PhysRevB.62.6944
vmd中心频率代码

vmd中心频率代码1.引言1.1 概述在分子动力学模拟中,VMD(Visual Molecular Dynamics)是一种常用的分子可视化和分析软件。
它不仅提供了三维分子结构的可视化工具,还具备强大的分析功能,能够帮助研究人员深入理解分子的结构与性质。
VMD中心频率代码是VMD软件中的一个重要功能模块,主要用于计算和分析分子的振动频率。
在原子或分子系统中,振动频率可以提供有关其动态行为、稳定性和结构的有用信息。
通过计算和分析分子的振动频率,我们可以了解分子内部原子之间的相互作用、键的强度以及某些化学反应的可能性。
VMD中心频率代码的实现基于分子力学和量子力学方法。
它利用分子动力学模拟中收集到的原子轨迹数据,以及相关的力场和势能函数,对分子进行力学振动频率的计算和分析。
通过VMD的图形界面和命令行功能,研究人员可以方便地使用中心频率代码,提取所需的振动频率信息,并通过可视化工具展示结果。
VMD中心频率代码还提供了一系列参数和选项,用于调节计算的精度和准确性。
研究人员可以选择不同的力场和近似方法,以满足不同研究需求。
此外,VMD还支持处理大型分子系统和复杂的化学反应网络,使其成为广泛应用于生物物理学、化学和材料科学等领域的强大工具。
通过对分子的振动频率进行计算和分析,VMD中心频率代码可以帮助研究人员深入理解分子的动态行为和结构特征。
它为科学家提供了一个非常有价值和有力的工具,用于研究分子的力学性质、热力学行为和化学反应。
无论是研究基础科学还是应用科学,VMD中心频率代码都发挥着重要的作用,为我们揭示无数复杂分子体系的奥秘。
1.2 文章结构本文将围绕VMD中心频率代码展开讨论,主要包括以下几个部分:1. 简介:首先对VMD(Visual Molecular Dynamics)进行简要介绍,VMD是一款常用于分子动力学模拟和分子可视化的软件工具,其强大的功能和灵活的可扩展性使其在生物物理学研究领域得到广泛应用。
PIC16LF1508-ISS;PIC16F1508-ISS;PIC16LF1509-ISS;PIC16F1509-ISS;中文规格书,Datasheet资料

Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, , dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, , PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-61341-726-3
MU70-SU0 LGA2011插座R3主板 用户手册说明书

2-3-6-1 IOAT 配置...................................................................................................84
-3-
第3章
2-3-2-3 CPU T State Control(CPU T 状态控制)............................................73
2-3-3 Common RefCode Configuration(通用 RefCode 配置)..............74
2-3-5-1 内存拓扑.....................................................................................................79
2-3-5-2 内存热效应................................................................................................80
目录
包装箱物品...........................................................................................................5 MU70-SU0 主板布局..........................................................................................6 框图.......................................................................................................................9 第 1 章 硬件安装.............................................................................................10
Program Protection Manual for the C-64 Volume II说明

arsenic to
make n-channel transistors in p-type substrates.
N-channel ICs have channels which are composed of negatively
charged carriers. CMOS or Complementary MOS ICs utilize both p-channel
P-suesTIIATE
IPf'OIII CELL
IIpMlM Cl!LL
PPMII READ ONLY MEMORY PAGE 255
...
"~r;.'000'"
I, .~I
L"'':"C~ES II
I I I
I
I I I
I
I
I
I
I
'EJ
I DATA
f < J .~F.O.
N-SUBSTRATE
PMOS P-CHANNEL OEVICE GATE
GATE . 'O,~, ¢q ,~,
. "-'.,L M'.d-k ~ P . A'"''
__""'+~
I
....' P.. . I '---'------' . I I ""m )
I I ::"u,"", CMOS
and n-channel devices on a common substrate. Either p-or n-type substrates can be used, but areas of the opposite substrate (wells) must be present to create the complementary transistor type.
realviewarmulatoriss

Copyright © 2002, 2003 ARM Limited版权所有ARM DUI 0207ASC-00RealView ™ARMulator ®ISS1.3 ۈઓᒎฉii Copyright © 2002, 2003 ARM Limited版权所有ARM DUI 0207ASC-00RealView ARMulator ISSઓᒎฉCopyright ©2002, 2003 ARM Limited版权所有ۈ۾ቧᇦ本书进行了以下更改Ⴥᎌཚᄰস标有 ®或 ™ 的词语和徽标是 ARM Limited拥有的注册商标或商标此处提及的其它品牌和名称可能是其相关所有者的商标除非事先得到版权所有人的书面许可否则不得以任何形式改编或复制本文档包含或产品描述的全部或部分信息本文档描述的产品将进行持续的开发和改进ARM 将如实提供所有产品特性以及本文档包含的使用方法但是所有暗示或明示的担保包括但不限于对特定用途适销性或适用性的暗示担保均不包括在内本文档的目的仅在于帮助读者使用产品对由于使用本文档中的任何信息这些信息中的任何错误或遗漏或任何不正确的使用产品而导致的任何损失或损害ARM Limited概不负责ৎখഺ྇໐खቲৎখ2002 年 8 月A1.3 版ARM DUI 0207ASC-00Copyright © 2002, 2003 ARM Limited版权所有iii目录RealView ARMulator ISS ઓᒎฉ༄ዔ关于本书 ......................................................................................................... vi 反馈 . (ix) 1 ᐺ଼1.1RealView ARMulator ISS 概述 .................................................................... 1-2 2 ᐺARMulator ᒀဤ2.1关于 ARMulator ........................................................................................... 2-22.2ARMulator 组件 ........................................................................................... 2-32.3跟踪器 ......................................................................................................... 2-52.4Profiler ....................................................................................................... 2-122.5ARMulator 周期类型 .................................................................................. 2-142.6页表模块 .................................................................................................... 2-192.7缺省存储器模型 ......................................................................................... 2-272.8使用映射文件进行存储器建模 ................................................................... 2-282.9Semihosting .............................................................................................. 2-312.10外围设备模型 ............................................................................................ 2-32 3 ᐺܠቖ ARMulator ෝቯ3.1ARMulator 扩展套件 .................................................................................... 3-23.2写新外围设备模型 ....................................................................................... 3-6iv Copyright © 2002, 2003 ARM Limited版权所有ARM DUI 0207ASC-003.3构建新模型 .................................................................................................. 3-83.4配置 ARMulator 以使用新模型 .................................................................. 3-103.5配置 ARMulator 以禁用模型 ..................................................................... 3-12 4 ᐺARMulator ݬఠ4.1ARMulator 模型 .......................................................................................... 4-24.2与内核进行通信 .......................................................................................... 4-34.3基本模型接口 ............................................................................................ 4-124.4协处理器模型接口 ..................................................................................... 4-154.5异常 .......................................................................................................... 4-264.6事件 .......................................................................................................... 4-294.7处理程序 ................................................................................................... 4-334.8存储器访问函数 ........................................................................................ 4-384.9事件调度函数 ............................................................................................ 4-404.10通用函数 ................................................................................................... 4-414.11访问调试器 ................................................................................................ 4-544.12跟踪器 ....................................................................................................... 4-584.13映射文件 ................................................................................................... 4-604.14ARMulator 配置文件 ................................................................................. 4-644.15ToolConf ................................................................................................... 4-694.16外围设备参考 ............................................................................................ 4-74ࠤܭARM DUI 0207ASC-00Copyright © 2002, 2003 ARM Limited版权所有v༄ዔ此前言对 RealView ™ ARMulator ® 指令集模拟器 (RealView ARMulator ISS) 目标进行了介绍它包含以下内容•第 vi 页关于本书•第 ix 页反馈前言vi Copyright © 2002, 2003 ARM Limited版权所有ARM DUI 0207ASC-00ਈ᎖۾ၗ本书提供了有关 RealView ARMulator ISS即 ARM 处理器模拟器的参考信息း࣪ሷ本书专为使用远程调试接口 1.5.1兼容调试器的所有开发人员而写前提是假定您是一位有经验的软件开发人员并且您熟悉 ADS v1.2 Getting Started Guide 或 RealView Compilation Tools v1.2 Getting Started Guide 中描述的 ARM开发工具ဧ۾ၗ本书由以下章节组成 1 ᐺ简介阅读本章以简单了解本书内容以及 RealView ARMulator ISS 的概要描述第 2 章ARMulator 基础知识阅读本章以简单了解RealView ARMulator ISS 即 ARM 指令集模拟器第 3 章编写 ARMulator 模型阅读本章以帮助您记录您对 RealView ARMulator ISS 的扩展和修改第 4 章ARMulator 参考本章提供帮助您使用 RealView ARMulator ISS的更多详细内容前言ARM DUI 0207ASC-00Copyright © 2002, 2003 ARM Limited版权所有vii፝ၮਏಿ本书使用了以下印刷惯例斜体突出显示重要注释介绍特殊术语表示内部交叉链接和引用࠰ᄏ突出显示界面要素如菜单名称必要时也用于强调说明列表中的重点以及 ARM处理器信号名称等宽表示可以从键盘输入的文本如命令文件和程序名以及源代码等宽表示允许的命令或选项缩写可只输入下划线标记的文本无需输入命令或选项的全名等宽斜体表示此处的命令和函数变量可用特定值代替ࢀ࠰ᄏ表示使用示例代码以外的语言关键字前言viii Copyright © 2002, 2003 ARM Limited版权所有ARM DUI 0207ASC-00ࣗᇕ本部分列出了 ARM Limited和第三方发布的可提供有关 ARM 系列处理器开发代码附加信息的相关读物ARM将定期对其文档进行更新和更正有关最新勘误表附录以及 ARM 常见问题请访问 ARM ၗఓ本书包含特定 RealView ARMulator ISS 的信息有关将 RealView ARMulator ISS与调试器配合使用的信息请参阅调试器说明文档前言ARM DUI 0207ASC-00Copyright © 2002, 2003 ARM Limited版权所有ixनౣARM Limited 乐于收到有关 RealView ARMulator ISS及其文档的任何反馈ਈ᎖ RealView ARMulator ISS ࡼनౣ如果您对 RealView ARMulator ISS有任何疑问请与供应商联系为便于供应商提供快捷有用的答复请提供•您的姓名和公司•产品序列号•您所用的版本的详情•您运行的平台的详情如硬件平台操作系统类型和版本•再现问题发生的独立样本代码•您期望发生和实际发生的情况的详细说明•您使用的命令包括所有命令行选项•解释问题的示例输出•工具的版本字符串包括版本号和日期ਈ᎖۾ၗࡼनౣ如果您对本书有任何问题请发送电子邮件到 **************并提供•文档标题•文档编号•您有意见的页码•您的意见的简单说明我们还欢迎您对新增和改进之处提出一般建议前言x Copyright © 2002, 2003 ARM Limited版权所有ARM DUI 0207ASC-00第 1 章଼本章介绍了RealView ARMulator 指令集模拟器 (RealView ARMulator ISS) 1.3 版提供的调试支持工具本章包含以下内容•第 1-2 页RealView ARMulator ISS 概述简介1.1RealView ARMulator ISS গၤ您可以使用远程调试接口 (RDI) 1.5.1 兼容调试器调试您的原型软件调试器在主计算机上运行并连接至运行原型软件的目标系统您的目标系统可以是以下任何一个•软件模拟器RealView ARMulator ISS模拟 ARM 硬件•ARM 评估或开发板•基于 ARM 的第三方开发板•您自己设计的基于 ARM 的硬件本文档只介绍 RealView ARMulator ISS有关其它目标系统的详情请参阅该目标的说明文档1.1.1ဠඐဵ RealView ARMulator ISSRealView ARMulator ISS后文称为 ARMulator随 ARM 调试器提供是一个独立产品ARMulator 在与调试器相同的主计算机上运行并且包括与调试器通信的工具ARMulator 是一个指令集模拟器 (ISS)它与存储器系统和外围设备一起可以模拟指令集和 ARM 处理器的结构您还可以将其扩展至模拟其它外围设备和自定义存储器系统请参阅第 3 章编写 ARMulator 模型您可以将 ARMulator 用于软件开发也可以将其作为以 ARM 为目标的软件的基准程序它可以模拟指令集和计数周期作为基准程序的精度会受到限制请参阅第 2-2 页精度1.1.2Semihosting您可以使用主计算机上的 I/O 设备而非目标系统提供的设备这就是所谓的semihosting有关详情请参阅RealView Compilation Tools v1.2 Compilers andLibraries Guide缺省情况下ARM C 和 C++ 代码使用 semihosting 设备要从汇编代码访问 semihosting 设备请使用 semihosting 软件中断 (SWI)ARMulator 中止 semihosting SWI 并从主计算机请求服务第 2 章ARMulator ᒀဤ本章描述 ARMulator即提供 ARM 处理器软件模拟的程序集成它包含以下内容•第 2-2 页关于 ARMulator•第 2-3 页ARMulator 组件•第 2-5 页跟踪器•第 2-12 页Profiler•第 2-14 页ARMulator 周期类型•第 2-19 页页表模块•第 2-27 页缺省存储器模型•第 2-28 页使用映射文件进行存储器建模•第 2-31 页Semihosting•第 2-32 页外围设备模型ARMulator 基础知识2.1ਈ᎖ ARMulatorARMulator 是一种指令集模拟器它可以模拟指令集和各种 ARM 处理器结构要在 ARMulator 上运行软件请通过 RDI 1.5.1 兼容调试器进行访问ARMulator 适用于软件开发并可作为以 ARM 为目标的软件的基准程序它可以模拟指令集和计数周期请参阅第 2-14 页ARMulator 周期类型作为基准程序的精度和周期计数精度会受到一定限制请参阅精度ARMulator 可提供使全部 C 或 C++ 程序在模拟系统上运行所需的全部工具有关 ARMulator 支持的 C 库 semihosting SWI 的信息另请参阅RealViewCompilation Tools v1.2 Compilers and Libraries Guide2.1.1றࣞARMulator 不能达到 100% 的精度因为它并不是基于真实处理器的一般而言不是很复杂非高速缓存的 ARM 处理器内核模型精度较高而带高速缓存的那些内核模型可能与实际硬件的精度不完全相同ARMulator 适合用作系统设计的软件开发工具但如果需要 100% 的精度则必须使用硬件模型在以下情况下您可以使用 ARMulator 作为基准程序•您正在建模的内核没有高速缓存•您只需要近似比较ARMulator 不会在高速缓存内核上建立 Asynchronous Mode 模型如果您在CP15 中设置了控制位以便指定 Asynchronous Mode ARMulator 将会发出警告Set to Asynch mode, WARNING this is not supported您可以继续调试但 ARMulator 将完全按照 Synchronous Mode 的方式运行ARMulator 基础知识2.2ARMulator ᔝୈARMulator 由一系列模块组成可作为动态链接库Windows 的.dll文件或共享对象Linux 或 Solaris 的.so文件或所有平台上的.sdi文件来执行主模块是•ARM 处理器内核模型•处理器所用存储器的模型这些部件中的每一个均有备选的预定义模块您可以选择要使用的处理器和存储器模型组合其中一个预定义的存储器模型mapfile允许您详细指定模拟的存储器系统mapfile允许您指定窄内存和等待状态请参阅第 2-28 页使用映射文件进行存储器建模另外还有其它您可以使用的预定义模块•建立附加硬件模型例如协处理器或外围设备•建立预安装的软件模型例如 C 库semihosting SWI 处理程序或操作系统•抽取调试或基准信息请参阅第 2-5 页跟踪器和第 2-12 页Profiler您可以使用不同的预定义模块组合和不同的存储器映射请参阅第 2-4 页配置ARMulator如果提供的模块不符合您的要求您也可以写自己的模块或者编辑预定义模块的副本例如•建立不同外围设备协处理器或操作系统的模型•建立不同存储器系统的模型•提供其它调试或基准信息一些模块的源代码已提供您可以这些模块为示例来写自己的模块请参阅第 3 章编写 ARMulator 模型ARMulator 基础知识2.2.1ᒙ ARMulator您可以从 RDI 1.5.1 兼容调试器配置一些 ARMulator 的详细资料要进行其它配置调整您必须编辑.ami文件副本随 ARMulator 提供以下.ami文件•bustypes.ami•default.ami•example1.ami•peripherals.ami•processors.ami•vfp.ami这些文件位于install_directory/RVARMulator/ARMulator/1.3/release/platform在此路径中•platform指—Windows win_32-pentium—Linux linux-pentium—Solaris solaris-sparc•对于 Windows请用 \ 替换 /如果要写自己的任何 ARMulator 模型请先生成其它的.ami文件以允许配置您的模型有关如何操作的详情请参阅第 4-64 页ARMulator 配置文件调试器启动 ARMulator 后ARMulator 会读取环境变量ARMCONF中定义的所有路径上的.ami文件初始设置为 ARMulator 目录install_directory/RVARMulator/ARMulator/1.3/release/platform以下小节依次描述每个预定义模块以及如何配置这些模块ᓖ如果.ami文件中的配置设置与您在调试器中的设置发生冲突则将优先采用调试器设置ARMulator 基础知识2.3ৌᔍ您可以使用跟踪器跟踪指令存储器访问和事件由配置文件peripherals.ami来控制跟踪内容请参阅第 4-64 页ARMulator 配置文件本节包括以下小节•调试器跟踪支持•第 2-6 页解释跟踪文件输出•第 2-10 页配置跟踪器2.3.1ࢯ၂ৌᔍᑽߒ如果您的调试器不直接支持跟踪功能跟踪器将使用 RDI 记录级别变量的第 4 位来启用或禁用跟踪功能记录级别变量为以下其中之一•$rdi_log•RealView 调试器中的@mdebug_rdi_log•调试器当量有关通过 ARMulator 使用跟踪功能的详情请参阅调试器文档ᓖ跟踪器由调试器开启或关闭但由.ami文件控制ARMulator 基础知识2.3.2ஊျৌᔍᆪୈၒ߲本节描述如何解释从跟踪器输出的信息ৌᔍᆪୈာಿ以下示例显示了部分跟踪文件Date: Thu Aug 9 16:41:36 2001Source: ArmulOptions: Trace Instructions (Disassemble) Trace Memory CyclesBNR4O___ A0000000 00000C1EBNR8O___ 00008000 E28F8090 E898000FBSR8O___ 00008008 E0800008 E0811008BSR8O___ 00008010 E0822008 E0833008BSR8O___ 00008018 E240B001 E242C001MNR4O___ 00008000 E28F8090IT 00008000 e28f8090 ADD r8,pc,#0x90 ; #0x8098MNR4O___ 00008004 E898000FIT 00008004 e898000f LDMIA r8,{r0-r3}BNR4O___ A0000000 00000C1EBNR8O___ 00008098 00007804 00007828BSR8O___ 00008080 10844009 E3C44003BSR8O___ 00008088 E2555004 24847004BSR8O___ 00008090 8AFFFFFC EAFFFFF2MNR8____ 00008098 00007804 00007828BNR8O___ 000080A0 00007828 00007840BSR8O___ 000080A8 E3A00840 E1A0F00EBSR8O___ 000080B0 E92D400C E28F0014BSR8O___ 000080B8 E5901000 E5900004MNR8____ 000080A0 00007828 00007840MNR4O___ 00008008 E0800008IT 00008008 e0800008 ADD r0,r0,r8MNR4O___ 0000800C E0811008IT 0000800C e0811008 ADD r1,r1,r8MNR4O___ 00008010 E0822008以下类型的行可以出现在跟踪文件中•第 2-7 页跟踪存储器M 行•第 2-8 页跟踪指令I 行•第 2-8 页跟踪事件 E 行•第 2-9 页跟踪寄存器R 行•第 2-9 页跟踪总线 B 行ARMulator 基础知识ৌᔍࡀM ቲM 行表示•存储器访问用于不带片上存储器的内核•片内存储器访问用于带片内存储器的内核它们具有以下通用存储器访问格式M<type><rw><size>[O][L][S] <address> <data>其中<type>表示周期类型S连续N不连续<rw>表示读或写操作R读W写<size>表示存储器访问的大小4字32 位2半字16 位1字节8 位O表示操作码获取指令获取L表示锁定的访问SWP指令S表示推测性的指令获取D表示 ARM9TDMI™数据接口的DMORE信号是 HIGH<address>按十六进制格式给出的地址例如00008008<data>可显示为以下一种模式value给定读/写值例如EB00000C(wait)表示nW AIT为 LOW相对于插入等待状态而言(abort)表示ABORT为 HIGH相对于中止访问而言跟踪存储器行也可以有以下格式MI用于空闲周期MC用于协处理器周期MIO用于 Harvard 体系结构处理器如 ARM9TDMI™指令总线上的空闲周期ARMulator 基础知识ৌᔍᒎഎI ቲ跟踪指令 (I) 行的格式如下[ IT | IS ] <instr_addr> <opcode> [<disassembly>]例如IT 00008044 e04ec00f SUB r12,r14,pc其中IT表示指令被执行IS表示指令被跳过几乎所有 ARM 指令都能有条件执行<instr_addr>按十六进制格式显示指令地址例如00008044<opcode>按十六进制格式给出操作码例如e04ec00f<disassembly>表示反汇编如果指令已被执行则大写例如SUBr12,r14,pc此为可选项可通过在peripherals.ami中设置Disassemble=True启用Thumb 代码中带链接的分支显示为两个条目第一个标记为1st instr of BL pair.ৌᔍူୈ E ቲ事件 (E) 行的格式如下E <word1> <word2> <event_number>例如E 00000048 00000000 10005其中<word1>给出一对字的第一个例如 pc 值<word2>给出一对字的第二个例如中断地址<event_number>给出事件编号例如0x10005这是 MMU Event_ITLBWalk事件在第 4-29 页事件中有描述ৌᔍࡀR ቲ事件 (R) 行的格式如下R <register>=<newvalue>[,<anotherregister>=<newvalue>[...]]例如R r14=20000060, cpsr=200000d3其中<register>当前指令的结果寄存器,保存指令执行结果<newvalue>是<register>中的新内容ৌᔍᔐሣ B ቲ总线 (B) 行的格式与 M 行的格式相同 B 行表示片外存储器访问2.3.3ᒙৌᔍARMulator 外围设备配置文件 (peripherals.ami) 中有关于跟踪器的部分{ Default_Tracer=Tracer;; Output options - can be plaintext to file, binary to file or to RDI log;; window. (Checked in the order RDILog, File, BinFile.);VERBOSE=True;RDILog=TrueRDILog=FalseFile=armul.trcBinFile=armul.trc;; Tracer options - what to traceTraceInstructions=TrueTraceRegisters=FalseOpcodeFetch=True;;Normally True is useful, but sometimes it's too expensive.TraceMemory=True;TraceMemory=FalseTraceIdle=TrueTraceNonAccounted=FalseTraceEvents=False;;If there is a non-core bus, do we trace it (as well).TraceBus=True;; Flags - disassemble instructions; start up with tracing enabled;Disassemble=TrueTraceEIS=FalseStartOn=False}其中RDILog指示跟踪器输出至调试器的 RDI 日志窗口File定义写跟踪信息的文件另外您还可以使用BinFile按二进制格式存储数据其它选项控制跟踪内容TraceInstructions跟踪指令TraceRegisters跟踪寄存器OpcodeFetch跟踪指令获取存储器访问TraceMemory跟踪存储器访问TraceIdle跟踪空闲周期TraceNonAccounted跟踪未统计的RDI存储器即那些由调试器产生的访问TraceEvents跟踪事件有关更多信息请参阅下面的跟踪事件TraceBus可能是TRUE总线已跟踪片外访问FALSE内核未跟踪片外访问Disassemble反汇编指令如果您启用反汇编则模拟速度会较慢TraceEIS如果设为TRUE则将输出格式与其它模拟器兼容这可使工具对跟踪进行比较StartOn指示 ARMulator 在执行一开始即进行跟踪ৌᔍ఼ᒜ您还可以通过以下指令控制跟踪Range=low address,high address只在指定的地址范围内执行跟踪Sample=n只将每n个跟踪条目发送至跟踪文件ৌᔍူୈ跟踪事件时您可以选择要跟踪的事件方法如下EventMask=mask,value只跟踪那些编号被mask屏蔽后位与与value相等的事件Event=number只跟踪number这相当于EventMask=0xFFFFFFFF,number例如以下指令只跟踪 MMU/高速缓存事件EventMask=0xFFFF0000,0x00010000有关更多信息请参阅第 4-29 页事件2.4ProfilerProfiler 由调试器控制有关详情请参阅调试器文档除配置程序执行时间外Profiler 还允许您使用配置机制对事件如高速缓存错误进行配置从调试器打开配置功能时您应指定一个数字n以便控制配置频率有关详情请参阅第 2-13 页配置 ProfilerProfiler 可以配置 C 和汇编语言函数要配置汇编语言函数您必须将函数用FUNCTION和ENDFUNC指令进行标记有关详情请参阅RealView Compilation Toolsv1.2 Assembler Guide2.4.1ᒙ ProfilerARMulator 外围设备配置文件peripherals.ami中有关于 Profiler 的部分{ Default_Profiler=Profiler;VERBOSE=False;; For example - to profile the PC value when cache misses happen, set:;Type=Event;Event=0x00010001;EventWord=pcType=MICROSECOND;;Alternatives for Type are;; Event, Cycle, Microsecond.;;If type is Event then alternatives for EventWord are;; Word1,Word2,PC.}本部分中的每一行均为一个注释因此 ARMulator 将执行其缺省配置缺省设置是每隔 100 微秒进行一次配置取样有关更多信息请参阅调试器文档如果本部分未加注释则会配置数据高速缓存出错有关更多信息请参阅第 4-29 页事件Type条目控制配置间隔Type=Microsecond指示 Profiler 每隔n微秒进行一次取样此为缺省值Type=Cycle指示 Profiler 每隔n个指令进行一次取样并记录自上次取样后的内存周期数量Type=Event指示 Profiler 每隔一定的相关事件即进行配置请参阅第 4-29 页事件n被忽略也允许EventMask=mask,value请参阅第 2-5 页跟踪器2.5ARMulator ᒲ໐ಢቯ除模拟 ARM 内核上的指令执行之外ARMulator 还可以计算总线和处理器周期从调试器您可以以$statistics或调试器当量访问这些计数本节描述所计算的各种周期类型的含义它包含以下部分•RealView Debugger 中的周期计数器•第 2-15 页未高速缓存的 von Neumann 内核•第 2-16 页未带缓存的 Harvard 架构内核•第 2-16 页带 MMU 或 PU 和 AMBA ASB 接口的高速缓存内核•第 2-17 页带 MMU 或 PU 和 AMBA AHB 接口的高速缓存内核•第 2-17 页带高速缓存内核的内部周期类型•第 2-18 页内核相关的详细统计数据2.5.1RealView Debugger ᒦࡼᒲ໐ଐၫARMulator 可以按 RDI 中周期计数器调用所报告的那样增加周期计数器有关详情请参阅第 4-35 页未知的 RDI 信息处理程序如果 RDI 周期计数器名称是X则符号@rdi_X即为周期计数器名称其中X可将所有非字母数字字符转换为带下划线字符这些计数器出现在寄存器选项卡中然而RealView Debugger 跟踪不使用$statistics RealView Debugger 使用@cycle_count这由监测内核和高速缓存或存储器之间总线的存储器回调服务提供并提供合理的时间定义ᓖ尽管@cycle_count可能与周期计数器如Total不同但这种差别并不重要内核内部和外部之间的总线比率意味着@cycle_count是其它时钟值的数倍2.5.2ᆚႥદࡀࡼ von Neumann ดਖ਼表 2-1 显示了未高速缓存的 von Neumann内核的周期类型的含义例如ARM7TDMI®即是一个未带高速缓存的 von Neumann 型内核ೌኚᒲ໐CPU可从以下地址请求转移或转移到以下地址•与前述周期访问地址相同的地址•在前述周期访问地址一字之后的地址•在前述周期访问地址一个半字之后的地址仅限于 Thumb指令获取݀ࡼ I-S ᒲ໐内存控制器可以在 I-Cycle期间推测性地开始解码地址如果 I_Cycle 后跟随一个 S_Cycle 则内存控制器可以比其它方式更早启动此周期的计时功能取决于内存控制器的实施ܭ 2-1 ᆚࡒદࡀࡼ von Neumann ଦ৩ดਖ਼ࡼᒲ໐ಢቯᒲ໐ಢቯSEQ ቧnMREQ ቧፃS_Cycles 11连续周期有关详情请参阅连续周期N_Cycles 01非连续周期CPU 从与前述周期所用地址无关的地址请求转移或者转移到该地址I_Cycles 10内部周期CPU 不需要请求转移因为它正在执行内部函数C_Cycles 00协处理器周期Total --S_CyclesN_CyclesI_CyclesC_Cycles 和 Waits的总和IS--合并的 I-S 周期有关详情请参阅合并的 I-S 周期2.5.3ᆚࡒદࡀࡼ Harvard ଦ৩ดਖ਼表 2-2 显示了未带高速缓存的 Harvard型内核的周期类型的含义例如ARM9TDMI 即是一个没有高速缓存的 Harvard内核2.5.4ࡒ MMU PU ਜ਼ AMBA ASB ాࡼႥદࡀดਖ਼表 2-3 显示了带 AMBA ASB接口的高速缓存内核的总线周期类型的含义有关这些内核的其它周期类型请参阅第 2-17 页带高速缓存内核的内部周期类型例如ARM920T 即是带 MMU和高速缓存的内核ARM940T 是带 PU 和高速缓存的内核示例这些内核没有 N_Cycles 非连续访问使用 A_Cycle 后面跟随 S_Cycle 这与合并的 I-S周期相同ܭ 2-2 ᆚࡒႥદࡀࡼ Harvard ଦ৩ดਖ਼ࡼᒲ໐ಢቯፃᒲ໐ಢቯᒎഎᔐሣၫᔐሣፃ内核周期--内核时钟运行的总数这包括由于互锁和指令需要多个周期而导致的管道中断ID_Cycles 活动活动-I_Cycles 活动空闲-空闲周期空闲空闲-D_Cycles 空闲活动-Total--内核周期ID_Cycles I_CyclesIdle_CyclesD_Cycles 和Waits 的总和ܭ 2-3 ࡒ AMBA ASB ాࡼႥદࡀดਖ਼ࡼᒲ໐ಢቯࡼፃᒲ໐ಢቯፃA_Cycles 地址预测无数据转移在 $statistics 中作为 I_Cycles或调试器当量列出S_Cycles从当前地址连续传输数据2.5.5ࡒ MMU PU ਜ਼ AMBA AHB ాࡼႥદࡀดਖ਼表 2-4 说明了在先进高速总线 (AHB) 上使用的传输类型例如ARM946E-S 即是带 AHB 接口的高速缓存内核有关这些内核的其它周期类型请参阅带高速缓存内核的内部周期类型2.5.6ࡒႥદࡀดਖ਼ࡼดݝᒲ໐ಢቯ表 2-5显示了高速缓存内核的内部周期类型的含义ᓖ如果您希望计算执行时间请使用外部总线周期计数请参阅第 2-16 页带 MMU 或 PU 和 AMBA ASB 接口的高速缓存内核或带 MMU 或 PU 和 AMBA AHB接口的高速缓存内核您不能使用 F_Cycles计算执行时间因为对于未经高速缓存的访问F_Cycles 不会增加ܭ 2-4 AMBA AHB ాࡼᒲ໐ಢቯᒲ໐ಢቯፃIDLE 总线主控器不想使用总线从属器必须以 HRESP 上的零等待状态 OKAY 进行响应BUSY 总线主控器位于分段传输中间但不能进行下一个连续访问从属器必须以 HRESP上的零等待状态 OKAY 进行响应NON-SEQ 分段传输或单个访问的开始地址与上次访问的地址没有关联SEQ继续进行分段传输地址等于前一个地址加上数据长度ܭ 2-5 Ⴅદࡀดਖ਼ࡼดݝᒲ໐ಢቯᒲ໐ಢቯፃF_Cycles 快速时钟 (FLCK ) 周期这些是访问高速缓存的内部内核周期对于非高速缓存的访问由于内核时钟转换为总线时钟因此 F_Cycles不会增加Core Cycles 内核周期是指内核时钟的跳转每次时钟跳转 Core Cycles 均会增加无论内核是运行在 FCLK 高速缓存访问还是总线时钟BCLK 非高速缓存访问下True Idle Cycles空闲周期并不是 I-S合并周期的一部分2.5.7StrongARM1表 2-6 显示了 StrongARM1周期类型的含义2.5.8ดਖ਼ሤਈࡼሮᇼᄻଐၫ在 default.ami文件中有以下一行Counters=False您可以将其更改为Counters=True这样ARMulator 会计算其它统计数据如高速缓存命中数和高速缓存未命中数并显示在$statistics或调试器当量中这些统计数据是特定内核相关的ܭ 2-6 StrongARM ᄂࢾᒲ໐ಢቯᒲ໐ಢቯፃCore_Idle 未从指令高速缓存获取指令未从数据高速缓存获取数据Core_IOnly 从指令高速缓存获取指令未从数据高速缓存获取数据Core_DOnly 未从指令高速缓存获取指令从数据高速缓存获取数据Core_ID从指令高速缓存获取指令从数据高速缓存获取数据2.6ܭෝ్本节包括以下小节•页表模块概述•第 2-20 页控制 MMU 或 PU 和高速缓存•第 2-21 页控制寄存器 2 和 3•第 2-22 页存储区域•第 2-24 页页表模块和存储器管理单元•第 2-25 页页表模块和保护单元2.6.1ܭෝ్গၤ页表模块可使您在带存储器管理单元 (MMU) 或保护单元 (PU) 的系统模型上运行代码而无需为 MMU 或 PU 写初始化代码ᓖ此模块允许您调试代码或执行近似的基准对于真实系统您必须写初始化代码才能设置 MMU 或 PU 您可以通过禁用页表模块在 ARMulator 上调试初始化代码在带 MMU 的 ARM v4 和 v5 处理器架构模型上页表模块可以设置页表并初始化 MMU 在带 PU 的处理器上页表模块可以设置 PU 要控制是否包括页表模型请在 ARMulator 配置文件 default.ami 中查找 PAGETAB 变量并根据需要进行修改另请参阅本文件中的Pagetables=$PAGETAB{PAGETAB=Default_Pagetables}或{PAGETAB=No_Pagetables}peripherals.ami 的 Pagetables 部分可控制页表内容以及高速缓存和 MMU 或 PU 的配置要找到 Pagetables 部分请查找以下行{Default_Pagetables=PageTables 有关本节所述的标记控制寄存器和页表的完整详情请参阅 ARM Architecture Reference Manual 或您模拟的处理器的技术参考手册2.6.2఼ᒜ MMU PU ਜ਼Ⴅદࡀ第一个标记集可以启用或禁用高速缓存和 MMU 或 PU 的功能MMU=YesAlignFaults=NoCache=YesWriteBuffer=YesProg32=YesData32=YesLateAbort=YesBigEnd=NoBranchPredict=YesICache=YesHighExceptionVectors=NoFastBus=No每个标记对应系统控制寄存器中的一个位即 CP15 中的 c1一些标记只适用于特定处理器例如•BranchPredict只适用于 ARM810™•ICache适用于 StrongARM®-110 和 ARM940T™处理器但不适用于ARM720 处理器这些标记会被其它处理器模型忽略ᓖ有关支持的处理器详情请参阅调试器文档FastBus标记被一些诸如 ARM940T 之类的内核使用请参阅适用于您的内核的技术参考手册如果您的系统使用 FastBus Mode请设置FastBus=Yes以便作为基准如果设置FastBus=No则由于MCCFG因素的影响ARMulator 会假定存储器时钟比内核时钟慢ARMulator 不会建立非同步模式的模型MMU 标记用于在带 PU 的处理器中启用 PU2.6.3఼ᒜࡀ 2 ਜ਼ 3以下选项只适用于带 MMU 的处理器PageTableBase=0xA0000000DAC=0x00000001它们控制•转换表基址寄存器系统控制寄存器 2•域访问控制寄存器系统控制寄存器 3转换表基址寄存器中的地址必须与 16KB 界限相匹配2.6.4ࡀཌᎮ其它页表配置部分定义了一组存储区域每个区域均有自己的属性缺省情况下peripherals.ami包含两个区域的说明{ Region[0]VirtualBase=0PhysicalBase=0Size=4GBCacheable=NoBufferable=NoUpdateable=YesDomain=0AccessPermissions=3Translate=Yes}{ Region[1]VirtualBase=0PhysicalBase=0Size=128MbCacheable=YesBufferable=YesUpdateable=YesDomain=0AccessPermissions=3Translate=Yes}您可以按相同的通用格式添加更多区域Region[n]为区域命名以Region[0]开始n是一个整数VirtualBase只适用于带 MMU 的处理器它给出了处理器虚拟地址空间中的区域基址此地址必须与 1MB 边界对齐它由 MMU映射至PhysicalBasePhysicalBase给出了区域的物理基址对于带 MMU 的处理器此地址必须与 1MB 边界对齐对于带 PU 的处理器它所匹配的边界必须是区域大小的若干倍Size指定此区域的大小对于带 MMU 的处理器Size必须是一个以兆字节为单位的整数对于带 PU 的处理器Size必须是 4KB 或 4KB 的二次方倍Cacheable指定是否将区域标记为可高速缓存如果是则从该区域读取的内容会被高速缓存Bufferable指定是否将区域标记为可缓冲如果是则写入区域的内容将使用写缓冲器Updateable只适用于 ARM610™处理器它控制转换表条目中的U位Domain只适用于带 MMU 的处理器它指定表条目的域字段AccessPermissions指定对区域的访问控制有关更多信息请参阅处理器技术参考手册Translate控制对此区域的访问是否引起转换错误如果将区域设为Translate=No则无论何时处理器从该区域读取内容或写入内容都会导致中止您必须确保定义的区域比目标硬件所能支持的少必须至少定义一个区域。
TPS54260QDGQRQ1,TPS54260QDGQRQ1,TPS54260QDGQRQ1, 规格书,Datasheet 资料

TA –40°C to 125°C
ORDERING INFORMATION(1)
PACKAGE
PART NUMBER(2)
10 Pin MSOP
Reel of 2500
TPS54260QDGQRQ1
TOP-SIDE MARKING 5426Q
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI website at .
2
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Copyright © 2010–2011, Texas Instruments Incorporated
芯天下--/
TPS54260-Q1
SLVSAH8A – DECEMBER 2010 – REVISED APRIL 2011
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
EFLOW用户指南 Release 12.3说明书

Path
:
Online
: True
RestartNeeded : False
2. Set execution policy and verify.
Set-ExecutionPolicy -ExecutionPolicy AllSigned -Force
Get-ExecutionPolicy AllSigned
5
EFLOW User's Guide, Release 12.3
3. Download and install EFLOW.
$msiPath = $([io.Path]::Combine($env:TEMP, 'AzureIoTEdge.msi')) $ProgressPreference = 'SilentlyContinue' Invoke-WebRequest "https:∕∕aka.ms∕AzEFLOWMSI_1_4_LTS_X64" -OutFile $msiPath
▶ The Windows host OS with virtualization enabled ▶ A Linux virtual machine ▶ IoT Edge Runtime ▶ IoT Edge Modules, or otherwise any docker-compatible containerized application (runs on
nvidia_physx_9100222中英文对比[精品]
![nvidia_physx_9100222中英文对比[精品]](https://img.taocdn.com/s3/m/0ce091fe846a561252d380eb6294dd88d0d23d8f.png)
nvidia_PhysX_9100222中英文对照显卡 Graphic Card显卡驱动 Graphics Drivers显卡BIOS Graphics BIOS显卡工具 Graphics Tools显卡说明书 Graphics ManualsCRT显示器 CRT Monitor显示器驱动 CRT Monitor Drivers 显示器工具 CRT Monitor Tools CRT显示器说明书 CRT Monitor Manuals液晶显示器 LCD Monitor液晶显示器驱动 LCD Monitor Drivers液晶显示器工具 LCD Monitor Tools 液晶显示器说明书 LCD Monitor Manuals HP惠普电视卡/盒 TV Tuner电视卡驱动 TV Tuner Drivers电视卡应用程序 TV Tuner Tools电视卡说明书 TV Tuner Manuals主板 Motherboard主板BIOS Motherboard BIOS主板驱动 Motherboard Drivers主板应用程序 Motherboard Tools主板说明书 Motherboard ManualsCPUCPU驱动 CPU DriversCPU应用程序 CPU Tools硬盘驱动 Hard Disk Driver硬盘固件 Hard Disk Driver Firmwares硬盘工具 Hard Disk Driver Tools光驱/刻录机 ODD Optical Disk Drive光驱/刻录机驱动 ODD Optical Disk Drive Drivers 光驱/刻录机工具 ODD Optical Disk Drive Tools光驱/刻录机固件 ODD Optical Disk Drive Firmwares 光驱/刻录机说明书 ODD Optical Disk Drive Manuals声卡 Sound Card声卡驱动 Sound Card Drivers声卡工具 Sound Card Tools声卡固件 Sound Card Firmwares声卡说明书 Sound Card ManualsU盘 Flash DriveU盘驱动 Flash Drive DriversU盘工具 Flash Drive ToolsMP3/MP4播放器 Portble Media PlayerMP3/MP4驱动 Portble Media Player DriversMP3/MP4应用程序 Portble Media Player ToolsMP3/MP4固件 Portble Media Player Firmwares MP3/MP4说明书 Portble Media Player Manuals数码相机 Digital Camera数码相机驱动 Digital Camera Drivers数码相机应用程序 Digital Camera Tools数码相机固件 Digital Camera Firmwares数码相机说明书 Digital Camera Manuals数码摄像机 Digital Video Camera数码摄像机驱动 Digital Video Camera Drivers 数码摄像机应用程序 Digital Video Camera Tools数码摄像机固件 Digital Video Camera Firmwares数码摄像机说明书 Digital Video Camera Manuals数码录音笔 Digital Voice Recorder数码录音笔驱动 Digital Voice Recorder Drivers 数码录音笔应用程序 Digital Voice Recorde Tools数码录音笔固件 Digital Voice Recorde Firmwares 数码录音笔说明书 Digital Voice Record Manuals摄像头 Web Camera摄像头驱动 Web Camera Drivers摄像头说明书 Web Camera Manuals笔记本 Notebook笔记本电脑BIOS Notebook BIOS笔记本电脑驱动 Notebook Drivers 笔记本电脑工具 Notebook Tools 笔记本说明书 Notebook Manuals上网本 Netbook上网本BIOS Netbook BIOS上网本驱动 Netbook Drivers 上网本工具 Netbook Tools上网本说明书 Netbook Manuals品牌机 Desktop PC品牌机BIOS Desktop PC BIOS品牌机驱动 Desktop PC Drivers 品牌机说明书 Desktop PC Manuals打印机 Printer打印机驱动 Printer Drivers打印机应用程序 Printer Tools打印机说明书 Printer Manuals扫描仪 Scanner扫描仪驱动 Scanner Drivers扫描仪说明书 Scanner Manuals多功能一体机 All-in-One Printer多功能一体机驱动 All-in-One Printer Drivers多功能一体机说明书 All-in-One Printer Manuals投影机 Projector投影机固件 Projector Firmwares投影机说明书 Projector Manuals网卡 Network Card网卡驱动 Network Card Drivers网卡应用程序 Network Card Tools无线网卡 Wireless Network Adapter无线网卡驱动 Wireless Network Adapter Drivers无线网卡应用程序 Wireless Network Adapter Tools Modem调制解调器 Modem调制解调器驱动 Modem Drivers路由器 Router路由器固件 Router Firmwares路由器说明书 Router Manuals交换机 Switch交换机固件 Switch Firmwares交换机说明书 Switch Manuals网络存储设备 Network Attached Storage网络存储设备固件 Network Attached Storage Firmwares 网络存储设备应用程序 Network Attached Storage Tools网络存储设备说明书 Network Attached Storage Manuals手机/PDA Mobile Phone/PDA手机/PDA驱动及应用程序 Mobile Phone/PDA Tools手机/PDA固件 Mobile Phone/PDA Firmwares手机/PDA说明书 Mobile Phone/PDA ManualsGPS设备 GPSGPS设备固件 GPS Firmwares GPS设备说明书 GPS Manuals蓝牙设备 Bluetooth蓝牙设备驱动 Bluetooth Drivers 蓝牙设备说明书 Bluetooth Manuals LEXMARK手写板设备 Pen Tablet手写板驱动 Pen Tablet Drivers 手写板应用程序 Pen Tablet Tools 手写板说明书 Pen Tablet Manuals鼠标键盘设备 Mouse/Keyboard鼠标键盘驱动 Mouse/Keyboard Drivers 鼠标键盘应用程序 Mouse/Keyboard Tools 鼠标键盘说明书 Mouse/Keyboard Manuals游戏机 Game Console游戏机固件 Game Console Firmwares 游戏机说明书 Game Console Manuals 游戏手柄 GamePad游戏手柄驱动 GamePad Drivers游戏手柄应用程序 GamePad Tools游戏手柄说明书 GamePad Manuals其它音频设备 Other Sound Device其它音频设备驱动 Other Sound Devices Drivers其它音频设备应用程序 Other Sound Devices Tools其它音频设备说明书 Other Sound Devices Manuals SCSI/RAID控制器 SCSI/RAID ControllerSCSI/RAID控制器驱动 SCSI/RAID Controller Drivers SCSI/RAID控制器固件 SCSI/RAID Controller Firmwares 其他类别驱动 Other Driver微软系统软件/补丁 Microsoft Patches其他 OthersMydrivers驱动之家软件 Mydrivers Software驱动精灵 DriverGenius Software驱动光盘 Mydrivers Universal Drivers ISO 万能驱动 Universal Drivers。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Structure stability and carrier localization in Cd X…XÄS,Se,Te…semiconductorsSu-Huai Wei and S.B.ZhangNational Renewable Energy Laboratory,Golden,Colorado80401͑Received6March2000͒We studied systematically the structural and electronic properties of binary Cd X(XϭS,Se,and Te͒semi-conductors in both zinc-blende͑ZB͒and wurtzite͑WZ͒structures,the band alignment on the ZB/WZ inter-faces,and carrier localization induced by the band offsets.We show,byfirst-principles band-structure calcu-lation that at low temperature,CdS is stable in the wurtzite structure,while CdSe and CdTe are stable in the zinc-blende structure.However,coherent substrate strain can change CdTe to be more stable in the wurtzite form.Wefind that Cd X in the wurtzite structure has a larger band gap than the one in the zinc-blende structure. The band alignment on the ZB/WZ interface is found to be type II with holes localized on the wurtzite side and electrons on the zinc-blende side.Cd-based II–VI semiconductor compounds are of consid-erable interest due to their applications in optoelectronic devices.1,2Unlike most III–V and II–VI semiconductors, Cd X(XϭS,Se,and Te͒compounds exist in both zinc-blende͑ZB͒and wurtzite͑WZ͒structures or in mixed͑ZB͒/͑WZ͒phases.3Depending on the growth condition,one can stabilize one of the two crystal structures either by epitaxialstrain on proper substrates or buffer layers,or by controllingthe growth temperature.This additional structure freedomprovides an opportunity for making more efficient and reli-able devices by choosing the appropriate polytypism of thecompounds.For example,it was shown4that extended de-fects in wurtzite material tend to stay in the basal plane.Thus,when grown along the͓0001͔direction,defects propa-gation tends to be suppressed,leading to improved devicestability.Wurtzite compounds also present a natural splittingbetween the heavy-hole and light-hole band,thus,like or-dered semiconductor alloys and superlattices,they can beused as high-quality spin-polarized photoelectron sources.5Another interesting phenomenon is that in making CdTe/CdSsolar cells,the wurtzite structure is often observed whenCdTe is grown on a hexagonal CdS substrate.6It is not clearhow the existence of the wurtzite CdTe affects the carrierdistribution and device performance in this system.In this paper we study systematically the electronic struc-tures of Cd-based compounds in both zinc-blende and wurtz-ite structures and ZB/WZ interfaces usingfirst-principles,self-consistent electronic structure theory based on the local-density approximation͑LDA͒.We have calculated͑a͒theequilibrium crystal structures of zinc-blende and wurtziteCd-based semiconductors,͑b͒the band offsets at the ZB/WZinterface for these Cd compounds,͑c͒the valence-band split-ting at the top of the valence band of wurtzite Cd X,and͑d͒carrier localization in valence-band maximum͑VBM͒and conduction-band minimum͑CBM͒states at interfaces of mixed ZB/WZ systems.This paper describes the salient fea-tures of these calculations and discusses the significant phys-ics of the results.The band structure and total-energy calculations are per-formed using thefirst-principles density-functional formal-ism as implemented by the general potential,all electron,relativistic,linearized augmented plane wave͑LAPW͒method.7The Cd4d electrons are treated in the same footing as the other valence states.No shape approximations are em-ployed for either the potential or the charge density.We used the Ceperley-Alder exchange correlation potential8as param-eterized by Perdew and Zunger.9The Brillouin-zone integra-tion of the superstructures is performed using the Monkhost-Pack special k points scheme.10A large number of k points and high-cutoff energies for the basis functions are used to ensure that the total-energy difference between the wurtzite and ZB phases are converged to within1meV/2atom.All the structural parameters are fully relaxed to minimize the total energy.The valence-band offsets⌬EvWZϪZB for compounds Cd X are calculated using the standard approach.11,12In this ap-proach,the valence-band offset is given by⌬E v WZϪZBϭ⌬E VBM,CWZϪ⌬EVBMЈ,CЈZBϩ⌬EC,CЈ.͑1͒Here,⌬E VBM,CWZϭEVBMWZϪECWZ is the core level to valence-band maximum energy separation for Cd X in the wurtzite structure and⌬E C,CЈϭE C WZϪE CЈZB is the difference in core-level binding energy between Cd X on each side of the ZB/WZ interface.Wefind that,even though the zinc-blende and wurtzite structures have very similar volume and local structure,the core-level difference⌬E C,CЈmakes a signifi-cant contribution to Eq.͑1͒.Thus,it is necessary not only to calculate the bulk Cd X in zinc-blende and wurtzite phases, but also to calculate the core state alignment across the ZB/WZ interface͑see below͒.The conduction-band offsets are obtained by using the relation⌬E c WZϪZBϭ⌬E g WZϪZB ϩ⌬E v WZϪZB.While the zinc-blende structure has the cubic space group and the wurtzite structure has the hexagonal space group,the two structures are in fact very similar:they start to differ only in their third-nearest-neighbor atomic arrangement.In an ideal wurtzite structure onefinds a WZϭa ZB/&, (c/a)WZϭͱ8/3ϭ1.633,and the internal structure parameters u WZϭ0.375.For a real wurtzite compound,due to the lower crystal symmetry,the structural parameters could differ from these ideal values.Thus,a wurtzite compound can have two types of distinct cation-anion nearest neighbor bond lengths.PHYSICAL REVIEW B15SEPTEMBER2000-IVOLUME62,NUMBER11PRB620163-1829/2000/62͑11͒/6944͑4͒/$15.006944©2000The American Physical SocietyOne bond,parallel to the ͑0001͒direction,has length R 1,and the other three bonds have equal lengths R 2.They are given byR 1ϭuc ,R 2ϭͱ1/3ϩ͑1/2Ϫu ͒2͑c /a ͒2a .͑2͒Table I gives our calculated lattice parameters a and c ,inter-nal structure parameters u ,and bulk moduli B for CdS,CdSe,and CdTe in both zinc-blende and wurtzite phases.We have the following results:͑i ͒the calculated lattice parameters a are within 0.7%of the experimental values.3For the wurtzite structure,the cal-culated c /a ratios are 1.631,1.634,and 1.638,for CdS,CdSe and CdTe,respectively,very close to the ideal value c /a ϭ1.633.͑ii ͒The calculated internal structure parameters u are 0.3757,0.3756,and 0.3754for CdS,CdSe,and CdTe,re-spectively,very close to the ideal value u ϭ0.375.These results suggest that the splittings of Cd-anion nearest neigh-bor bond lengths in the wurtzite structure are very small.The slight decrease in the u parameter is consistent with the slight increases of the c /a ratio as anion atomic number increases.This is because in wurtzite semiconductors,due to the com-petition between bond-bending and bond-stretching forces,the c /a ratio and the u parameter always move in the oppo-site directions,13similar to that found for zinc-blende semi-conductors with ͑111͒trigonal distortion.14͑iii ͒The calculated bulk moduli are in good agreement with experimental data.3They decreases as the anion atomic number increases.The slightly larger calculated bulk moduli relative to the experimental data are due partly to the under-estimation of the lattice constants ͑the calculated bulk moduli at experimental lattice constants are 664,577,and 423kbar,for zinc-blende CdS,CdSe,and CdTe,respec-tively ͒.The bulk moduli for the WZ structure is predicted to be slightly smaller than their zinc-blende counterparts.With the subtle differences between the zinc-blende and the wurtzite structures,the total energies and the direct band gaps at the ⌫point are expected to be similar for these two structures.Table II gives the calculated total-energy differ-ences ⌬E WZ ϪZB ,band-gap differences ⌬E gWZ ϪZB,valence-band and conduction-band offsets ⌬E v WZ ϪZBand ⌬E cWZ ϪZB ,respectively,between binary zinc-blende and wurtzite com-pounds,and the valence-band splitting ⌬E AB WZ.We find the following results:͑a ͒⌬E WZ ϪZB is negative for CdS,while positive for CdSe and CdTe.These results indicate that at low temperature CdS is stable in the wurtzite structure,while CdSe and CdTe are stable in the zinc-blende structure.However,the total-energy differences between the wurtzite and zinc-blende structures are very small.They are Ϫ2,2,and 9meV/2atom for CdS,CdSe,and CdTe,respectively.The increase of ⌬E WZ ϪZB as the anion atomic number increases from S to Se to Te is consistent with the fact that as the anion atomic number de-creases the compound becomes more ionic.Since the Made-lung constant for the wurtzite structure (␣M WZ ϭ1.6413)is slightly larger than the zinc-blende structure (␣M ZB ϭ1.6381),the more ionic the compound is,the more likely the compound will have the wurtzite ground-state structure.For CdS and CdSe,our calculated results of Ϫ2and 2meV/2atom are similar to the results of Yeh et al.,15found to be Ϫ2and 3meV/2atom.However,our results do not agree with the calculated results of Murayama and Nakayama 16of Ϫ9and Ϫ2meV/2atom for CdS and CdSe,respectively.Their results would suggest that at low temperature CdSe are stable in the wurtzite structure.This is in contradiction with experi-mental observation,17where the low-temperature stable phase for CdSe is found to be zinc-blende and CdSe trans-forms into the wurtzite structure at about 95°C.Due to the small energy differences between the zinc-blende and wurtzite phases,the actual crystal structure of Cd compounds will depend sensitively on the substrate orienta-tion,growth temperature,and history of annealing.As a test,we calculated the total-energy difference ⌬E WZ ϪZB of CdTe strained on a wurtzite CdS ͑0001͒substrate.In this calcula-TABLE I.Calculated structural parameters a ,c ,and u ,and bulk moduli B for zinc-blende and wurtzite CdS,CdSe and CdTe.Results are compared with experimental values ͑Ref.3͒.Properties CdSCdSeCdTeLDA Exp.LDA Exp.LDA Exp.a ZB (Å) 5.7958 5.818 6.0412 6.052 6.4400 6.482a WZ (Å) 4.1009 4.136 4.2717 4.300 4.5499c WZ (Å) 6.6866 6.714 6.97867.0117.4512(c /a )WZ 1.6305 1.6231.6336 1.6301.6377u WZ0.37570.37560.3754B ZB (kbar)703592466445B WZ (kbar)692620579530454TABLE II.Calculated total-energy differences ⌬E WZ ϪZB ,band-gap differences ⌬E g WZ ϪZBand band offsets ⌬E vWZ ϪZB and ⌬E c WZ ϪZB between Cd-based zinc-blende and wurtzite compounds.The calculated valence-band splittings ⌬E AB in the wurtzite struc-ture are also given.Properties CdS CdSe CdTe ⌬E WZ ϪZB (meV/2atom)Ϫ229⌬E gWZ ϪZB(meV)695947⌬E v WZ ϪZB (meV)463518⌬E cWZ ϪZB(meV)1159465⌬E AB WZ(meV)183353PRB 626945BRIEF REPORTStion the lattice constants in the plane are fixed to be the one for equilibrium bulk CdS,while the lattice constant perpen-dicular to the substrate is free to relax.We find that ⌬E WZ ϪZB is reduced from 9meV/2atom for bulk CdTe to zero for the epitaxial CdTe,suggesting that epitaxial CdTe can form more easily in the wurtzite structure than bulk CdTe can.This reduction in ⌬E WZ ϪZB is attributed to the fact that wurtzite CdTe is slightly more soft and can relax more efficiently in the ͓0001͔direction.͑b ͒The band gaps of the wurtzite structure are 69,59,and 47meV larger than that in the zinc-blende structure.The reason for this increase of the band gap in the wurtzite struc-ture is as follows:18Both the zinc-blende and wurtzite struc-tures can be considered as layered along the ͓111͔or the ͓0001͔direction.They differ only in their stacking se-quences.Consequently,electron states on the ⌫¯-A ¯line of the wurtzite Brillouin zone are derived directly from the one onthe zinc-blende ⌫-L 111line.In particular,at the ⌫¯point,we have⌫1→⌫¯1͑⌫1͒;⌫15→⌫¯1͑⌫15͒ϩ⌫¯6͑⌫15͒.͑3͒Here,we denote wurtzite states by an overbar and indicate inparentheses the parent zinc-blende states.The states of the same symmetry in the wurtzite structure can interact and thus repel each other with magnitude that in perturbation theory is inversely proportional to their initial energy difference and directly proportional to the square of their coupling matrix element ⌬V 2.Therefore,the coupling between the ⌫¯1v (⌫15v )and ⌫¯1c (⌫1c )states lead to an upward shift of the CBM ⌫¯1c (⌫1c )state,thus increasing the band gap of the wurtzite structure.It also contributes to the crystal-field split-ting at the VBM between the ⌫¯6v (⌫15v )and the ⌫¯1v (⌫15v )states.͑c ͒After including the spin-orbit coupling,the calculatedvalence-band splittings ⌬E AB WZbetween the ⌫¯9v (A )and ⌫7v (B )are 18,33,and 53meV,for CdS,CdSe,and CdTe,respectively.The increase of ⌬E ABWZas the anion atomic number increases can be explained by the fact that as the anion atomic number increases,the band gap decreases,thusthe coupling between the ⌫¯1v (⌫15v )and ⌫¯1c (⌫1c )states be-comes larger,pushing the ⌫¯1v state down.Our LDA calcu-lated results can be compared with experimental values 3of 15and 25meV for CdS and CdSe,respectively.It shows thatLDA overestimate the splittings by 20to 30%,consistent with the underestimation of the LDA band gaps.Similar re-sults have been found for ordered III–V semiconductors alloys.19͑d ͒Due to the crystal-field splitting in the wurtzite struc-ture,the VBM of the wurtzite structure is higher than the VBM of the zinc-blende structure.The calculated valence-band offsets between the zinc-blende and wurtzite structures are 46,35,and 18meV,respectively,for CdS,CdSe,and CdTe,decreasing as anion atomic number increases.The conduction-band offsets can be obtained using the relation⌬E c WZ ϪZB ϭ⌬E g WZ ϪZB ϩ⌬E vWZ ϪZB,which gives ⌬E c WZ ϪZB to be 115,94,and 65meV,respectively,for CdS,CdSe,and CdTe.The CBM on the wurtzite side is higher.This type-II band alignment indicates that in a sample with mixed zinc-blende and wurtzite phases,the hole state will localize in the wurtzite region while the electron state will localize in the ZB region.To test this,we calculated electronic structures of (ZB)n /(WZ)n superlattices.Figure 1plots the calculated plane averaged charge distribution of the VBM and CBM states of the ͑ZB ͒6/͑WZ ͒6superlattice for CdS,CdSe,and CdTe.We see that,indeed,the VBM state is more localized in the wurtzite region,while the CBM is more localized in the zinc-blende region.The charge localization is more sig-nificant for the VBM state since the hole effective mass is much larger than the electron effective mass ͑despite⌬E c WZ ϪZB being larger than ⌬E vWZ ϪZB).The degree of the carrier localization decreases as anion atomic number in-creases,consistent with our prediction that ⌬E vWZ ϪZBand ⌬E cWZ ϪZBdecrease from CdS to CdSe to CdTe.Murayama and Nakayama 16have calculated ⌬E vWZ ϪZBfor the three Cd compounds using a pseudopotential method.They found that ⌬E vWZ ϪZBare 19,30,and 21meV,respec-tively,for CdS,CdSe,and CdTe.However,in their calcula-tion they assumed that no dipole potential exists across theinterface,thus ⌬E vWZ ϪZBis determined only by the first two terms on the right-hand side of Eq.͑1͒,i.e.,they were deter-mined purely from the binary calculations.We found that this assumption is not justified.Without the third term in Eq.͑1͒,our calculated ⌬E vWZ ϪZBare only Ϫ1,3,and 10meV,for CdS,CdSe,and CdTe,respectively.It is not surprising to see that the interface term in Eq.͑1͒plays the most importantroles in determining ⌬E vWZ ϪZBfor the more ionic com-pounds CdS and CdSe,since wurtzite compounds are polar andpiezoelectric.FIG.1.Plane averaged charge densities of CBM and VBM states of (WZ)6/(ZB)6superlattices for CdS,CdSe,and CdTe.We see that VBM is more localized on WZ side while CBM is more localized on zinc-blende side.6946PRB 62BRIEF REPORTSThis predicted band alignment and carrier localization in a mixed ZB/WZ system are expected to have significant ef-fects on the electronic and transport properties of Cd com-pounds and affect their device applications.For example,ina p -CdTe/n -CdS solar cell,formation of a thin layer of wurtzite CdTe on the wurtzite CdS substrate ͑Fig.2͒can reduce the minority carriers ͑electrons in CdTe and holes in CdS ͒collection,thus reducing the cell efficiency.This is because wurtzite CdTe has a higher VBM than zinc-blende CdTe,thus holes generated in CdS will be trapped in wurtz-ite CdTe before they can be collected by zinc-blende CdTe.On the other hand,zinc-blende CdTe has a lower CBM than wurtzite CdTe;the electrons have to overcome an unfavor-able spike before it can be collected by CdS.The effect will be even larger if the wurtzite CdTe near the interface is strained on the wurtzite CdS substrate,because the epitaxial strain will move up the VBM of CdTe by 0.53eV and the CBM by 0.30eV,enhancing the energy barriers.In summary,we have studied systematically the electronic properties of Cd-based compounds and interfaces using the first-principles band-structure method.We find that wurtzite Cd X have nearly ideal structural parameters.The total-energy differences ⌬E WZ ϪZB are very small,thus,the actual crystal structures of the Cd compounds at room temperature will depend sensitively on their growth conditions.The band gaps of wurtzite Cd compounds are larger than their zinc-blend counterparts.The VBM of wurtzite Cd X is higher than the VBM of zinc-blende Cd X ;this leads to carrier localiza-tion in a mixed ZB/WZ system and can affect significantly device transport properties.ACKNOWLEDGMENTSWe thank Drs.D.Albin,Y.Yan,and A.Zunger for help-ful discussions.This work was supported in part by U.S.Department of Energy,Grant No.DE-AC36-99-GO10337.1II –VI Semiconductor Compounds ,edited by M.Jain ͑World Sci-entific,Singapore,1993͒.2R.W.Birkmire and E.Eser,Annu.Rev.Mater.Sci.27,625͑1997͒.3Landolt-Bornstein:Numerical Data and Functional Relationships in Science and Technology ,edited by O.Madelung,M.Schulz,and H.Weiss ͑Springer-Verlag,Berlin,1982͒,Vol.17b.4M.Grun,M.Hetterich,C.Klingshirn,A.Rosenauer,J.Zweck,and W.Gebhardt,J.Cryst.Growth 138,150͑1994͒.5S.-H.Wei,in Proceedings of the 7th International Workshop on Polarized Gas Targets and Polarized Beams ,edited by R.J.Holt and ler ͑AIP,New York,1998͒,p.284.6Y.Yan ͑private communication ͒;D.Albin ͑private communica-tion ͒.7S.-H.Wei and H.Krakauer,Phys.Rev.Lett.55,1200͑1985͒,and references therein.8D.M.Ceperly and B.J.Alder,Phys.Rev.Lett.45,566͑1980͒.9J.P.Perdew and A.Zunger,Phys.Rev.B 23,5048͑1981͒.10H.J.Monkhost and J.D.Pack,Phys.Rev.B 13,5188͑1976͒;ibid.16,1748͑1977͒.11S.-H.Wei and A.Zunger,Phys.Rev.Lett.59,144͑1987͒;Phys.Rev.B 37,8958͑1988͒.12S.-H.Wei and A.Zunger,Appl.Phys.Lett.72,2011͑1998͒.13K.Kim,mbrecht,and B.Segall,Phys.Rev.B 53,16310͑1996͒.14L.Kleinman,Phys.Rev.128,2614͑1962͒.15C.-Y.Yeh,Z.W.Lu,S.Froyen,and A.Zunger,Phys.Rev.B 45,12130͑1992͒;46,10086͑1992͒.16M.Murayama and T.Nakayama,Phys.Rev.B 49,4710͑1994͒.17V.A.Fedorov,V.A.Ganshin,and Yu.N.Korkishko,Phys.Status Solidi A 126,K5͑1991͒.18C.-Y.Yeh,S.-H.Wei,and A.Zunger,Phys.Rev.B 50,2715͑1994͒.19S.-H.Wei and A.Zunger,Phys.Rev.B 57,8983͑1998͒.FIG. 2.Schematic plot of the band alignment at the n -CdS/p -CdTe interface.We see that electron is trapped on zinc-blende CdTe while holes are trapped on wurtzite CdTe,thus reduc-ing the minority-carrier collections.PRB 626947BRIEF REPORTS。