在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机
中职高考数学一轮复习讲练测专题10-4 离散型随机变量的分布列(讲)(含详解)

专题10.4 离散型随机变量的分布列【考纲要求】1. 了解离散型随机变量; 2.离散型随机变量的分布列. 3. 独立重复试验. 【考向预测】1. 独立重复试验与二项分布.2. 离散型随机变量的分布列.【知识清单】1. 离散型随机变量随着试验结果变化而变化的变量称为_随机变量__,所有取值可以一一列出的随机变量,称为_离散型__随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的_概率分布列__(2)离散型随机变量的分布列的性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =_p 1+p 2+…+p n __=1. 3.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为其中p =P (X =1)称为成功概率.若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布.4.独立重复试验与二项分布(1)独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=_P (A 1)P (A 2)P (A 3)…P (A n )__.(2)二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ). 若X ~B (n ,p ),则E (X )=_np __,D (X )=_np (1-p )__.【考点分类剖析】考点一 独立重复试验的概率例1. 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位). (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.【方法归纳】 1.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解.2.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验. 3.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.【变式探究】甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答)(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. 考点二 离散型随机变量的分布列-二项分布例.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.【方法归纳】 解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.【变式探究】一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;③从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是__ __. 考点三 二项分布的应用例.高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为13,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.【方法归纳】 1.二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.2.利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【变式探究】1.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.2.甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为23和34.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.①用X表示甲同学连续三次答题中答对的次数,求随机变量X的分布列和数学期望;②设M为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件M发生的概率.考点四离散型随机变量的分布列-超几何分布例1袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;【方法归纳】求离散型随机变量的分布列应注意的问题(1)正确求出分布列的前提是必须先准确写出随机变量的所有可能取值,再依古典概型求出每一个可能取值的概率.至于某一范围内取值的概率,应等于它取这个范围内各个值的概率之和.(2)在求解过程中注重知识间的融合,常常会用到排列组合、古典概率及互斥事件、对立事件的概率等知识.【变式探究】1.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.2.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.专题10.4 离散型随机变量的分布列【考纲要求】1. 了解离散型随机变量; 2.离散型随机变量的分布列. 3. 独立重复试验. 【考向预测】1. 独立重复试验与二项分布.2. 离散型随机变量的分布列.【知识清单】1. 离散型随机变量随着试验结果变化而变化的变量称为_随机变量__,所有取值可以一一列出的随机变量,称为_离散型__随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的_概率分布列__(2)离散型随机变量的分布列的性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =_p 1+p 2+…+p n __=1. 3.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为其中p =P (X =1)称为成功概率.若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布.4.独立重复试验与二项分布(1)独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=_P (A 1)P (A 2)P (A 3)…P (A n )__.(2)二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ). 若X ~B (n ,p ),则E (X )=_np __,D (X )=_np (1-p )__.【考点分类剖析】考点一 独立重复试验的概率例1. 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位). (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率. [解析] (1)记预报一次准确为事件A ,则P (A )=0.8. 5次预报相当于5次独立重复试验,2次准确的概率为P =C 25×0.82×0.23=0.0512≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P =C 05×(0.2)5+C 15×0.8×0.24=0.00672≈0.01.所以所求概率为1-P =1-0.01=0.99.所以5次预报中至少有2次准确的概率约为0.99. (3)说明第1,2,4,5次中恰有1次准确.所以概率为P =C 14×0.8×0.23×0.8=0.02048≈0.02,所以恰有2次准确,且其中第3次预报准确的概率约为0.02.【方法归纳】 1.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解.2.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验.3.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.【变式探究】甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答)(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率.[解析] (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38,由于甲、乙射击相互独立,故P (A 2B 2)=49×38=16. 考点二 离散型随机变量的分布列-二项分布例.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.[解析] (1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名考生选做同一道题的事件为“AB ∪A B ”,且事件A ,B 相互独立.所以P (AB ∪A B )=P (A )P (B )+P (A )P (B ) =12×12+(1-12)×(1-12)=12. (2)随机变量X 的可能取值为0,1,2,3,4.且X ~B (4,12).所以P (X =k )=C k 4(12)k (1-12)4-k=C k 4(12)4(k =0,1,2,3,4). 所以变量X 的分布列为:【方法归纳】 解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.【变式探究】一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;③从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是__①③__.[解析] ①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②设A ={第一次取到红球},B ={第二次取到红球}.则P (A )=23,P (A ∩B )=4×36×5=25,∴P (B |A )=P (A ∩B )P (A )=35,故②错;③每次取到红球的概率P =23,所以至少有一次取到红球的概率为 1-(1-23)3=2627,故③正确.考点三 二项分布的应用例.高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为13,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.[解析] (1)至少有3次发芽成功,即有3次、4次、5次发芽成功.设5次试验中种子发芽成功的次数为随机变量X ,则P (X =3)=C 35×(13)3×(23)2=40243,P (X =4)=C 45×(13)4×23=10243, P (X =5)=C 55×(13)5×(23)0=1243.所以至少有3次发芽成功的概率P =P (X =3)+P (X =4)+P (X =5)=40243+10243+1243=51243=1781.(2)随机变量ξ的可能取值为1,2,3,4,5. P (ξ=1)=13,P (ξ=2)=23×13=29,P (ξ=3)=(23)2×13=427,P (ξ=4)=(23)3×13=881,P (ξ=5)=(23)4×1=1681.所以ξ的分布列为:【方法归纳】 1.二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.2.利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【变式探究】1.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.[解析] (1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为C 15·23·(13)4+(13)5, 所以所求的概率为1-[C 15·23·(13)4+(13)5]=232243. (2)当X =4时记为事件A , 则P (A )=C 13·23·(13)2·23=427.当X =5时,意味着前4次射击只击中一次或一次也未击中,记为事件B . 则P (B )=C 14·23·(13)3+(13)4=19, ∴射击次数不小于4的概率为427+19=727.2.甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为23和34.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.①用X 表示甲同学连续三次答题中答对的次数,求随机变量X 的分布列和数学期望;②设M 为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件M 发生的概率.[解析] ①X 的所有可能取值为0,1,2,3, 则P (X =0)=⎝⎛⎭⎫133=127; P (X =1)=C 13·23×⎝⎛⎭⎫132=29; P (X =2)=C 23⎝⎛⎭⎫232×13=49; P (X =3)=⎝⎛⎭⎫233=827. ∴随机变量X 的分布列为∴E (X )=0×127+1×29+2×49+3×827=2或E (ξ)=np =23.②设Y 为乙连续3次答题中答对的次数, 由题意知Y ~B ⎝⎛⎭⎫3,34, P (Y =0)=⎝⎛⎭⎫143=164,P (Y =1)=C 13⎝⎛⎭⎫341⎝⎛⎭⎫142=964,所以P (M )=P (X =3且Y =1)+P (X =2且Y =0) =827×964+49×164=7144. 即事件M 发生的概率为7144.考点四 离散型随机变量的分布列-超几何分布例1袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;[解析] (1)解法一:记“一次取出的3个小球上的数字互不相同”的事件记为A ,则P (A )=C 35C 12C 12C 12C 310=23. 解法二:记“一次取出的3个小球上的数字互不相同”为事件A ,“一次取出的3个小球上的数字中有两个数字相同”为事件B ,事件A 和事件B 是对立事件.因为P (B )=C 15C 22C 18C 310=13,所以P (A )=1-P (B )=1-13=23.(2)由题意,X 所有可能的取值为2,3,4,5.P (X =2)=C 22C 12+C 12C 22C 310=130;P (X =3)=C 24C 12+C 14C 22C 310=215; P (X =4)=C 26C 12+C 16C 22C 310=310;P (X =5)=C 28C 12+C 18C 22C 310=815. 所以随机变量X 的概率分布列为:【方法归纳】 求离散型随机变量的分布列应注意的问题(1)正确求出分布列的前提是必须先准确写出随机变量的所有可能取值,再依古典概型求出每一个可能取值的概率.至于某一范围内取值的概率,应等于它取这个范围内各个值的概率之和.(2)在求解过程中注重知识间的融合,常常会用到排列组合、古典概率及互斥事件、对立事件的概率等知识.【变式探究】1.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X 表示赢得的钱数,随机变量X 可以取哪些值?求X 的分布列; (2)求出赢钱(即X >0时)的概率.[解析] (1)从箱中取两个球的情形有以下6种:{2个白球},{1个白球,1个黄球},{1个白球,1个黑球},{2个黄球},{1个黑球,1个黄球},{2个黑球}.当取到2个白球时,随机变量X =-2;当取到1个白球,1个黄球时,随机变量X =-1; 当取到1个白球,1个黑球时,随机变量X =1; 当取到2个黄球时,随机变量X =0;当取到1个黑球,1个黄球时,随机变量X =2;当取到2个黑球时,随机变量X =4.所以随机变量X 的可能取值为-2,-1,0,1,2,4. P (X =-2)=C 26C 212=522,P (X =-1)=C 16C 12C 212=211,P (X =0)=C 22C 212=166,P (X =1)=C 16C 14C 212=411,P (X =2)=C 14C 12C 212=433,P (X =4)=C 24C 212=111.所以X 的分布列如下:(2)P (X >0)=P (X =1)+P (X =2)+P (X =4)=411+433+111=1933.所以赢钱的概率为1933.2.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.[解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为。
10.8超几何分布二项分布正态分布课件高三数学一轮复习

其中 n,N,M∈N*,M≤N,n≤N,则 m=max{0,n-N+M},r=min{n,M}.如 果随机变量 X 的分布列具有上式的形式,那么称随机变量 X 服从超几何分布.
(2)超几何分布的均值:设随机变量 X 服从超几何分布,则 X 可以解释为从包含 M 件
第十章 计数原理、概率、随机变量及其分布
第八节 超几何分布、二项分布、正态分布
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.超几何分布 (1)定义:一般地,假设一批产品共有 N 件,其中有 M 件次品,从 N 件产品中随机抽 取 n 件(不放回),用 X 表示抽取的 n 件产品中的次品数,则 X 的分布列为
(1)用 X 表示甲同学上学期间的三天中 7:30 之前到校的天数,求随机变量 X 的分布 列和数学期望;
(2)设 M 为事件“上学期间的三天中,甲同学在 7:30 之前到校的天数比乙同学在 7: 30 之前到校的天数恰好多 2”,求事件 M 发生的概率.
【解】 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天 7:30 之前到校
_____1_0________.
【解析】 由题意知 X=2 表示取出的 4 件产品中 2 件次品,故 P(X=2)=CC23·41C0 27=130.
4.小王通4过英语听力测试的概率是13,他连续测试 3 次,那么其中恰有 1 次获得通过 的概率是_____9_________.
【解析】 =49.
①P(μ-σ≤X≤μ+σ)≈__□1_1__0_.6_8_2_7_____. ②P(μ-2σ≤X≤μ+2σ)≈__□_1_2_0_.9_5_4_5_____.
【高考真题】2017年山东省高考数学试卷(理科) 含答案解析

2017年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.65.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.1706.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,07.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成(x n+1的区域的面积T n.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.2017年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)【分析】根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.【解答】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y=的定义域[﹣2,2],由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),则A∩B=[﹣2,1),故选:D.【点评】本题考查函数定义的求法,交集及其运算,考查计算能力,属于基础题.2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【分析】求得z的共轭复数,根据复数的运算,即可求得a的值.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z•=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选:A.【点评】本题考查共轭复数的求法,复数的乘法运算,考查计算能力,属于基础题.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选:B.【点评】本题考查命题真假性的判断,复合命题的真假性,属于基础题.4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.【点评】本题考查了线性规划的应用问题,是中档题.5.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.170【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将x=24代入回归直线方程即可估计其身高.【解答】解:由线性回归方程为=4x+,则=x i=22.5,=y i=160,则数据的样本中心点(22.5,160),由回归直线方程样本中心点,则=﹣4x=160﹣4×22.5=70,∴回归直线方程为=4x+70,当x=24时,=4×24+70=166,则估计其身高为166,故选:C.【点评】本题考查回归直线方程的求法及回归直线方程的应用,考查计算能力,属于基础题.6.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,0【分析】根据已知中的程序框图,模拟程序的执行过程,可得答案.【解答】解:当输入的x值为7时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;当输入的x值为9时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,不满足b2>x,满足x能被b整数,故输出a=0;故选:D.【点评】本题考查的知识点是程序框图,难度不大,属于基础题.7.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【分析】a>b>0,且ab=1,可取a=2,b=.代入计算即可得出大小关系.【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.【点评】本题考查了函数的单调性、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.【分析】计算出所有情况总数,及满足条件的情况数,代入古典概型概率计算公式,可得答案.【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P==,故选:C.【点评】本题考查的知识点是古典概型及其概率计算公式,难度不大,属于基础题.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A【分析】利用两角和与差的三角函数化简等式右侧,然后化简通过正弦定理推出结果即可.【解答】解:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,由正弦定理可得:2b=a.故选:A.【点评】本题考查两角和与差的三角函数,正弦定理的应用,考查计算能力.10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)【分析】根据题意,由二次函数的性质分析可得:y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.【解答】解:根据题意,由于m为正数,y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2为减函数,且其值域为[(m﹣1)2,1],函数y=+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2在区间(0,)为减函数,(,1)为增函数,函数y=+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故选:B.【点评】本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m的分类讨论.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=4.【分析】利用通项公式即可得出.=(3x)r=3r x r.【解答】解:(1+3x)n的展开式中通项公式:T r+1∵含有x2的系数是54,∴r=2.∴=54,可得=6,∴=6,n∈N*.解得n=4.故答案为:4.【点评】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.【点评】本题考查了单位向量和平面向量数量积的运算问题,是中档题.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.【点评】本题考查利用三视图求几何体的体积,考查长方体及圆柱的体积公式,考查计算能力,属于基础题.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B=,∵|AF|+|BF|=4|OF|,∴y A+y B+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为①④.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.【分析】把①②代入e x f(x),变形为指数函数判断;把③④代入e x f(x),求导数判断.【解答】解:对于①,f(x)=2﹣x,则g(x)=e x f(x)=为实数集上的增函数;对于②,f(x)=3﹣x,则g(x)=e x f(x)=为实数集上的减函数;对于③,f(x)=x3,则g(x)=e x f(x)=e x•x3,g′(x)=e x•x3+3e x•x2=e x(x3+3x2)=e x•x2(x+3),当x<﹣3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于④,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2xe x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.∴具有M性质的函数的序号为①④.故答案为:①④.【点评】本题考查函数单调性的性质,训练了利用导数研究函数的单调性,是中档题.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣,]时g(x)的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【分析】(1)利用组合数公式计算概率;(2)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望.【解答】解:(I)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)==.(II)X的可能取值为:0,1,2,3,4,∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.∴X的分布列为X01234PX的数学期望EX=0×+1×+2×+3×+4×=2.【点评】本题考查了组合数公式与概率计算,超几何分布的分布列与数学期望,属于中档题.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成+1的区域的面积T n.【分析】(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.【解答】解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n的面积为b n,则b n==(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n=+(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1=+﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n=.【点评】本题考查了等比数列的性质,错位相减法求和,属于中档题.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【分析】(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna),(0,+∞)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a ﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【点评】本题考查了利用导数研究函数的单调性极值、方程的解法、不等式的解法、三角函数求值、分类讨论方法,考查了推理能力与计算能力,属于难题.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=.由题意设知.得到直线OC 的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin=.转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为,取得最大值时直线l的斜率为.【解答】解:(Ⅰ)由题意知,,解得a=,b=1.∴椭圆E的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),联立,得.由题意得△=>0.,.∴|AB|=.由题意可知圆M的半径r为r=.由题意设知,,∴.因此直线OC的方程为.联立,得.因此,|OC|=.由题意可知,sin=.而=.令t=,则t>1,∈(0,1),因此,=≥1.当且仅当,即t=2时等式成立,此时.∴,因此.∴∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为.【点评】本题考查直线与圆、圆与椭圆位置关系的应用,训练了利用配方法求函数的最值,考查计算能力,是压轴题.。
专题练 第22练 随机变量及其分布

第22练随机变量及其分布1.(2018·全国Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X=6),则p 等于()A.0.7 B.0.6 C.0.4 D.0.3答案 B解析由题意可知,10位成员中使用移动支付的人数X服从二项分布,即X~B(10,p),所以D(X)=10p(1-p)=2.4,所以p=0.4或0.6.又因为P(X=4)<P(X=6),所以C410p4(1-p)6<C610p6(1-p)4,所以p>0.5,所以p=0.6.2.(2019·浙江)设0<a<1,则随机变量X的分布列是X 0 a 1P 131313则当a在(0,1)内增大时,() A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案 D解析由题意可知,E(X)=13(a+1),所以D (X )=(a +1)227+(1-2a )227+(a -2)227=6a 2-6a +627=29⎣⎡⎦⎤⎝⎛⎭⎫a -122+34,所以当a 在(0,1)内增大时,D (X )先减小后增大.3.(2021·新高考全国Ⅱ)某物理量的测量结果服从正态分布N (10,σ2),下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .σ越小,该物理量在一次测量中大于10的概率为0.5C .σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D .σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等 答案 D解析 对于A ,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在(9.9,10.0)的概率与落在(10.2,10.3)的概率不同,所以一次测量结果落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D 错误.4.(2013·湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125B.65C.168125D.75 答案 B解析 125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65.5.(2017·全国Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D (X )=________. 答案 1.96解析 由题意得X ~B (100,0.02), ∴D (X )=100×0.02×(1-0.02)=1.96.6.(2022·浙江)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P (ξ=2)=________,E (ξ)=________. 答案1635 127解析 由题意知ξ的可能取值为1,2,3,4, P (ξ=1)=C 26C 37=1535=37,P (ξ=2)=C 12C 24+C 22C 14C 37=1635, P (ξ=3)=C 23C 37=335,P (ξ=4)=1C 37=135,所以ξ的分布列为E (ξ)=1×37+2×1635+3×335+4×135=127.7.(2022·全国甲卷)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与均值. 解 (1)设甲在三个项目中获胜的事件依次记为A ,B ,C , 所以甲学校获得冠军的概率为P =P (ABC )+P (A BC )+P (A B C )+P (AB C )=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2 =0.16+0.16+0.24+0.04=0.6.(2)依题可知,X 的可能取值为0,10,20,30, 所以P (X =0)=0.5×0.4×0.8=0.16,P (X =10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44, P (X =20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34, P (X =30)=0.5×0.6×0.2=0.06. 则X 的分布列为E (X )=0×0.16+10×0.44+20×0.34+30×0.06=13.8.(2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与均值E (X ). 解 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则 P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 0 1 2 3 4 P1425211021521142E (X )=0+1×521+2×1021+3×521+4×142=2.9.(2022·温州模拟)已知随机变量X 的分布列是X -1 0 1 Pa13b若E (X )=0,则D (X )等于( ) A .0 B.13 C.23 D .1答案 C解析 由已知可得⎩⎪⎨⎪⎧a +b +13=1,E (X )=-a +b =0,解得a =b =13,因此,D (X )=13[(-1-0)2+(0-0)2+(1-0)2]=23.10.(2022·常州模拟)俄国著名飞机设计师埃格·西科斯基设计了世界上第一架四引擎飞机和第一种投入生产的直升机,当代著名的“黑鹰”直升机就是由西科斯基公司生产的.1992年,为了在远程性和安全性上与美国波音747竞争,欧洲空中客车公司设计并制造了A340,是一种有四台发动机的远程双过道宽体客机,取代只有两台发动机的A310.假设每一架飞机的引擎在飞行中出现故障的概率为1-p ,且各引擎是否有故障相互独立.已知A340飞机至少有3个引擎正常运行,飞机就可成功飞行;A310飞机需要2个引擎全部正常运行,飞机才能成功飞行.若要使A340飞机比A310飞机更安全,则A340飞机引擎的故障率应控制的范围是( ) A.⎝⎛⎭⎫23,1B.⎝⎛⎭⎫13,1C.⎝⎛⎭⎫0,23D.⎝⎛⎭⎫0,13 答案 C解析 由题意得,飞机引擎正常运行的概率为p ,则A310飞机能成功飞行的概率为C 22p 2=p 2,A340飞机能成功飞行的概率为C 34p 3(1-p )+C 44p 4=-3p 4+4p 3, 令-3p 4+4p 3>p 2,即-3p 2+4p >1, 解得13<p <1.所以0<1-p <23,所以A340飞机引擎的故障率应控制的范围是⎝⎛⎭⎫0,23. 11.(多选)(2022·重庆质检)“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献.袁老领衔的科研团队成功攻破水稻超高产育种难题,不断刷新亩产产量的纪录,目前超级稻计划亩产量已经实现1 100公斤.现有甲、乙两个试验田,根据数据统计,甲、乙试验田超级稻亩产量(分别记为ξ,η)均服从正态分布,其中ξ~N (μ1,σ21),η~N (μ2,σ22).如图,已知μ1=1 150,μ2=1 130,σ21=2 500,σ22=1 600,两正态密度曲线在直线x =μ2左侧交于点M (x 0,y 0),则下列说法正确的是( )A .P (ξ<μ1)<P (ξ<μ2)B .P (η<μ1)>P (η<μ2)C .P (ξ>x 0)<P (η>x 0)D .P (ξ>1 250)>P (η<1 050) 答案 BC解析 由图可知P (ξ<μ1)>P (ξ<μ2),故A 错误; 由图可知P (η<μ1)>P (η<μ2),故B 正确; ∵P (ξ>x 0)=1-P (ξ≤x 0),P (η>x 0)=1-P (η≤x 0), 由图可知P (ξ≤x 0)>P (η≤x 0), ∴P (ξ>x 0)<P (η>x 0),故C 正确; μ1=1 150,σ1=50,μ2=1 130,σ2=40, P (ξ>1 250)=P (ξ>μ1+2σ1), P (η<1 050)=P (η<μ2-2σ2) =P (η>μ2+2σ2),根据正态密度曲线的性质和3σ原则,应该有P (ξ>1 250)=P (η<1 050),故D 错误. 12.(多选)(2022·唐山模拟)下列说法正确的是( )A .某投掷类游戏闯关规则是参加游戏者最多投掷5次,只要有一次投中,即闯关成功,并停止投掷,已知每次投中的概率为12,则闯关成功的概率为3132B .从10名男生、5名女生中选取4人,则其中至少有1名女生的概率为C 15C 314C 415C .已知随机变量X 的分布列为P (X =i )=a i (i +1)(i =1,2,3),则P (X =2)=29D .若随机变量η~N (2,σ2),且δ=3η+1,则P (η<2)=0.5,E (δ)=6 答案 AC解析 选项A,5次都没投中的概率为⎝⎛⎭⎫125=132.所以闯关成功的概率为1-132=3132,故A 正确; 选项B ,从10名男生、5名女生中选取4人,则其中至少有1名女生分为1名女生、3名男生,2名女生、2名男生,3名女生、1名男生,4名都是女生4种情况.共有C 15C 310+C 25C 210+C 35C 110+C 45=1 155(种)情况.而C 15C 314=1 820,所以其中至少有1名女生的概率为C 15C 310+C 25C 210+C 35C 110+C 45C 415≠C 15C 314C 415,故B 不正确; 选项C ,由P (X =i )=ai (i +1)(i =1,2,3), 则a ⎝⎛⎭⎫12+16+112=1,解得a =43, 所以P (X =2)=43×12×3=29,故C 正确;选项D ,随机变量η~N (2,σ2),则P (η<2)=0.5,E (η)=2,所以E (δ)=E (3η+1)=3E (η)+1=7,故D 不正确.13.(2022·咸阳模拟)经统计,某校高三学生期末数学成绩服从正态分布,X ~N (85,σ2),且P (80<X <90)=0.3,则从该校任选一名高三学生,其成绩不低于90分的概率为________. 答案 0.35解析 ∵学生成绩X 服从正态分布X ~N (85,σ2),且P (80<X <90)=0.3, ∵P (X ≥90)=12[1-P (80<X <90)]=12(1-0.3)=0.35, ∴从该校任选一名高三学生,其成绩不低于90分的概率是0.35.14.(2022·绍兴模拟)袋子中有3个白球,2个红球,现从中有放回地随机取2个球,每次取1个,且各次取球间相互独立.设此过程中取到红球的个数为ξ,则P (ξ=1)=______,E (ξ)=______. 答案1225 45解析 有放回地取球,每次取一球, 则每次取到红球的概率为C 12C 15=25,P (ξ=1)=C 12×25×35=1225, 在此过程中取到的红球个数为ξ,ξ的可能取值为0,1,2. 则ξ~B ⎝⎛⎭⎫2,25,则E (ξ)=2×25=45. 15.(2022·武汉模拟)某校高三年级非常重视学生课余时间的管理,进入高三以来,倡导学生利用中午午休前40分钟,晚餐后30分钟各做一套试卷.小红、小明两位同学都选择做数学或物理试卷,对两位同学过去100天的安排统计如下:假设小红、小明选择科目相互独立,用频率估计概率:(1)请预测在今后的5天中小红恰有3天中午和晚上都选数学的概率;(2)记X 为两位同学在一天中选择科目的个数,求X 的分布列和均值E (X );(3)试判断小红、小明在晚上做物理试卷的条件下,哪位同学更有可能中午选择做数学试卷,并说明理由.解 (1)由表格数据知,小红中午和晚上都选数学的概率为25100=14,∴今后的5天中小红恰有3天中午和晚上都选数学的概率P =C 35×⎝⎛⎭⎫143×⎝⎛⎭⎫342=45512. (2)由表格数据知,小红选择0科的概率为110;选择数学1科的概率为14,选择物理1科的概率为110;选择2科的概率为1120;小明选择0科的概率为110;选择数学1科的概率为15,选择物理1科的概率为310;选择2科的概率为25;则X 所有可能的取值为0,1,2, ∴P (X =0)=110×110=1100,P (X =1)=110×⎝⎛⎭⎫15+310+110×⎝⎛⎭⎫14+110+14×15+110×310=33200, P (X =2)=1-P (X =0)-P (X =1)=1-1100-33200=3340,∴X 的分布列为E (X )=0×1100+1×33200+2×3340=363200.(3)记事件A 1:小红晚上做物理试卷;事件A 2:小明晚上做物理试卷; 事件B 1:小红中午做数学试卷; 事件B 2:小明中午做数学试卷; 由表格数据可得 P (A 1)=30100=310,P (A 2)=55100=1120,P (A 1B 1)=20100=15,P (A 2B 2)=25100=14;∴P (B 1|A 1)=P (A 1B 1)P (A 1)=15310=23,P (B 2|A 2)=P (A 2B 2)P (A 2)=141120=511,∵23>511,即P (B 1|A 1)>P (B 2|A 2), ∴在晚上做物理试卷的条件下,小红更有可能中午选择做数学试卷.16.(2022·桂林模拟)某农业大学的学生利用专业技能指导葡萄种植大户,对葡萄实施科学化、精细化管理,使得葡萄产量有较大提高.葡萄采摘并去掉残次品后,随机按每箱10串装箱,现从中随机抽取5箱,称得每串葡萄的质量(单位:kg),将称量结果分成5组:[1.0,1.2),[1.2,1.4),[1.4,1.6),[1.6,1.8),[1.8,2.0],并绘制出如图所示的频率分布直方图.(1)求a 的值,并估计这批葡萄每串葡萄质量的平均值x (残次品除外,同一组中的数据以这组数据所在区间中点的值代表);(2)若这批葡萄每串葡萄的质量X 服从正态分布N (μ,0,04),其中μ的近似值为每串葡萄质量的平均值x ,请估计10 000箱葡萄中质量位于(1.124,1.724)内的葡萄的串数;(3)规定这批葡萄中一串葡萄的质量超过1.8 kg 的为优等品,视频率为概率,随机打开一箱,记优等品的串数为ξ,求ξ的均值.附:若随机变量X ~N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5. 解 (1)由频率分布直方图可知,0.2(0.4+1.0+2a +2.0)=1,解得a =0.8. 估计这批葡萄每串葡萄质量的平均值x =1.1×0.4×0.2+1.3×1.0×0.2+1.5×2.0×0.2+1.7×0.8×0.2+1.9×0.8×0.2=1.524. (2)由题意可知,μ=1.524,σ=0.2, 所以μ-2σ=1.124,μ+2σ=1.924, μ-σ=1.324,μ+σ=1.724.所以P (1.124<X <1.724)=P (μ-2σ≤X ≤μ+σ)=12[P (μ-σ≤X ≤μ+σ)+P (μ-2σ≤X ≤μ+2σ)]≈0.818 6. 所以10 000箱葡萄中质量位于(1.124,1.724)内的葡萄的串数的估计值为 10 000×0.818 6×10=81 860.(3)在这批葡萄中随机抽取一串,葡萄的质量超过1.8 kg 的频率为0.8×0.2=0.16, 因此随机打开一箱,再从中随机抽取一串,这串葡萄为优等品的概率为P =0.16=425,依题意,ξ的所有可能取值为0,1,2,3,…,10,且ξ~B ⎝⎛⎭⎫10,425, 所以ξ的均值为E (ξ)=10×425=85.[考情分析] 高考常考内容,考查离散型随机变量的分布列、均值和方差,以及利用分布列、均值、方差进行决策或分析,多与概率结合考查综合题型,试题阅读量大,常以解答题的形式出现,难度中档偏上.一、分布列的性质及应用 核心提炼1.离散型随机变量X 的分布列为X x 1 x 2 … x n Pp 1p 2…p n离散型随机变量X 的分布列具有两个性质: (1)p i ≥0,i =1,2,…,n ; (2)∑i =1np i =1(i =1,2,3,…,n ).2.E (X )=x 1p 1+x 2p 2+…+x n p n =∑i =1nx i p i ;D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =∑i =1n(x i -E (X ))2p i .3.均值、方差的性质(1)E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ). (2)X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). (3)X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). 练后反馈题目 2 4 7 9 正误错题整理:二、随机变量的分布列 核心提炼1.n 重伯努利试验与二项分布X ~B (n ,p ),P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n . 2.超几何分布一般地,假设一批产品共有N 件,其中有M 件次品.从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -kN -MC n N,k =m ,m +1,m+2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N , m =max{0,n -N +M },r =min{n ,M }. 练后反馈题目 1 5 6 8 10 12 14 15 正误错题整理:三、正态分布 核心提炼 正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交.(2)曲线是单峰的,它关于直线x =μ对称,曲线在x =μ处达到峰值1σ2π.(3)曲线与x 轴之间的区域的面积总为1.(4)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移.(5)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. 练后反馈题目 3 11 13 16 正误错题整理:1.[T2补偿](2022·金华模拟)随机变量ξ的分布列如下表:ξ 1 a 9 Pb1-2bb其中1<a <9,0<b <12,则下列说法正确的是( )A .若a =5,则当0<b <12时,E (ξ)随b 的增大而增大B .若a =5,则当0<b <12时,E (ξ)随b 的增大而减小C .若b =13,则当a =5时,D (ξ)有最小值D .若b =13,则当a =5时,D (ξ)有最大值答案 C解析 若a =5,则E (ξ)=1×b +5×(1-2b )+9b =5,故A ,B 均错误; 若b =13,则E (ξ)=1×13+a ×13+9×13=a +103,D (ξ)=13×⎝ ⎛⎭⎪⎫1-a +1032+13×⎝ ⎛⎭⎪⎫a -a +1032+13×⎝ ⎛⎭⎪⎫9-a +1032=127(6a 2-60a +438), 其对称轴为直线a =6012=5,则a =5时,D (ξ)有最小值,故C 正确,D 错误.2.[T12补偿]某公司采用网络远程面试招聘新员工,其面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照题目要求独立完成.规定:至少正确完成其中2道题的应聘者才可通过面试.已知应聘者小王在6道备选题中有4道题能正确完成,2道题不能完成,则小王正确完成面试题数的均值为( ) A .1 B .2 C .3 D .4 答案 B解析 设小王正确完成的面试题数为X ,则X 的可能取值为1,2,3. P (X =1)=C 22·C 14C 36=420=15;P (X =2)=C 12·C 24C 36=1220=35;P (X =3)=C 02·C 34C 36=420=15.∴E (X )=1×15+2×35+3×15=2.3.[T10补偿](2022·重庆模拟)通过核酸检测可以初步判定被检测者是否感染新冠病毒,检测方式分为单检和混检.单检是将一个人的采集拭子放入一个采样管中单独检测;混检是将多个人的采集拭子放入一个采样管中合为一个样本进行检测,若检测结果呈阳性,再对这多个人重新采集单管拭子,逐一进行检测,以确定当中的阳性样本.混检按一个采样管中放入的采集拭子个数可具体分为“3合1”混检,“5合1”混检,“10合1”混检等.调查研究显示,在群体总阳性率较低(低于0.1%)时,混检能较大幅度地提高检测效力、降低检测成本.根据流行病学调查结果显示,某城市居民感染新冠病毒的概率为0.000 5.若对该城市全体居民进行核酸检测,记采用“10合1”混检方式共需检测X 次,采用“5合1”混检方式共需检测Y 次,已知当0<p <0.001时,(1-p )n ≈1-np (n ∈N *),据此计算E (X )∶E (Y )的近似值为( ) A.12 B.1427 C.611 D.59 答案 B解析 由于一个城市的总人口数很大,而总体阳性率较低,所以我们可以认为阳性个体均匀分布,若进行“10合1”混检,对任意一个10人组进行检测,总检测次数有两种结果:1次和11次, 概率分别为(1-p )10和1-(1-p )10,故10人组检测次数的均值为11-10(1-p )10,相当于每个个体平均检测[1.1-(1-p )10]次, 同理,采用“5合1”混检,每个个体平均检测 [1.2-(1-p )5]次,∴E (X )∶E (Y )=1.1-(1-p )101.2-(1-p )5≈1.1-(1-10p )1.2-(1-5p )=0.1+10p 0.2+5p =0.1+0.0050.2+0.002 5=1427.4.[T6补偿]盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P (ξ=0)=________,E (ξ)=________. 答案 131解析 当ξ=0时,有两种情况: 第一种为第一次拿到红球,第二种为第一次拿到绿球,第二次拿到红球, 故P (ξ=0)=14+14×13=13.当ξ=1时,有三种情况,即黄红、绿黄红、黄绿红, 故P (ξ=1)=24×13+14×23×12+24×13×12=13.当ξ=2时,有四种情况,即黄黄红、黄绿黄红、绿黄黄红、黄黄绿红, 故P (ξ=2)=24×13×12+24×13×12+14×23×12+24×13×12=13.所以E (ξ)=0×13+1×13+2×13=1.5.[T8补偿]某电台举办有奖知识竞答比赛,选手答题规则相同.甲每道题自己有把握独立答对的概率为12,若甲自己没有把握答对,则在规定时间内连线亲友团寻求帮助,其亲友团每道题能答对的概率为p ,假设每道题答对与否互不影响. (1)当p =15时,①若甲答对了某道题,求该题是甲自己答对的概率;②甲答了4道题,记甲答对题目的个数为随机变量X ,求X 的分布列和均值;(2)乙答对每道题的概率为23(含亲友团),现甲、乙两人各答2道题,若甲答对题目的个数比乙答对题目的个数多的概率不低于1536,求甲的亲友团每道题答对的概率p (0<p <1)的最小值.解 (1)①记事件A 为“甲答对了某道题”,事件B 为“甲自己答对”, 则P (A )=12+12×15=35,P (AB )=12,所以P (B |A )=P (AB )P (A )=1235=56.②根据题意得,X 的可能取值为0,1,2,3,4, 甲答对某道题的概率P (A )=12+12×15=35,则X ~B ⎝⎛⎭⎫4,35, P (X =k )=C k 4×⎝⎛⎭⎫35k ×⎝⎛⎭⎫254-k (k =0,1,2,3,4), 故随机变量X 的分布列为E (X )=4×35=125.(2)记事件A i 为“甲答对了i (i =0,1,2)道题”, 事件B i 为“乙答对了i (i =0,1,2)道题”, 其中甲答对某道题的概率为12+12p =12(1+p ),答错某道题的概率为1-12(1+p )=12(1-p ),则P (A 1)=C 12×12(1+p )×12(1-p ) =12(1-p 2), P (A 2)=⎣⎡⎦⎤12(1+p )2=14(1+p )2, P (B 0)=⎝⎛⎭⎫132=19, P (B 1)=C 12×23×13=49, 所以P (A 1B 0∪A 2B 1∪A 2B 0)=12(1-p 2)×19+14(1+p )2×49+14(1+p )2×19=136×(3p 2+10p +7)≥1536, 又0<p <1,所以23≤p <1,则p 的最小值为23.。
三年高考(2016-2018)高考数学试题分项版解析 专题28 离散性随机变量与期望 理(含解析)

专题28 离散性随机变量与期望考纲解读明方向掌握期望与方差的求解方法.3.分布列、期望及方差均为高考的必考内容.本节在高考中一般以解答题形式立事件的概率求法,能用二项分布解决实际问题.3.了解正态分布与正态曲线的概念,掌握正态曲线的性质.4.独立事件的概率及正态分布均为近几年高考的热点.本节在高考中一般以选择题、解答题形式出现,难度为易或中等,分值约为5分或12分.2018年高考全景展示1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:2.【2018年全国卷Ⅲ理】某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则A. 0.7B. 0.6C. 0.4D. 0.3【答案】B点睛:本题主要考查二项分布相关知识,属于中档题。
3.【2018年理数天津卷】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. (i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率. 【答案】(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)答案见解析;(ii).详解:(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望.(ii)设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以,事件A发生的概率为.点睛:本题主要在考查超几何分布和分层抽样.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.4.【2018年理北京卷】电影公司随机收集了电影的有关数据,经分类整理得到下表:部数好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.【答案】(1) 概率为0.025(2) 概率估计为0.35(3) >>=>>【解析】分析:(1)先根据频数计算是第四类电影的频率,再乘以第四类电影好评率得所求概率,(2) 恰有1部获得好评为第四类电影获得好评第五类电影没获得好评和第四类电影没获得好评第五类电影获得好评这两个互斥事件,先利用独立事件概率乘法公式分别求两个互斥事件的概率,再相加得结果,(3) 服从0-1分布,因此,即得>>=>>.详解:解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为.点睛:互斥事件概率加法公式:若A,B互斥,则P(A+B)=P(A)+P(B),独立事件概率乘法公式:若A,B相互独立,则P(AB)=P(A)P(B).5.【2018年理新课标I卷】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】(1).(2) (i )490.(ii )应该对余下的产品作检验.详解:(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为. (2)由(1)知,.(i )令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于,故应该对余下的产品作检验.点睛:该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论.2017年高考全景展示1.【2017浙江,8】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2. 若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξB .1E()ξ<2E()ξ,1D()ξ>2D()ξC .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ【答案】A 【解析】 试题分析:112212(),(),()()E p E p E E ξξξξ==∴<111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<,选A .【考点】 两点分布【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布均值与方差公式可得A 正确.2.【2017课标II ,理13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。
高考常考基础题11 超几何分布(答案版)

高考常考基础题11 超几何分布及综合问题1.(2017山东理)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者1A ,2A ,3A ,4A ,5A ,6A 和4名女志愿者1B ,2B ,3B ,4B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含1A 但不包含1B 的频率.(Ⅱ)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX .【解析】(Ⅰ)记接受甲种心理暗示的志愿者中包含但不包含1B 的事件为M ,则(Ⅱ)由题意知X 可取的值为:0,1,2,3,4.则因此X 的分布列为 X 0 1 2 3 4PX 的数学期望是=510510+1+2+3+421212142⨯⨯⨯⨯=2. 2.(2015四川理)某市,A B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;1A 485105().18C P M C ==565101(0),42C P X C ===41645105(1),21C C P X C ===326451010(2),21C C P X C ===23645105(3),21C C P X C ===14645101(4),42C C P X C ===14252110215211420(0)1(1)2(2)3(3)4(4)EX P X P X P X P X P X =⨯=+⨯=+⨯=+⨯=+⨯=(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.【解析】(1)由题意,参加集训的男、女生各有6名,参赛学生全从B 中抽取(等价于A 中学没有学生入选代表队)的概率为333433661100C C C C =. 因此,A 中学至少1名学生入选的概率为1991100100-=. (2)根据题意,X 的可能取值为1,2,3.1333461(1)5C C P X C ===,2233463(2)5C C P X C ===,3133461(3)5C C P X C ===, 所以X 的分布列为:因此,X 的期望为()()1(1)2233E X P X P X P X =⨯=+⨯=+⨯=,131()1232555E X =⨯+⨯+⨯=. 3.(2017北京理)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(Ⅱ)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(Ⅲ)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【解析】(Ⅰ)由图知,在服药的50名患者中,指标y 的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为150.350=. (Ⅱ)由图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.21122222222444C C C C 121(0),(1),(2)C 6C 3C 6P P P ξξξ=========. 所以ξ的分布列为故ξ的期望121()0121636E ξ=⨯+⨯+⨯=. (Ⅲ)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差.4.(2016新课标Ⅰ理)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而;;;;;; .所以的分布列为(Ⅰ)由(Ⅰ)知,,故的最小值为19. (Ⅰ)记表示2台机器在购买易损零件上所需的费用(单位:元).当时,.当时,. 可知当时所需费用的期望值小于时所需费用的期望值,故应选.5.(2017新课标Ⅲ理)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6 元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下04.02.02.0)16(=⨯==X P 16.04.02.02)17(=⨯⨯==X P 24.04.04.02.02.02)18(=⨯+⨯⨯==X P 24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P 2.02.02.04.02.02)20(=⨯+⨯⨯==X P 08.02.02.02)21(=⨯⨯==X P 04.02.02.0)22(=⨯==X P X 44.0)18(=≤X P 68.0)19(=≤X P n Y 19=n 08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+20=n 04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=19=n 20=n 19=n面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===, ()25745000.490P X ++===. 因此X 的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200500n ≤≤当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(200)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-;因此20.4(12002)0.4(8002)0.26400.4EY n n n n =⨯+-⨯+-⨯=-.当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-;因此2(0.40.4)(8002)0.2160 1.2EY n n n =⨯++-⨯=+.所以300n =时,Y 的数学期望达到最大值,最大值为520元.。
贵州省安顺市高考数学提分专练:第18题 概率(解答题)

贵州省安顺市高考数学提分专练:第18题概率(解答题)姓名:________ 班级:________ 成绩:________一、真题演练 (共6题;共72分)1. (12分) (2018高一下·合肥期末) 当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.—媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:(1)求出表中的值,并补全频率分布直方图;(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查,再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.2. (12分) (2019高二上·张家口月考) 某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:第一次第二次第三次第四次第五次甲的成绩(分)乙的成绩(分)(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.3. (12分)(2017·桂林模拟) 某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:积极参加班级工作不太主动参加班级工作合计学习积极性高18725学习积极性一般61925合计242650(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.参考公式与临界值表:K2= .p(K2≥k0)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.8284. (12分)(2012·山东理) 现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次得的概率;(2)求该射手的总得分X的分布列及数学期望EX.5. (12分)(2013·四川理) 某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生(1)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);(2)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.甲的频数统计图(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3014610…………21001027376697乙的频数统计图(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数3012117当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能性较大;(3)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.6. (12分)(2017·山东) 在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(12分)(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.二、模拟实训 (共14题;共168分)7. (12分) (2017高二下·临沭开学考) 某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)p(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001 k00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.78910.8288. (12分)从30个足球中抽取10个进行质量检测,说明利用随机数法抽取这个样本的步骤及公平性.9. (12分) (2017高二下·福州期中) 某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:分数区间甲班频率乙班频率[0,30)0.10.2[30,60)0.20.2[60,90)0.30.3[90,120)0.20.2[120,150)0.20.1(Ⅰ)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成下面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?优秀不优秀总计甲班乙班总计k0 2.072 2.706 3.841 5.024 6.6357.87910.828P(K2≥k0)0.150.100.050.0250.0100.0050.001,其中n=a+b+c+d.10. (12分) (2019高三上·沈阳月考) 司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;开车时使用手机开车时不使用手机合计男性司机人数女性司机人数合计(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望.参考公式与数据:参考数据:参考公式,其中 .11. (12分)(2017·深圳模拟) 某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.12. (12分) (2016高三上·宜春期中) 为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如表:(1)完成表格,并判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.(3)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为X,求X的公布列及数学期望E(X).男性公务员女性公务员总计有意愿生二胎3015无意愿生二胎2025总计附:P(k2≥k0)0.0500.0100.001k0 3.841 6.63510.82813. (12分) (2015高二下·泉州期中) 某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为P0(0<P0<1),中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(Ⅰ)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的累计得分为X,若X≤3的概率为,求P0;(Ⅱ)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?14. (12分)某技术公司新开发了A,B两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]产品A81240328产品B71840296(1)试分别估计产品A,产品B为正品的概率;(2)生产一件产品A,若是正品可盈利80元,次品则亏损10元;生产一件产品B,若是正品可盈利100元,次品则亏损20元;在(1)的前提下.记X为生产一件产品A和一件产品B所得的总利润,求随机变量X的分布列和数学期望.15. (12分) (2017高二下·赣州期末) 某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比实验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.(1)根据以上信息填好2×2联表,并判断出有多大的把握认为学生(2)成绩优良与班级有关?(3)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.(以下临界值及公式仅供参考)P(k2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828 k2= ,n=a+b+c+d.16. (12分) (2019高一下·蛟河月考) 某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局和某医院抄录了1至6月份每月10号的昼夜温差的情况与患感冒就诊的人数,得到如下资料:日期1月10号2月10号3月10号4月10号5月10号6月10号昼夜温差x(℃)1011131286就诊人数y(人)222529261612该兴趣小组确定的研究方案是先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选出的2组数据进行检验.附;(1)若选取的是1月和6月的两组数据,请根据2月至5月的数据求出关于的线性回归方程;(2)若由线性回归方程得到的估计数,与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的.试问:该小组所得的线性回归方程是否理想?17. (12分) (2017·南昌模拟) 网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.(Ⅰ)求这4人中恰有1人去淘宝网购物的概率;(Ⅱ)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.18. (12分) (2018高三上·云南期末) 为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为15.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过65公斤的学生人数,求的分布列及数学期望.19. (12分)(2017·成都模拟) 某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100](1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分恰好有一人在[40,50)的概率.20. (12分) (2016高三上·金山期中) 为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图.规定:成绩不低于120分时为优秀成绩.(1)从甲班的样本中有放回的随机抽取 2 个数据,求其中只有一个优秀成绩的概率;(2)从甲、乙两个班级的样本中分别抽取2名同学的成绩,记获优秀成绩的人数为ξ,求ξ的分布列和数学期望Eξ.参考答案一、真题演练 (共6题;共72分)1-1、1-2、2-1、2-2、3-1、4-1、4-2、5-1、5-2、5-3、6-1、二、模拟实训 (共14题;共168分) 7-1、7-2、8-1、9-1、10-1、10-2、11-1、11-2、11-3、12、答案:略13-1、14-1、15-1、15-2、15-3、16-1、16-2、17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、。
第53讲-离散型随机变量及其分布列(解析版)-2021年新高考数学一轮专题复习(新高考专版)

第53讲离散型随机变量及其分布列一、考情分析1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.了解超几何分布,并能解决简单的实际问题.二、知识梳理1.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.2.离散型随机变量的分布列及性质(1)离散型随机变量的分布列:若离散型随机变量X所有可能取的值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率为p1,p2,…,p n,则表称为离散型随机变量X.(2)离散型随机变量分布列的性质:①p i≥0(i=1,2,3,…,n);②p1+p2+…+p n=1;③P(x i≤x≤x j)=p i+p i+1+…+p j.3.常见离散型随机变量的分布列(1)二点分布:如果随机变量X的分布列为其中0<p<1,q=1-p,则称离散型随机变量p的二点分布.(2)超几何分布:设有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件(n≤N),这n件中所含这类物品件数X是一个离散型随机变量,当X=m时的概率为P(X=m)=C m M C n-mN-MC n N(0≤m≤l,l为n和M中较小的一个),称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.三、 经典例题考点一 离散型随机变量分布列的性质【例1】 设随机变量X 的分布列为P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5).(1)求a 的值; (2)求P ⎝ ⎛⎭⎪⎫x ≥35;(3)求P ⎝ ⎛⎭⎪⎫110<X ≤710.解 (1)由分布列的性质,得P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=a +2a +3a +4a+5a =1,所以a =115.(2)P ⎝ ⎛⎭⎪⎫X ≥35=P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=3×115+4×115+5×115=45.(3)P ⎝ ⎛⎭⎪⎫110<X ≤710=P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35=115+215+315=25.规律方法 分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性.(2)随机变量X 所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率.考点二 超几何分布的应用典例迁移【例2】 (经典母题)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.解 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P(X=2)=C36C24C510=1021,P(X=3)=C26C34C510=521,P(X=4)=C16C44C510=142.因此X的分布列为【迁移探究1】用X表示接受乙种心理暗示的男志愿者人数,求X的分布列. 解由题意可知X的取值为1,2,3,4,5,则P(X=1)=C16C44C510=142,P(X=2)=C26C34C510=521,P(X=3)=C36C24C510=1021,P(X=4)=C46C14C510=521,P(X=5)=C56C510=142.因此X的分布列为【迁移探究2】用X表示接受乙种心理暗示的女志愿者人数与男志愿者人数之差,求X的分布列.解由题意知X可取的值为3,1,-1,-3,-5,则P(X=3)=C44C16C510=142,P(X=1)=C34C26C510=521,P(X=-1)=C24C36C510=1021,P(X=-3)=C14C46C510=521,P(X=-5)=C56C510=1 42,因此X的分布列为规律方法 1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布.2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.考点三求离散型随机变量的分布列【例3】为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X,求X的分布列.解(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A,“这两人中一人送考2次,另一人送考3次”为事件B,“这两人中一人送考1次,另一人送考3次”为事件C,“这两人送考次数相同”为事件D,由题意知X的所有可能取值为0,1,2,P(X=1)=P(A)+P(B)=C120C1100C2200+C1100C180C2200=100199,P(X=2)=P(C)=C120C180C2200=16199,P(X=0)=P(D)=C220+C2100+C280C2200=83199,∴X的分布列为X 01 2P 8319910019916199规律方法求随机变量分布列的主要步骤:(1)明确随机变量的取值,并确定随机变量服从何种概率分布;(2)求每一个随机变量取值的概率;(3)列成表格.对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列数公式求随机变量对应的概率,放回抽样由分步乘法计数原理求随机变量对应的概率. [方法技巧]1.对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.2.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.四、 课时作业1.(2020·浙江高三二模)已知随机变量ξ满足1(0)3P ξ==,()1P x ξ==,2(2)3P x ξ==-,若203x <<,则随x 增大( ) A .()E ξ增大()D ξ增大 B .()E ξ减小()D ξ增大 C .()E ξ减小()D ξ减小 D .()E ξ增大()D ξ减小【答案】C 【解析】解:随机变量ξ满足1(0)3P ξ==,()1P x ξ==,2(2)3P x ξ==-, 124()012()333E x x x ξ∴=⨯+⨯+-=-,222224144218111()(0)(1)(2)()()3333339612D x x x x x x x x ξ=-+⨯+-++-+-=--+=-++.若203x <<,则随x 增大,()E ξ减小,()D ξ减小. 2.(2020·广东湛江二十一中高三月考)新型冠状病毒肺炎的潜伏期X (单位:日)近似服从正态分布:()2~7,X N σ,若(3)0.872P X >=,则可以估计潜伏期大于等于11天的概率为( )A .0.372B .0.256C .0.128D .0.744【答案】C【解析】因为7μ=,所以根据正态曲线的对称性知,(11)(3)1(3)10.8720.128P X P X P X ≥=≤=->=-=.3.(2020·四川省遂宁市第二中学校高三其他(理))“学习强国”是一个网络学习平台,给人们提供了丰富的学习素材.某单位为了鼓励职工加强学习,组织了200名职工对“学习强国”中的内容进行了测试,并统计了测试成绩(单位:分).若测试成绩服从正态分布()2120,N σ,且成绩在区间()110,130内的人数占总人数的1725,则此次测试成绩不低于130分的职工人数大约为( ) A .10 B .32 C .34 D .37【答案】B【解析】设测试成绩为ξ,则()2~120,N ξσ,又()()()178110130111013012525P P P ξξξ≤+≥=-<<=-=, 所以()()18411013022525P P ξξ≤=≥=⨯=, 所以成绩不低于130分的职工人数大约为42003225⨯=. 4.(2020·新疆高三三模(理))某校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班有50人.现解析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则这两个数学建模兴趣班所有同学的平均成绩是( ) A .85 B .85.5C .86D .86.5【答案】A【解析】解:由题意,这两个数学建模兴趣班所有同学的平均成绩是40905081854050⨯+⨯=+,故选:A .5.(2020·黑龙江哈九中高二月考(理))已知随机变量1~4,3B ξ⎛⎫ ⎪⎝⎭,则该变量的方差()D ξ=( )A .43B .113C .89D .329【答案】C【解析】1~4,3B ξ⎛⎫ ⎪⎝⎭,由二项分布的方差公式可得()11841339D ξ⎛⎫=⨯⨯-=⎪⎝⎭. 6.(2020·苏州大学附属中学高二月考)校园内移栽4棵桂花树,已知每棵树成活的概率为45,那么成活棵数X 的方差是( )A .165B .6425C .1625D .645【答案】C【解析】由条件可知44,5XB ⎛⎫ ⎪⎝⎭所以()411645525D X =⨯⨯=. 7.(2020·四川宜宾·高三其他(理))某同学投篮命中的概率为0.6,且各次投篮是否命中相互独立,他投篮3次,至少连续2次命中的概率是( ) A .0.504 B .0.524 C .0.624 D .0.648【答案】A【解析】由题可知:若连续两次命中概率为:()220.610.60.288⨯⨯-=若连续三次命中概率为:30.60.216=所以他投篮3次,至少连续2次命中的概率是0.2880.2160.504+= 8.(2020·辽宁辽阳·高三三模(理))已知随机变量X 服从正态分布()22,N σ,且()020.3P X ≤≤=,则()4P X >=( )A .0.6B .0.2C .0.4D .0.35【答案】B【解析】∵随机变量X 服从正态分布()22,N σ,∴正态曲线的对称轴是2x =, ∵()020.3P X ≤≤=, ∴()40.50.30.2P X >=-=.9.(2020·大连市普兰店区第三十八中学高三开学考试)已知随机变量ξ服从正态分布()22,N σ,若(3)0.84ξ<=P ,则(1)P ξ≤=( )A .0.16B .0.32C .0.68D .0.84【答案】A【解析】由(3)0.84(3)10.840.16P P ξξ<=⇒≥=-=, 因为正态分布()22,N σ的对称轴为:2x =,所以(1)(3)0.16P P ξξ≤=≥=.10.(2020·湖南高三其他(理))纹样是中国传统文化的重要组成部分,它既代表着中华民族的悠久历史、社会的发展进步,也是世界文化艺术宝库中的巨大财富.小楠从小就对纹样艺术有浓厚的兴趣.收集了如下9枚纹样微章,其中4枚凤纹徽章,5枚龙纹微章.小楠从9枚徽章中任取3枚,则其中至少有一枚凤纹徽章的概率为( ).A .34B .3742C .2137D .542【答案】B【解析】从9枚纹样微章中选择3枚,所有可能事件的数量为39C ,满足“一枚凤纹徽章也没有”的所有可能事件的数目为35C ,因为“至少有一枚凤纹徽章”的对立事件为“一枚凤纹徽章也没有”,所以3539543371198742C P C ⨯⨯=-=-=⨯⨯,故选:B.11.(2020·江苏南京·高三开学考试)某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布2(105,)(0)N σσ>,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A .150 B .200C .300D .400【答案】C【解析】∵()()1901205P X P X ≤=≥=,()2390120155P X ≤≤=-=, 所以()39010510P X ≤≤=, 所以此次数学考试成绩在90分到105分之间的人数约为3100030010⨯=. 12.(2020·湖南益阳·高三月考)已知随机变量ξ服从正态分布()21,N σ,若(4)0.9P ξ<=,则(24)P ξ-<<=( )A .0.2B .0.4C .0.6D .0.8【答案】D【解析】因为随机变量ξ服从正态分布()21,N σ,所以正态曲线的对称轴为1x =,因为(4)0.9P ξ<=,所以(4)(2)0.1P P ξξ≥=<-=,所以()()(24)12410.10.10.8P P P ξξξ-<<=-≤--≥=--=,故选:D13.(2020·浙江高三月考)袋子A 中装有若干个均匀的红球和白球,从A 中有放回地摸球,每次摸出一个,摸出一个红球的概率是13,有3次摸到红球即停止.记5次之内(含5次)摸到红球的次数为ξ,则ξ的数学期望()E ξ=( )A .13181B .14381C .433243D .593243【答案】A【解析】由题意,ξ能取的值为0,1,2,3,则()5132013243P ⎛⎫==-= ⎪⎝⎭ξ,()41511801133243P C ⎛⎫==⋅⋅-=⎪⎝⎭ξ, ()232511802133243P C ⎛⎫⎛⎫==⋅⋅-=⎪⎪⎝⎭⎝⎭ξ, ()322222341111111513113333333243P C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+⋅⋅⋅-+⋅⋅⋅-=⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ξ, 则ξ的数学期望()32808051131012324324324324381E =⨯+⨯+⨯+⨯=ξ. 14.(2020·福建高三其他)某校在一次月考中共有800人参加考试,其数学考试成绩X 近似服从正态分布2(105,)N σ,试卷满分150分.现已知同学甲的数学成绩为90分,学校排名为720,同学乙的数学成绩为120分,那么他的学校排名约为( ) A .60 B .70 C .80 D .90【答案】C【解析】因为同学甲的数学成绩为90分,学校排名为720, 则数学成绩小于等于90分对应的概率约为()80072019080010P X -≤==,又数学考试成绩X 近似服从正态分布2(105,)N σ, 所以()()11209010P X P X ≥=≤=,则成绩数学成绩大于等于120分的学生约为80人, 因此若同学乙的数学成绩为120分,那么他的学校排名约为80名.15.(2020·全国开学考试(理))宋代文学家欧阳修在《卖油翁》中写道“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,由此诠释出了“熟能生巧”的道理.已知铜钱是直径为4cm 的圆,正中间有一边长为1cm 的正方形小孔现先后两次随机向铜钱上滴一滴油(油滴的大小忽略不计),则两次油滴均落入孔中的概率为( )A .2116πB .116πC .214πD .14π【答案】A【解析】解:圆的面积为22=4ππ⨯ 2cm ,正方形的面积为21cm , 则一滴油滴落入孔中的概率14πP =, 所以两滴油滴均落入孔中的概率21114π4π16πP =⨯=. 16.(2020·沙坪坝·重庆一中高三月考(理))已知随机变量ξ服从二项分布25,5B ⎛⎫⎪⎝⎭,则()21D ξ+=( )A .125B .8C .245D .5【答案】C【解析】因为随机变量ξ服从二项分布25,5B ⎛⎫⎪⎝⎭,所以()22651555D ξ⎛⎫=⨯⨯-= ⎪⎝⎭,所以()()2624212455D D ξξ=⨯=⨯+=,故选:C.17.(2020·山东高三开学考试)已知参加2020年某省夏季高考的53万名考生的成绩Z 近似地服从正态分布()2453,99N ,估计这些考生成绩落在(]552,651的人数约为( )(附:()2,Z N μσ~,则()0.6827P Z μσμσ-<≤+=,()220.9545P Z μσμσ-<≤+=)A .36014B .72027C .108041D .168222【答案】B【解析】()2453,99ZN ,453,99μσ∴==,()3545520.6827P Z ∴<≤=,()2556510.9545P Z <≤=, ()()()2556513545525526512P Z P Z P Z <≤-<≤∴<≤=0.95450.68270.13592-==,这些考生成绩落在(]552,651的人数约为5300000.135972027⨯=.18.(多选题)(2020·山东青岛·高三开学考试)近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布2(,30)N μ和2(280,40)N ,则下列选项正确的是( )附:若随机变量X 服从正态分布2(,)N μσ,则()0.6826P X μσμσ-<<+≈.A .若红玫瑰日销售量范围在(30,280)μ-的概率是0.6826,则红玫瑰日销售量的平均数约为250B .红玫瑰日销售量比白玫瑰日销售量更集中C .白玫瑰日销售量比红玫瑰日销售量更集中D .白玫瑰日销售量范围在(280,320)的概率约为0.3413 【答案】ABD【解析】对于选项A :+30=280,=250μμ,正确;对于选项B C :利用σ越小越集中,30小于40,B 正确,C 不正确; 对于选项D :(280320)=<<P X 1()0.68260.34132μμσ<<+≈⨯≈P X ,正确. 19.(多选题)(2020·广东珠海·高三月考)已知随机变量X 的取值为不大于()n n N *∈的非负整数,它的概率分布列为其中(0,1,2,3,,)i p i n =满足[0,1]i p ∈,且0121n p p p p ++++=.定义由X 生成的函数230123()i n i n f x p p x p x p x p x p x =+++++++,()g x 为函数()f x 的导函数,()E X 为随机变量X 的期望.现有一枚质地均匀的正四面体型骰子,四个面分别标有1,2,3,4个点数,这枚骰子连续抛掷两次,向下点数之和为X ,此时由X 生成的函数为1()f x ,则( ) A .()(2)E X g = B .115(2)2f =C .()(1)E X g =D .1225(2)4f =【答案】CD【解析】解:因为230123()i n i n f x p p x p x p x p x p x =+++++++,则1211123()'()23i n i n g x f x p p x p x ip x np x --==++++++,123()23i n E X p p p ip np =++++++, 令1x =时,123()23(1)i n E X p p p ip np g =++++++=,故选项A 错误,选项C 正确;连续抛掷两次骰子,向下点数之和为X ,则X 的分布列为:234567811()16161616161616f x x x x x x x x =++++++ 234567811234321225(2)2222222161616161616164f =⨯+⨯+⨯+⨯+⨯+⨯+⨯=故选项B 错误;选项D 正确.20.(多选题)(2020·湖北葛洲坝中学高三月考)下列命题中正确的是( ) A .命题p :0x ∃<,1x e x ->的否定p ⌝:0x ∀≥,1x e x -≤ B .若随机变量ξ服从正态分布()21,N σ,(4)0.79P ξ≤=,则(2)0.21P ξ≤-=;C .根据一组样本数据的散点图判断出两个变量线性相关,由最小二乘法求得其回归直线方程为0.3y x m =-,若样本中心点为(), 2.8m -,则4m =D .若随机变量()100,X B p ,且()20E X =,则()12D X =【答案】BC【详解】对于选项A ,命题p :0x ∃<,1x e x ->的否定为p ⌝:0x ∀<,1x e x -≤,所以A 不正确; 对于选项B ,因为随机变量ξ服从正态分布()21,N σ,所以正态曲线关于1x =对称,所以(2)(4)10.790.21P P ξξ≤-=≥=-=,所以B 正确;对于选项C ,因为回归直线一定经过样本中心点,所以 2.80.30.7m m m -=-=-, 即4m =,所以C 正确; 对于选项D ,因为()100,XB p ,且()20E X =,所以10020p =,即0.2p =,所以()1000.20.816D X =⨯⨯=,所以D 不正确.21.(2020·云南师大附中高三月考(理))华为手机作为全球手机销量第二位,一直深受消费者喜欢.据调查数据显示,2019年度华为手机(含荣耀)在中国市场占有率接近40%.小明为了考查购买新手机时选择华为是否与年龄有一定关系,于是随机调查100个2019年购买新手机的人,得到如下不完整的列表.定义30岁以下为“年轻用户”,30岁以上为“非年轻用户”.附:()()()()()22n ad bc K a b c d a c b d -=++++.(1)将列表填充完整,并判断是否有90%的把握认为购买手机时选择华为与年龄有关?(2)若采用分层抽样的方法从购买华为手机用户中抽出9个人,再随机抽3人,其中年轻用户的人数为X ,求X 的分布列和期望. 【详解】(1)易得由列表可得()()()()()22n ad bc K a b c d a c b d -=++++()210036122824 1.042 2.70640603664⨯-⨯=≈<⨯⨯⨯,故没有90%的把握认为购买手机时选择华为与年龄有关系. (2)利用分层抽样抽取9个购买华为手机的用户, 易知其中有3个年轻用户,6个非年轻用户.现在其中随机抽取3人,设抽到的年轻用户人数为X , 则X 可能的取值为0,1,2,3,易得()()336390,1,2,3i i C C P X i C i -===, 故分布列为()0123121281484E X =⨯+⨯+⨯+⨯=. 22.(2020·云南高三月考(理))某校从高三年级中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级4名选手,现从每个班级4名选手中随机抽取2人回答这个问题.已知这4人中,甲班级有3人可以正确回答这道题目,而乙班级4人中能正确回答这道题目的概率每人均为34,甲、乙两班级每个人对问题的回答都是相互独立,互不影响的.(1)求甲、乙两个班级抽取的4人都能正确回答的概率;(2)设甲、乙两个班级被抽取的选手中能正确回答题目的人数分别为X ,Y ,求随机变量X ,Y 的期望()E X ,()E Y 和方差()D X ,()D Y ,并由此解析由哪个班级代表学校参加大赛更好?【详解】解:(1)甲、乙两个班级抽取的4人都能正确回答的概率2232439432C P C ⎛⎫=⨯=⎪⎝⎭; (2)甲班级能正确回答题目人数为X ,X 的取值分别为1,2,()121341112C C P X C ===,()2432122C P X C ===,则()11312222E X =⨯+⨯=,()22313111222224D X ⎛⎫⎛⎫=-⨯+-⨯= ⎪ ⎪⎝⎭⎝⎭, 乙班级能正确回答题目人数为Y ,Y 的取值分别为0,1,2,∵3~2,4Y B ⎛⎫⎪⎝⎭,∴()33242E Y =⨯=,()3132448D Y =⨯⨯=,由()()E X E Y =,()()D X D Y <可知,由甲班级代表学校参加大赛更好.23.(2020·河南洛阳·月考(理))为提升销量,某电商在其网店首页设置了一个“勇闯关,贏红包”的游戏小程序,其游戏规则如下:在网页上设置三个翻牌关卡,每个关卡翻牌结果只有两种:Pass (通过)与Fail (失败),若买家通过这三关,则认为闯关成功;若三关均未通过或只通过三关中的一关,则游戏失败;若三关中恰好通过两关,则允许参加复活环节.复活环节有两个翻牌关卡,若两关均通过,也认为闯关成功,否则认为闯关失败.假定买家每一关通过的概率均为13,且各关卡之间是否通过相互独立. (1)求某买家参加这个游戏闯关成功的概率;(2)若闯关成功,则买家可赢得50元的购物红包.若闯关失败.则可获得10元红包,红包均可直抵在该网店购物的货款.某日有8100人参与了游戏且均在该网店消费. (ⅰ)求该日所有买家所获红包总金额X 的数学期望:(ⅱ)假定该电商能从未中奖的买家的购物中平均获利8元/人,从中奖的买家的购物中平均获利120元/人(均不含所发红包在内).试从数学期望的角度判断该电商这一日通过游戏搞促销活动是否合算,并说明理由.【详解】解:(1)买家通过三关的概率为33311327C ⎛⎫⨯=⎪⎝⎭, 买家参加复活环节并闯关成功的概率为222232121233381C C ⎛⎫⎛⎫⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以买家闯关成功的概率125278181P =+=. (2)(ⅰ)由(1)可知,一名买家闯关成功的概率581P =,设这8100名买家中闯关成功的人数为Y , 则()501081004081000X Y Y Y =+-=+, 且5~8100,81Y B ⎛⎫ ⎪⎝⎭, 所以Y 的数学期望为()5810050081E Y =⨯=, 所以该日所有买家所获红包总金额X 的数学期望为()()()40810004081000101000E X E Y E Y =+=+=元.(ⅱ)设电商该日剔除红包款后盈利Z 元,则()()()8810050012050019800E Z E X =⨯-+⨯-=元, 由此可见,该电商该日通过游戏搞促销活动盈利较多,很合算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.
(I )求接受甲种心理暗示的志愿者中包含A 1但不包含1B 的频率。
(II )用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX .
本小题主要考查统计和分布列,以及数学期望等基础知识, 考查分析问题能力和运算求解
能力.
解:(I )记接受甲种心理暗示的志愿者中包含1A 但不包含1B 的事件为M ,则
485105().18
C P M C ==
(II)由题意知X 可取的值为:0,1,2,3,4.则
565101(0),42C P X C ===
41645105(1),21C C P X C ===
326451010(2),21
C C P X C === 23645105(3),21
C C P X C === 14645101(4),42C C P X C ===
因此X 的分布列为
X 的数学期望是 0(0)1(1)2(2)3(3)4(4)EX P X P X P X P X P X =⨯=+⨯=+⨯=+⨯=+⨯=
=510510+1+2+3+421212142⨯
⨯⨯⨯ =2。