()p p ABC ABC AB C p ABC p ABC p AB C =++=++11111111241223223223123=⨯⨯+⨯⨯+⨯⨯== ……………5分 所以,集成电路E 需要维修的概率为1211512312p p +=+=. ……………6分 (Ⅱ)设ξ为维修集成电路的个数,则5(2,)12B ξ,而100X ξ=,2257(100)()()(),0,1,2.1212k k kP X k P k C k ξ-===== (9)分X 的分布列为:………………10分4935252500100200144721443EX ∴=⨯+⨯+⨯= 或52501001002123EX E ξ==⨯⨯=. …………12分19解:X 0100200p49144 3572 25144AD 因为∥,BC 1,3A F A D F CBC ==所以因为EF ∥PC ,1=.3AE AF EP FC =所以-------------4证明二在棱PA 上取点E ,使得13AE EP =,------------2 连接AC BD ,交于点F ,AD 因为∥,BC 1,2,AF AD FC BC AE AF EP FC ===所以所以 所以,EF ∥PC 因为PC ⊄平面BDE ,EF⊂平面BDE所以PC ∥平面BDE -------------4(2)取BC 上一点G 使得BG =连结DG ,则ABGD 为正方形.过P 作PO ⊥平面ABCD ,垂足为O . 连结,,,OA OB OD OG .0,60AP AD AB PAB PAD ==∠=∠=,所以PAB ∆和PAD ∆都是等边三角形,因此PA PB PD ==, 所以OA OB OD ==,即点O 为正方形ABGD 对角线的交点,---------------7(或取BC 的中点G ,连结DG ,则ABGD 为正方形. 连接,AG BD 交于点O ,连接PO ,0,60AP AD AB PAB PAD ==∠=∠=,00,,,90,90.PAB PAD PA PB PD OD OB POB POD POB POD POA POB POA PO ABCD ∆∆===∆≅∆∠=∠=∆≅∆∠=⊥所以和都是等边三角形,因此又因为所以得到,同理得,所以平面-----------7),,OG OB OP 因为两两垂直,以O 坐标原点,分别以,,OG OB OP 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系O xyz -.000001100010010100O P A B D G --则(,,),(,,),(,,),(,,),(,,)(,,)设棱BC 的长为t ,则,1,0)C ,22(1,0,1),(0,1,1),(,1,1),(0,1,1)t tPA PB PC PD =--=-=--=-- --------------9 ,111(,,),00,001,(1,1,1)PABx y z PA x z yz PB x PAB =⎧=--=⎧⎪⎨⎨-==⎩⎪⎩=-=-设平面的法向量则即不妨令可得为平面的一个法向量.m m m m -----------10222(,,),0(1)0,001,(11)PCD x y z PC y z PD y z y PCD =⎧=+-=⎪⎨=⎪⎪⎩--=⎩==-设平面的法向量则即不妨令可得为平面的一个法向量.n n n n-----------110,=m n 解得t=BC 即棱的长为20解:(1)由题意可知圆心到1(,0)2的距离等于到直线12x =-的距离,由抛物线的定义可知,圆心的轨迹方程:22y x =.………………………4分 (2)设00(,)P x y ,(0,),(0,)B b C c ,直线PB 的方程为:000()0y b x x y x b --+=, 又圆心(1,0)到PB 的距离为1,1=,整理得:2000(2)20x b y b x -+-=, …………………………6分同理可得:2000(2)20x c y c x -+-=,所以,可知,b c 是方程2000(2)20x x y x x -+-=的两根, 所以:00002,,22y x b c bc x x --+==--……………………8分 依题意0bc <,即02x >,则22200020448()(2)x y x b c x +--=-,因为2002y x =,所以: 0022x b c x -=-,………………10分所以00014(2)482(2)S b c x x x =-=-++≥-,当04x =时上式取得等号,所以PBC ∆面积最小值为8.………………………12分 解二:(2)设00(,)P x y ,直线PB :00()y y k x x -=-与圆D 相切,则1=,整理得:22200000(2)2(1)10x x k x y k y -+-+-=,……………………6分20001212220002(1)1,22x y y k k k k x x x x--+=-=--,………………………8分 依题意02x >那么010020120()()B C y y y k x y k x k k x -=---=-, 由韦达定理得:12022k k x -=-,则0022B Cx y y x -=-,…………………10分所以00014()(2)482(2)B C S y y x x x =-=-++≥-当04x =时上式取得等号,所以PBC ∆面积最小值为8.…………………12分 21. 解:(1)由()22ln f x x a x x =++,得()'222af x x x x =-+.因为()f x 在区间[]2,3上单调递增,则()'2220a f x x x x=-+≥在[]2,3上恒成立,………………2分即222a x x ≥-在[]2,3上恒成立,设22()2g x x x =-,则22()40g x x x'=--<,所以()g x 在[]2,3上单调递减,故max ()(2)7g x g ==-,所以7a ≥-.……………4分 (2)解法一:12121212()()11()()f x f x k f x f x x x x x ''-''>⇔>⇔->--而()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x ax x x x x x +-⋅+-故欲证()()''1212f x f x x x ->- ,只需证()12221212221x x ax x x x ++->…………………6分 即证()1212122x x a x x x x +<+成立∵()121212122x x x x x x x x ++>…………………8分设t =()()240u t t t t =+>,则()242u t t t'=-令()0u t '=得t =()4u t a ≥=>≥ ………………………10分∴()1212122x x x x a x x ++> ∴()()''1212f x f x x x ->-, 即1212()()1f x f x x x ''->- t()+∞()'u t_0 +()u t极小值∴当4a ≤时,1k >…………………12分 解法二:对于任意两个不相等的正数1x 、2x 有()1212122x x x x x x ++>12x x=12x x +3≥3 4.5a >> …………………8分 ∴ ()12221212221x x a x x x x ++-> 而()'222a f x x x x =-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x ax x x x x x +-⋅+-12x x >-…………………10分 故:()()''1212fx f x x x ->- ,即1212()()1f x f x x x ''->- ∴当4a ≤时,1k >………12分22. 证明:(1)连结AB ,AC ,∵AD 为M 的直径,∴090ABD ∠=,∴AC 为O 的直径, ∴0=90CEF AGD ∠=∠,∵DFG CFE ∠=∠,∴ECF GDF ∠=∠, ∵G 为弧BD 中点,∴DAG GDF ∠=∠, ∴DAG ECF ∠=∠,ADG CFE ∠=∠ ∴CEF ∆∽AGD ∆,……………3分∴CE AGEF GD=, ∴GD CE EF AG ⋅=⋅。

2015届高三质检二理综试卷及答案

2015届高三质检二理综试卷及答案

2015届石家庄市高中毕业班第二次教学质量检测理科综合能力测试物理部分答案二、选择题:本大题共8小题,每小题6分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求。

第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

〖附注:21小题分析解答过程〗根据题设条件,画出小车运动的示意图,并标出4个关键的位置。

线圈右边进入匀强磁场开始切割磁感线,产生电动势,形成感应电流,而受到水平向左的安培力作用而做减速运动,由牛顿第二定律、法拉第电磁感应定律和安培力可得:22B l vma R =,方程两边同乘以t ∆,整理可得:22B l va t t mR ⨯∆=⨯∆,又因为v a t x v t ∆=⨯∆∆=⨯∆,,可得:22v B l x mR∆=∆为定值,在v -x 图像中,线圈进场和出场的过程中,速度随位移成线性减小,因进场和出场线圈的位移都为l =10cm ,故线圈进场和出场的过程中的速度变化量相等,设线圈完全出场后的速度为v ,则1.5-v =2.0-1.5,则v =1.0m/s ,选项AC 正确;当小车的位移为15cm 时,线圈完全在磁场中运动,线圈的磁通量不变,没有感应电流产生,选项C 错误;小车由位置2到位置3的过程,由能量守恒定律,可知:线圈产生的焦耳热等于小车的动能的减少量,即222311()()22Q M m v M m v =+-+=0.0625J ,选项D 错误。

22. (4分) 1.020 (2分) 4.995(4.993~4.997都给分)(2分) 23. (11分)(1)(6分)④负(2分) ⑤欧姆调零(2分) 3000 (2分)(2)(5分)见图所示(3分),121U R U U -(2分)24.(13分)解:(1)(6分)设救生圈平抛运动的时间为t 0,由平抛运动规律,有:2012H gt =,(2分), H tan θ=v 0t 0 (2分),联立以上各式,得v 0=7.5m/s , t 0=2s (2分) (2)(7分)由几何关系,绳索长L =cos37H=25 m (2分), 因加速过程与减速过程的加速度大小相等,加速过程的初速度和减速过程的末速度都为零,故加速过程和减速过程的时间相等(1分),由运动学公式可得:20122at L ⨯=(2分), 代入数据,得2206.25m/s L a t ==(2分) 25.(19分)解:(1)(5分)粒子在磁场中做匀速圆周运动的周期为:T =2πm qB (1分)若粒子在磁场中运动的轨迹所对的圆心角为θ,则粒子在磁场中运动的时间为:t =θ2πT =mθqB(1分)从图中几何关系可知,β=23π(2分)所以时间t =mβqB =2πm3qB(1分)(2)(11分)由qvB =2mv R表达式可知,从磁场右边界射出的最小速度的粒子,在磁场中做圆周运动的半径最小。

河北省石家庄市2015届高三下学期二模考试数学(理)试题(含答案)

河北省石家庄市2015届高三下学期二模考试数学(理)试题(含答案)

X
的分布列,期望 E(X)和方程 D( X)
19、(本小题满分 12 分)
已知 PA 平面 ABCD ,CD AD , BA AD ,CD AD AP 4, AB 1 。 ( 1)求证: CD 平面 ADP ; ( 2) M为线段 CP上的点,当 BM AC 时,求二面角 C AB M 的余弦值。
11
1
.1
2 32 432
11
1
1
.1
2 32 4 32 5 432
9、在平面直角坐标系中,角
的顶点与原点重合,始边与 x 轴的非负半
轴重合,终边过点 P(sin ,cos ) ,则 sin(2
)
88
12
A. 3 2
B .3 2
1
C.
2
D .1 2
10、在四面体 S-ABC中, SA 平面 ABC, BAC 120 , SA AC 2, AB 1,
如图: O 的直径 AB 的延长线于弦 CD的延长线相交于 点 P, E 为 O 上一点, AE AC, DE 交 AB 于点 F。 ( 1)求证: O , C , D , F 四点共圆; ( 2)求证: PF PO PA PB .
23、(本小题满分 10 分)选修 4-4 :坐标系与参数方程
在平面直角坐标系
若将日均课外阅
读时间不低于 60 分钟的学生称为“读书谜” ,低于 60 分钟的学生称为“非读书谜”
( 1)根据已知条件完成下面 2 2 的列联表,并据此判断是否有
与性别有关?
99%的把握认为“读书谜”
( 2)将频率视为概率, 现在从该校大量学生中, 用随机抽样的方法每次抽取 1 人,共抽取
3 次,记被抽取的 3 人中的“读书谜”的人数为 X,若每次抽取的结果是相互独立的,求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届石家庄高中毕业班第二次模拟考试试卷数学(理科)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合21{|log ,1},{|,2}U y y x x P y y x x==>==>,则U C P = A .1(0,)2 B .(0,)+∞ C .1[,)2+∞ D .1(,0)[,)2-∞+∞2、下列四个函数中,既是奇函数又是定义域上的单调递增的是A .2x y -=B .tan y x =C .3y x =D .3log y x = 3、已知复数z 满足2015(1)i z i --(其中i 为虚数单位),则z 的虚部为A .12 B .12- C .12i D .12i - 4、等比数列{}n a 的前n 项和为n S ,已知32175,2S a a a =+=,则5a = A .12 B .12- C .2 D .2- 5、设变量,x y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+的最小值为A .6B .7C .8D .23 6、投掷两枚骰子,则点数之和是8的概率为 A .536B .16C .215D .1127、某几何体的三视图如图所示,则该几何体的体积为 A .103 B .53 C .203D .4 8、执行右下方的程序框图,如果输入的4N =,那么输出的S 的值为A .1111234+++ B .1111232432+++⨯⨯⨯ C .111112345++++ D .111112324325432++++⨯⨯⨯⨯⨯⨯9、在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点(sin,cos )88P ππ,则sin(2)12πα-=A ..12 D .12-10、在四面体S-ABC 中,SA ⊥平面,120,2,1ABC BAC SA AC AB ∠====, 则该四面体的外接球的表面积为 A .11π B .7π C .103π D .403π 11、已知F 是抛物线24x y =的焦点,直线1y kx =-与该抛物线交于第一象限 内的零点,A B ,若3AF FB =,则k 的值是A C 12、设函数()()2212,2(),,0,1,2,,9999i if x x f x x x a i ==-==,记1021|()()||()()|k k k k k S f a f a f a f a =-+- 9998|()()|,1,2k k f a f a k ++-=,则下列结论正确的是A .121S S =<B .121S S =>C .121S S >>D .121S S <<第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。

. 13、已知向量(2,1),(,1)a b x ==-,且a b -与b 共线,则x 的值为 14、已知8280128(1)(1)(1)x a a x a x a x =+-+-++-,则7a =15、设点P 、Q 分别是曲线(x y xe e -=是自然对数的底数)和直线3y x =+上的动点,则P 、Q 两点间距离的最小值为16、在平面直角坐标系中有一点列111222(,),(,),,(,),n n n P a b P a b P a b 对n N *∀∈,点n P 在函数(01)x y a a =<<的图象上,又点1(,0),(,),(1,0)n n n n n A n P a b A n ++构成等腰三角形,且1n n n n P A P A +=若对n N *∀∈,以12,,n n n b b b ++为边长能构成一个三角形,则a 的取值范围是 三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足cos (2)cos()b A c a B π=+-(1)求角B 的大小;(2)若4,b ABC =∆a c +的值。

18、(本小题满分12分)4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面22⨯的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方程D (X )19、(本小题满分12分)已知PA ⊥平面,,,4,1ABCD CD AD BA AD CD AD AP AB ⊥⊥====。

(1)求证:CD ⊥平面ADP ;(2)M 为线段CP 上的点,当BM AC ⊥时,求二面角C AB M --的余弦值。

20、(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>经过点(1,2,离心率为2。

(1)求椭圆C 的方程;(2)不垂直与坐标轴的直线l 与椭圆C 交于,A B 两点,线段AB 的垂直平分线交y 轴于点1(0,)3P ,若1cos 3APB ∠=,求直线l 的方程。

21、(本小题满分12分)已知函数()2,(xf x e ax e =--是自然对数的底数,)a R ∈。

(1)求函数()f x 的单调递增区间; (2)若k 为整数,1a =,且当0x >时,()11k xf x x -'<+恒成立,其中()f x '为()f x 的导函数,求k 的最大值。

请考生在第(22)、(23)(24)三体中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22、(本小题满分10分)选修4-1:几何证明选讲如图:O 的直径AB 的延长线于弦CD 的延长线相交于点P ,E 为O 上一点,,AE AC DE =交AB 于点F 。

(1)求证:,,,O C D F 四点共圆; (2)求证:PF PO PA PB ⋅=⋅.23、(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程122(x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:4cos ρθ=。

(1)直线l 的参数方程化为极坐标方程;(2)求直线l 的曲线C 交点的极坐标(0,02ρθπ≥≤<)24、(本小题满分10分)选修4-5:不等式选讲设函数()()221(0),2f x x a x a g x x =-++>=+。

(1)当1a =时,求不等式()()f x g x ≤的解集; (2)若()()f x g x ≥恒成立,求实数a 的取值范围。

2015年石家庄市高三数学第二次模拟考试(理科答案) 一、选择题:1-5 CCAAB 6-10 AABAD 11-12 DB 二、填空题: 13. 2-14. 815 223 16.1215<<-a三、解答题:17.解: (Ⅰ) ()cos (2)cos b A c a B π=+-Qcos (2)cos b A c a B ∴=--…………………………1分sin cos (2sin sin )cos B A C A B ∴=--…………………………3分 sin()2sin cos A B C B ∴+=- ∴ 1cos 2B =-…………………………5分 ∴ 23B π=…………………………6分(Ⅱ) 由1=sin 2ABC S ac B ∆= a c =4…………………………8分. 由余弦定理得b 2=a 2+c 2+ac216(a+c )ac -==…………………10分∴ a +c =12分18.解(1)完成下面的22⨯列联表如下……………… 3分22100(40251520)60405545K ⨯-⨯=⨯⨯⨯≈8.2498.249 > 6.635,故有99%的把握认为“读书迷”与性别有关。

...……………..6分 (2)视频率为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率为52. 由题意可知X ~B (3,52),P(x=i)=3323()()55i i i -ð (i=0,1,2,3)………………8分 从而分布列为.……………… 10分 E(x)=np=56 (或0.6),D(x)=np(1-p )=2518 (或0.72) ……………… 12分 19.(1)证明:因为PA ⊥平面ABCD ,PA ⊂平面ADP ,所以平面ADP ⊥平面ABCD. …………………………………………2分 又因为平面ADP ∩平面ABCD=AD ,CD ⊥AD ,所以CD ⊥平面ADP. ……………………………………………………4分(2)AD ,AP ,AB 两两垂直,建立如图所示空间坐标系,则A (0,0,0),B (0,0,1),C (4,0,4),P (0,4,0),则)1,0,0(=,)4,0,4(=,)0,4,0(=,)4,4,4(-=.………………………………6分设M (x, y , z), λ=)10(≤≤λ,则),4,(z y x PM -=.所以),4,(z y x -λ=)4,4,4(-,⎪⎩⎪⎨⎧=-==λλλ4444z y x ,)4,44,4(λλλ-M ,)14,44,4(--=λλλ.因为BM ⊥AC ,所以0=⋅AC BM ,⋅--)14,44,4(λλλ0)4,0,4(=,解得81=λ, zxy所以M ⎪⎭⎫ ⎝⎛21,27,21,. …………………………………………8分设),,(1111z y x n =为平面ABM 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅0011AM n n ,又因为)1,0,0(=AB ,=⎪⎭⎫ ⎝⎛21,27,21所以⎪⎩⎪⎨⎧=++=021272101111z y x z . 令11=y 得)0,1,7(1-=n 为平面ABM 的一个法向量.又因为AP ⊥平面ABC ,所以)0,4,0(2=n 为平面ABC 的一个法向量.…………………10分=⋅>=<||||,cos 212121n n n n 1025044=, 所以二面角C —AB —M 的余弦值为102.…………………………12分 法2:在平面ABCD 内过点B 作BH ⊥AC 于H ,在平面ACP 内过点H 作HM ∥AP 交PC 于点M ,连接MB ………6分, 因为AP ⊥平面ABCD , 所以HM ⊥平面ABCD. 又因为AC ⊂平面ABCD , 所以HM ⊥AC.又BH ∩HM=H, BH ⊂平面BHM ,HM ⊂平面BHM , 所以AC ⊥平面BHM.所以AC ⊥BM ,点M 即为所求点. …………………………………………8分 在直角ABH ∆中,AH=2222=AB , 又AC=2422=+DA CD ,所以81=AC AH . 又HM ∥AP ,所以在ACP ∆中,81=PC PM.在平面PCD 内过点M 作MN ∥CD 交DP 于点N ,则在PCD ∆中, 81=PD PN . 因为AB ∥CD ,所以MN ∥BA.连接AN ,由(1)知CD ⊥平面ADP ,所以AB ⊥平面ADP. 所以AB ⊥AD ,AB ⊥AN.所以∠DAN 为二面角C —AB —M 的平面角.………………………10分在PAD ∆中,过点N 作NS ∥PA 交DA 于S ,则81=AD AS , 所以AS=21,2787==PA NS ,所以NA=225.所以102cos cos ==∠=∠NA AS SAN DAN . 所以二面角C —AB —M 的余弦值为102. …………………………………………12分 20.解:(Ⅰ)由题意得221314c a a b ⎧⎪⎪⎨⎪+=⎪⎩,解得=2a ,1b =. 所以椭圆C 的方程是2214x y +=. ……………………… 4分 (Ⅱ)设直线l 的方程设为y kx t =+,设1122(,),(,)A x y B x y ,联立2214y kx t x y =+⎧⎪⎨+=⎪⎩消去y 得222(14)8440k x ktx t +++-= 则有122814kt x x k -+=+,21224414t x x k-=+, 由22041k t ∆>⇒+>;12121222()214ty y kx t kx t k x x t k +=+++=++=+ …………… 6分设,A B 的中点为(),D m n ,则1224214x x kt m k +-==+,122214y y tn k +==+ 因为直线PD 于直线l 垂直,所以113PD n k k m -=-=-得21149t k =-+ ………… 8分2204190k t t ∆>⇒+>⇒-<<因为21cos 2cos 13APB APD ∠=∠-=-所以cos APD ∠=,tan APD ⇒∠=所以2ABPD =PD =,AB === ………10分由2AB PD==21149t k =-+解得 ()19,0t=-∈-,k =直线l 的方程为1y -或1y =-. ………… 12分 解法二(Ⅱ)设直线l 的斜率为k ,设1122(,),(,)A x y B x y ,,A B 的中点为()00,D x y , 所以1212y y k x x -=- ,1202x x x +=,1202y y y +=由题意221122221(1)41(2)4x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,(1)式(2)-式得()()()()1212121204x x x x y y y y -++-+=⇒()()()()12121212104y y y y x x x x -++=⇒-+00104y k x +=又因为直线PD 与直线l 垂直,所以00131y k x -=-由0000104131y k x y k x ⎧+=⎪⎪⎨-⎪=-⎪⎩解得001949y x k ⎧=-⎪⎪⎨⎪=⎪⎩ …………… 6分 因为21cos 2cos 13APB APD ∠=∠-=-所以cos APD ∠=,tan APD ⇒∠=所以2ABPD= ………8分PD ===设直线l 的方程设为()200419k y y k x x y kx +-=-⇒=-, 联立22241914k y kx x y ⎧+=-⎪⎪⎨⎪+=⎪⎩消去y 得()2222284141(14)44099k k k k x x +⎛⎫++-+-= ⎪⎝⎭ 120829x x x k +==,221224144914k x x k⎛⎫+- ⎪⎝⎭=+, 由2020k ∆>⇒<AB ===………10分2ABPD==k =2020k ∆>⇒<.,由2419k y kx +=-得直线l 的方程为1y =-或1y =-. ……… 12分 21.解析:(1)R x a e x f x ∈-=,)(/.若0≤a ,则0)(/>x f 恒成立,所以,)(x f 在区间()+∞∞-,上单调递增.........2分若0>a ,当()+∞∈,ln a x 时,0)(/>x f ,)(x f 在()+∞,ln a 上单调递增.综上,当0≤a 时,)(x f 的增区间为()+∞∞-,;当0>a 时,)(x f 的增区间为()+∞,ln a ......................................................... 4分(2)由于1=a ,所以,()1()(1)11x k x f x k x e x x -'<⇔--<++ 当0>x 时,10x e ->,故()1()111x x x k x e x k x e +--<+⇔<+- ————①......6分令()1(0)1x x g x x x e +=+>-,则()()().1)2(11122/---=+---=x x x x x e x e e e xe x g 函数2)(--=x e x h x在()+∞,0上单调递增,而.0)2(,0)1(><h h 所以)(x h 在()+∞,0上存在唯一的零点,故)(/x g 在()+∞,0上存在唯一的零点. .............................8分 设此零点为α,则()2,1∈α.当()α,0∈x 时,0)(/<x g ;当()+∞∈,αx 时,0)(/>x g ; 所以,)(x g 在()+∞,0上的最小值为)(αg .由,0)(/=αg 可得,2+=ααe .........................................................10分所以,().3,21)(∈+=ααg 由于①式等价于)(αg k <.故整数k 的最大值为2. .............................................12分22.解析:(1)连接OC ,OE ,因为AE AC =,所以12AOC AOE COE ∠=∠=∠,.................2分 又因为12CDE COE ∠=∠, 则AOC CDE ∠=∠,所以,,,O C D F 四点共圆.………………5分(2)因为PBA 和PDC 是O 的两条割线,所以PD PC PA PB =⋅,……………7分因为,,,O C D F 四点共圆,所以PDF POC ∠=∠,又因为DPF OPC ∠=∠,则PDF ∆∽POC ∆, 所以PD PF PO PC=,即PF PO PD PC =⋅ 则PF PO PA PB =⋅.………………10分23.解析:(1)将直线:l 122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)消去参数t ,化为普通方程0y --=,……………………2分将cos sin x y ρθρθ=⎧⎨=⎩0y --=cos sin 0θρθ--=.…………4分 (2)方法一:C 的普通方程为2240x y x +-=.………………6分由22040y x y x --=+-=⎪⎩解得:1x y =⎧⎪⎨=⎪⎩3x y =⎧⎪⎨=⎪⎩8分 所以l 与C 交点的极坐标分别为:5(2,)3π,)6π.………………10分方法二:由cos sin 04cos θρθρθ--==⎪⎩,……………6分 得:sin(2)03πθ-=,又因为0,02ρθπ≥≤<………………8分 所以253ρπθ=⎧⎪⎨=⎪⎩或6ρπθ⎧=⎪⎨=⎪⎩所以l 与C 交点的极坐标分别为:5(2,)3π,)6π.………………10分 24.解析:(1)当1a =时,|21||21|2x x x -++≤+1242x x x ⎧≤-⎪⇒⎨⎪-≤+⎩无解, 111022222+x x x ⎧-<<⎪⇒≤<⎨⎪≤⎩, 11222342x x x x ⎧≥⎪⇒≤≤⎨⎪≤+⎩………………………3分 综上,不等式的解集为2{0}3x x ≤≤.………………5分(2)|2||21|2x a x x -++≥+,转化为|2||21|20x a x x -++--≥ 令()|2||21|2h x x a x x =-++--, 因为a>0,所以153,21()1,2231,2x a x a h x x a x a x a x ⎧-+-≤-⎪⎪⎪=-+--<<⎨⎪⎪--≥⎪⎩, ………………8分在a>0下易得min ()12a h x =-,令10,2a -≥a 得 2.a ≥a ………………10分。

相关文档
最新文档