燃煤电厂锅炉选择性催化还原脱硝技术简述
选择性催化还原脱硝技术(SCR).

c.尾部烟气段布置
SCR反应器布置在烟气脱硫装置(FGD)后,催化剂将完全工作在 无尘、无二氧化硫的“干净”烟气中。 当催化剂在干净烟气中工作时,其工作寿命可达高灰段催化剂使用 寿命的两倍。 该布置方式的主要问题是将反应器布置在湿式FGD脱硫装置后,而 低温SCR催化剂还没有达到工程应用的程度,其排烟温度仅为50~60℃,
3)氨与NOx在反应器内,在催化剂的作用下反应生成N2和H2O。 N2和
H2O随着烟气进入空气预热器。在SCR进口设置NOx、O2温度监视分
析仪,在SCR出口设置NOx、O2、NH3温度监视分析仪。 NH3温度监 视分析仪监视NH3的逃逸浓度小于规定值,超过则报警并自动调节
பைடு நூலகம்
NH3注入量。
4)在氨气进气装置分管阀后设有氮气预留阀及接口,在停工检修时用于 吹扫管内氨气。
(1)烟气中所携带的飞灰中含有的Na、Ca、Si、As等成分会使催化剂中毒; (2)飞灰对SCR反应器的磨损; (3)飞灰将SCR反应器蜂窝状通道堵塞; (4)如烟气温度升高,会将催化剂烧结,或使之再结晶失效;如烟气温度 降低,NH3会与SO3反应生成硫酸铵,从而堵塞SCR反应器通道和污染空气预
热器;
图2-3 SCR反应器的布置方式 (a) 高灰段布置;
图2-3 SCR反应器的布置方式
(b) 低灰段布置;
图2-3 SCR反应器的布置方式 (c) 尾部烟气段布置;
a.高灰段布置
SCR反应器布置在省煤器与空气预热器之间,反应温度一般 为300~400 ℃,
适合催化剂的运行温度,但此时烟气中所含有的全部飞灰和二氧化硫均通过催化 剂反应器,催化剂的寿命会大大缩短;影响催化剂寿命的因素有:
得反应温度大大降低(300~450℃),从而可以在锅炉的
SCR脱硝技术

SCR脱硝技术及其脱硝催化剂生产工艺1、概述SCR(selective catalytic reduction)是烟气选择性催化还原法脱硝技术的简称,是指在催化剂的作用下,利用还原剂(如NH3)“有选择性”地与烟气中的NOx反应并生成无毒无污染的N2和H2O。
也就是说SCR工艺的实质就是燃煤锅炉排放烟气中的NOx污染物与喷入烟道的还原剂NH3,在催化剂的作用下发生氧化还原反应,生成无害的N2和H2O。
该工艺于20世纪70年代末首先在日本开发成功,80年代和90年代以后,欧洲和美国相继投入工业应用,现已在世界范围内成为大型工业锅炉烟气脱硝的主流工艺。
为避免烟气再加热消耗能量,一般将SCR反应器布置在锅炉省煤器出口与空气预热器之间,即高飞灰布置。
此时烟气温度(300℃-430℃)正好是催化剂的最佳活性温度窗口。
氨气在加入空气预热器前的水平管道上加入,与烟气混合,NOx在催化剂的作用下被还原为N2和H2O。
目前常规应用的SCR技术为中温催化剂(280℃-420℃),而现在正在研究开发的低温催化剂,可应用于200℃以下的烟气温度。
2、SCR反应过程SCR技术是在金属氧化物催化剂作用下,以NH3作为还原剂,将NOx还原成N2和H2O。
NH3不和烟气中的残余的O2反应,而如果采用H2、CO、CH4等还原剂,它们在还原NOx的同时会与O2作用,因此称这种方法为“选择性”。
主要反应方程式为:4NH3+4NO+O2─>4N2+6H2O (1)NO+NO2+2NH3─>2N2+3H2O (2)3、SCR系统设计条件•烟气流量•烟气温度•烟气成分和灰分成分•烟气入口NOx浓度•脱硝效率•空间速率•NH3/NOx摩尔比•SO2转化率•NH3逃逸率•反应器运行压降4 、SCR脱硝系统主要装置•氨存储和供应系统•氨/空气喷射系统•SCR反应器•SCR催化剂•SCR控制系统•吹灰和灰输送系统5、SCR催化反应还原剂用于SCR烟气脱硝的还原剂一般有3种:液氨、氨水、及尿素。
选择性催化还原法脱硝技术介绍

scr反应器内部五scr的工艺流程液氨从液氨槽车由卸料压缩机送入液氨储槽再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进入锅炉区通过与空气混合后由分布导阀进入scr反应器内部反应scr反应器设置于空预器前氨气在scr反应器的上方通过一种特殊的喷雾装置和烟气均匀分布混合混合后烟气通过反应器内催化剂层进行还原反应
1、氨储存罐可以容纳15天使用的无水氨,可充至 85%的储罐体积,装有液面仪和温度显示仪。
2、液氨汽化采用电加热方式。 3、在反应器前安装静态混合器,保证烟气与氨气在 烟道混合均匀,维持较低的NH3逃逸率。 4、SCR反应器采用固定床形式,催化剂为模块放置, 在反应器催化剂层间设置了吹灰装置,定时吹灰,吹扫 时间30~120分钟,每周1~2次,保证催化剂表面的洁 净。 5、反应器器下设有灰斗,与电厂排灰系统相连,定 时排灰。 6、SCR工艺的核心装置是催化剂反应器,有水平和 垂直气流两种布置方式,如图2所示。在燃煤锅炉中,烟 气中的含尘量很高,一般采用垂直气流方式。
位置。
三、SCR系统的主要设备
XX热电 2×300MW 机组脱硝系统是由哈锅引进 日本三菱重工技术制造安装,脱硝系统一般组成:
◆ 烟道系统(包括省煤器和 SCR旁路) ◆ 氨的储存及供应系统 ---卸料压缩机、液氨储罐、 氨气蒸发器、氨气缓冲器 ◆ 氨气与空气混合系统 ◆ 氨气喷入系统 ◆ SCR反应系统 ◆ 吹灰系统 ◆ 检测控制系统 ◆ 电气系统
选择性催化还原(SCR)法烟气脱硝技术

选择性催化还原(SCR)法烟气脱硝技术摘要:选择性催化还原(SCR)烟气脱硝技术以其高效的特点在国外得到了普遍的应用。
本文概述了SCR法的基本原理、催化剂的分类及成型布置方式、SCR 系统在电站锅炉系统中的布置方式、系统的构成和主要装置设备以及工程应用中常见的问题和解决办法。
分别以飞灰、飞灰与Al2O3混合、堇青石蜂窝陶瓷的Al2O3涂层作为载体,担载CuO、Fe2O3等金属氧化物作为活性成分进行活性测试,在实验室理想气体条件下具有较高的效率。
关键词:选择性催化还原,催化剂,SCR系统,飞灰1. 引言NO和NO2是人类活动中排放到大气环境的大量常见的污染物,通称NOx。
酸雨主要由大气污染物如硫氧化物、氮氧化物及挥发性有机化合物所导致。
因为其对土壤和水生态系统所带来的变化是不可逆的,它的影响极其严重。
NOx对大气环境的污染除了其本身的危害之外,还由于它们参与光化学烟雾的生成而受到人们的特别关注。
固定源氮氧化物排放控制技术主要有两类:燃烧控制和燃烧后控制。
燃烧控制的手段主要包括低过量空气燃烧、烟气再循环、燃料再燃烧、分级燃烧和炉膛喷射等;燃烧后脱硝的措施包括湿法和干法[1]。
而在干法中,选择性催化还原(SCR)法烟气脱硝技术具有高效率的特点,目前最高的脱硝效率能达到95%以上,因此在世界范围内得到了十分广泛的应用。
SCR烟气脱硝系统最早由七十年代晚期在日本的工业锅炉机组和电站机组中得到应用。
到目前为止已经有170多套的SCR装置在日本的电站机组上运行,其总装机容量接近100,000MW。
在欧洲,SCR技术于1985年引入,并得到了广泛的发展。
电站机组的总装机容量超过60,000MW[2]。
在美国,最近五到十年以来,SCR系统得到十分广泛的应用。
为适应更高的排放标准,SCR已经被作为最好的可以利用的技术。
此外在丹麦、意大利、俄罗斯、澳大利亚、韩国、台湾等国家和地区都建立了一些SCR的脱硝装置。
我国福建某电厂也曾引进该装置和技术。
火力发电厂选择性催化还原(SCR)法脱硝技术

火力发电厂选择性催化还原(SCR)法脱硝技术目前,我国发电装机容量已突破4亿kW,绝大多数为燃煤机组。
以火电厂为主排放的SO2和NOx不断增加。
尽管NOx所带来的危害有目共睹,但目前我国火电厂环保措施主要集中于脱硫处理,而在控制NOx排放方面则刚刚起步,与世界先进国家相比尚有很大差距,主要原因是这项技术发展较晚,需要的投资较大;另一方面,我国目前对NOx排放的要求较低,新建火电厂锅炉燃烧器只需采用低NOx燃烧技术就可以达到国家排放标准,故脱硝技术在整个火电厂环保措施中所占的比重较小。
针对这些问题,我国已着手进行烟气脱硝示范工程,要求已建和新建火电机组要逐渐把脱硝系统列入建设规划,到2010年,从目前的新建火电厂规模考虑,排除采用其他方式脱硝的机组。
专家估测认为,至少有2亿kW的机组容量需要建设脱硝系统,在脱硝项目上会形成可观的市场规模。
脱硝领域正在迅速形成一个总量达到1 100亿元的大市场。
它将是继火电厂脱硫技术后,又一个广阔的极具爆发性增长的市场。
从2004年底的“环保风暴”到2005年初的《京都协议书》正式生效、从国家不断发布扶持政策鼓励电力环保到大手笔的拨款资助,表明国家对电力环保产业化发展的支持力度越来越大,而烟气脱硝产业正是在此背景下进入快速发展时期。
烟气脱硝是继烟气脱硫之后国家控制火电厂污染物排放的又一个重点领域。
2004年7月,我国公布并实施《火电厂大气污染物排放标准》,对火电厂NOx排放要求有了大幅度的提高,并将成为控制火力发电厂大气污染物排放、改善我国空气质量和控制酸雨污染的推动力。
今后,国家将对重点火电企业以发电污染物排放绩效为基础,制定全国统一的火电行业SO2和NOx排放总量控制指标分配方法,并由国家统一分配30万kW以上火电企业的排放总量控制指标。
从“十一五”开始,国家与省级环保部门将对30万kW以上的火电企业的SO2、NOx排放总量控制指标实施共同监控。
目前应用的火电厂锅炉脱硝技术中,选择性催化还原(Selective Catalytic Reduction简称SCR)法脱硝工艺被证明是应用最多且脱硝效率最高、最为成熟的脱硝技术,是目前世界上先进的火电厂烟气脱硝主流技术之一。
脱硝技术的介绍范文

脱硝技术的介绍范文一、低氮燃烧技术:低氮燃烧技术是通过调整燃料燃烧的方式来降低NOx的排放。
该技术主要通过改变燃烧设备的结构和参数以及燃烧过程中的操作条件来实现。
常见的低氮燃烧技术包括分级燃烧、流化床燃烧、超细颗粒煤和燃料添加剂等。
分级燃烧是指在锅炉中设置多级燃烧器,通过不同燃烧器之间的分布来实现燃烧的分级,以降低燃料燃烧产生的NOx排放。
流化床燃烧是一种高效燃烧技术,通过床层内部的温度、物料循环和流动速度等参数的控制,可以实现低NOx排放。
超细颗粒煤是将煤通过研磨等处理技术制备成小颗粒煤,燃烧时可以增加煤粉的燃烧速度,减少煤的残留时间和温度,从而减少NOx的生成。
燃料添加剂是通过向燃烧过程中添加一些特殊化学物质,改变燃料的燃烧特性,从而减少NOx的排放。
二、选择性催化还原(SCR)技术:SCR是目前最常用的脱硝技术之一,主要用于燃煤电厂和燃气锅炉等大型燃烧设备中。
该技术通过在烟气中喷射氨气(NH3)或尿素溶液,使NOx与氨气在催化剂的作用下发生反应,生成氮气和水。
SCR技术具有高效、可靠、稳定的特点,能够将NOx的排放降低到较低的水平。
催化剂的选择和设计是SCR技术成功应用的关键。
三、选择性非催化还原(SNCR)技术:SNCR技术是一种无催化剂的脱硝技术,主要适用于小型锅炉和工业炉等燃烧设备。
该技术通过在烟气中喷射氨水或氨气,使之与烟气中的NOx发生反应,生成氮气和水。
SNCR技术具有投资成本低、运行灵活等优点,但在脱硝效率和NOx排放的稳定性方面相对于SCR技术还有一定的改进空间。
四、湿法脱硝技术:湿法脱硝技术是指在烟气中加入二氧化硫(SO2)吸收剂,将烟气中的SO2和NOx一同吸收,形成硫酸和硝酸,然后通过反应池等设备将硫酸和硝酸转化为硫酸铵((NH4)2SO4)和硝酸铵(NH4NO3),最后通过一系列的工艺步骤将其分离、浓缩和干燥,得到脱硝产物。
湿法脱硝技术具有高效、全程脱硝、能够同时处理多种污染物等优点,但其设备投资和运行成本相对较高。
浅谈燃煤电厂选择性催化还原法(SCR)脱硝

浅谈燃煤电厂选择性催化还原法(SCR)脱硝山东省环能设计咨询院有限公司250100摘要:选择性催化还原脱硝工艺是目前处理燃煤电厂大型火电机组氮氧化物的最主要方法。
文章介绍SCR工艺脱硝原理、装置布置、催化剂种类、催化剂的选择等问题。
关键词:NOx减排;选择性催化还原;烟气脱硝;SCR0.引言NOx进入大气后,在阳光作用下,易形成化学烟雾,危害人体的呼吸系统,NO还是破坏大气臭氧层和形成酸雨的前驱气体之一,破坏生态环境。
随着经济的快速发展,我国电力需求不断增长,火电厂氮氧化物排放总量日益增加,将使我国大气污染的性质发生根本性的变化,导致一系列的城市和区域环境问题,对人体健康和生态环境构成巨大的威胁。
面对严峻的环保形势,国家将于“十二五”期间加大对氮氧化物排放的控制力度。
环境保护部2010年颁布实施了《火电厂氮氧化物防治技术政策》,火力发电厂成为减排重点。
选择性催化还原法脱硝技术( Selective Catalytic Reduc2tion , SCR) 是目前国际上应用最为广泛的烟气脱硝技术,在日本、欧洲、美国等国家和地区的大多数电厂中基本都应用此技术,它没有副产物,不形成二次污染,装置结构简单,并且脱除效率高(可达90 %以上),运行可靠,便于维护,一次投资相对较低等诸多优点,得到了广泛的商业应用[1 ] [2 ] 。
1.选择性催化还原脱硝机理SCR的化学反应机理比较复杂,主要是NH3在一定的温度和催化剂的作用下,有选择地把烟气中的NOx还原为N2,同时生成水。
催化的作用是降低分解反应的活化能,使其反应温度降低至150~450℃之间,其反应如下:4NO+4NH3+O2→4N2+6H2O (1)NO+2NO2+2NH3→2N2+3H2O(2)6NO2+8NH3→7N2+12H2O (3)其中反应(1)是主反应。
因为烟气中的大部分NOx均是以NO的形式存在的,在没有催化剂的情况下,这些反应只能在很窄的温度范围内(980℃左右)进行,通过选择合适的催化剂,可以降低反应温度,并且可以扩展到适合电厂实际工况的290℃~430℃范围。
锅炉脱硝的原理

锅炉脱硝的原理
锅炉脱硝是一种将燃煤锅炉中产生的氮氧化物(NOx)转化为氮气(N2)和水蒸气(H2O)的技术。
主要原理包括选择性催化还原(SCR)和非选择性催化还原(SNCR)。
SCR脱硝是通过在锅炉尾部的催化剂上进行反应实现的。
首先,锅炉的排烟中含有大量的氮氧化物,这些氮氧化物会被引导到SCR反应器中。
在SCR反应器中,氨水(NH3)或尿素(NH2CONH2)被喷洒到催化剂上,与氮氧化物发生反应。
在高温和催化剂的作用下,氮氧化物与氨水或尿素发生氧化还原反应,生成氮气和水蒸气。
因为NH3与NOx之间的化学反应是高度选择性的,所以称为选择性催化还原。
SNCR脱硝则是通过非选择性的方式实现的。
在SNCR中,氨水或尿素溶液被喷入燃料燃烧区域或锅炉尾部烟道中。
在高温下,氨水或尿素分解,氨气与氮氧化物发生反应。
这种非选择性的反应可以将大部分氮氧化物转化为氮气和水蒸气。
总的来说,锅炉脱硝主要通过氨水或尿素与氮氧化物的反应来降低NOx的排放。
SCR脱硝是一种选择性的催化还原过程,而SNCR脱硝则是一种非选择性的反应过程。
这些技术可以有效地减少锅炉排放的氮氧化物含量,从而减少对环境的负面影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃煤电厂锅炉选择性催化还原脱硝技术简述当前,环境污染已经成为了阻碍国家以及社会长远发展的一个主要因素,作为环境污染的一个重要表现形式,大气污染必须要得到重视,这样才能最大程度的践行可持续发展战略,以使我国能够得到更加长远的进步。
火电厂锅炉烟气中含有氮氧化物,这是导致大气污染的主要物质之一,因此,如果烟气没有经过处理便被排放到大气中,必定会造成环境污染。
烟气同时脱硝技术的应用对于解决上述问题具有较好的效果,因此有必要对其进行分析和探讨。
1 对脱硝技术进行分类
针对火电厂中对NO控制的技术主要分为两类,一种是在燃烧的过程中对炉内氮氧化物控制的技术,主要的特点是控制在燃烧过程中NO的生成,包括对炉型及设计参数的选择、运行的调整技术,除此还有对控制燃烧过程中所生成的燃烧型、热力型及快速型三种机理的氮氧化物;还有一种是燃烧后的控制技术,也就是烟气脱硝技术,主要的特点就是把烟气所生成的NO固定成为氮气。
炉内的氮氧化物控制技术一般是以降低锅炉热力效率为代价,其中炉后的烟气脱硝技术中的选择性催化还原法,效率比较高,是一种比较有潜力的脱硝技术。
2 炉内脱硝技术的生成
对于NO生成主要有两种机理,炉内的脱硝技术也可以分为两种类型。
第一类,是对炉内燃烧的温度降低,这样可以减少热力型NO的生成;第二类,是营造煤粉着火区域的还原性气氛以减少燃料型的NO生成,在具体的应用上,经常会出现两种技术综合的情况,既可以降低燃烧的温度,也可以降低着火区域的氧气浓度。
用改变燃烧条件的办法,来对NO的排放进行降低,统称为低NO燃烧技术。
低NO燃烧技术主要包括低氧的燃烧、分级的燃烧及延期的再循环。
任何一种NO燃烧技术都会涉及到炉膛燃烧的安全方面的问题,所以低NO燃烧技术存在着一定的局限性,主要是可以降低NO的排放浓度。
在对循环流化床燃烧的技术中,把煤和脱硫剂一起送入增压的流化床内燃烧,实践可以证明,在流化床悬浮时段喷入氨,可以使NO的排放量进行有效的降低。
3 选择性催化还原脱硝技术介绍
炉内的低氮燃烧技术比较局限性,为了可以使NO进一步的降低排放,就需对燃烧后的烟气进行脱硝处理。
目前烟气脱硝工艺大致的可以分为干法、半干法及湿法三大类。
其中干法中的选择性催化还原法在火电厂中是比较流行及比较成熟的。
选择性催化还原法脱硝技术,是在加入催化剂的条件,使用碳氧化合物作为还原剂,把烟气中的NO还原成为氮气和水;在反应温度时要控制在300℃-450℃,脱硝的概率将会达到70%-90%。
这种技术比较成熟可靠,在全球的范围内特别是发达的国家中应用比较广泛。
选择性催化还原法脱硝反应属于氧化还原反应,所以要遵循氧化还原机理。
在选择性催化还原法脱硝系统中,影响选择性还原法脱硝的过程中最主要的参数是烟气的流速、氧气的浓度、水蒸气的浓度及催化剂和烟气的温度等。
3.1烟气的流速
在选择性催化还原法脱硝技术最关键的参数是烟气的流速,是烟气在催化剂容积内停留时间的尺度,在一定的程度上决定反应物是否完全是反应,也对反应器催化剂的骨架冲刷和烟气的沿程阻力有着一定的影响,这就要设计出合
理的烟气流速来对气体充分混合反应。
3.2氧气的浓度
选择性催化还原法脱硝技术在反应中需要氧气的参与,当氧气的浓度值增加,催化剂性能提升到渐近值,但氧气的浓度不宜过高,一般需要控制在2%-3%。
3.3水蒸气的浓度
水蒸气的浓度不断增加会使催化剂的性能不断的下降,催化剂失效不利于选择性催化还原脱硝技术的系统运行,要对此进行有效的控制。
3.4、SCR脱硝技术
在众多的脱硝技术中,选择性催化还原法(SCR)是脱硝效率最高,最为成熟的脱硝技术。
在日本、欧洲、美国目前约有300套装置,我国随着生态文明建设的要求,电厂锅炉使用SCR方法已成为目前脱硝比较成熟的主流技术。
3.4.1、SCR法烟气脱硝原理
在催化剂作用下,向温度约280℃~420℃的烟气中喷人氨,将N0还原成N2和氮氧化物。
由于该反应没有产生副产物,并且装置结构简单,适合于处理大量的烟气。
3.4.2、SCR烟气脱硝工艺的影响因素
催化剂、温度环境及空气流速无疑是SCR设计的三要素;当前流行的成熟催化剂有蜂窝式、波纹状和平板式等。
当前各种催化剂活性成分大部分为WO3和V2O5。
如果反应区温度太低,催化剂的活性降低,脱硝效率下降,则达不到脱硝的效果。
催化剂按温度分为三类:高温催化剂345℃~590℃、中温催化剂260℃~
380℃及低温催化剂80℃~300℃。
目前,国内外SCR系统大多采用高温催化剂,反应温度在315℃~400℃。
除了温度的影响,空气流速对催化剂性能的影响也是重中之重,烟气在SCR反应塔中的空塔速度是SCR的一个关键设计参数,烟气体积流量与SCR反应塔中催化剂体积比值,反映了烟气在SCR反应塔内的滞留时间的长短。
烟气的空塔速度越大,其停留时间越短。
一般SCR的脱硝效率将随烟气空塔速度的增大而降低。
另外,根据锅炉烟气中的粉尘浓度大小,SCR布置可设计为高粉尘浓度的及低粉尘浓度的,这两种工艺特点将影响到工程的技术路线及造价,如何选择设计是影响脱硝效率及设备可靠性的主要因素。
4 结论
选择性催化剂还原技术对烟气NOx控制效果十分显著、技术较为成熟,目前已成为世界上火电厂应用最多、最有成效的一种烟气脱硝技术。