人教版八年级下册数学课本知识点归纳新编

合集下载

八年级数学下册书本知识点归纳整理

八年级数学下册书本知识点归纳整理

八年级数学下册书本知识点归纳整理人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五个章节的内容。

第十六章分式一、知识框架二、知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。

其中A 叫做分式的分子,B叫做分式的分母。

2.分式有意义的条件:分母不等于0。

3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C(A,B,C为整式,且C≠0)。

5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。

约分时,一般将一个分式化为最简分式。

6.分式的四则运算:(1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减,用字母表示为:a/c±b/c=a ±b/c。

(2)异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd。

(3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

用字母表示为:a b×c d=ac bd。

(4)分式的除法法则:①两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc。

②除以一个分式,等于乘以这个分式的倒数:a b÷c d=a b×d c。

7.分式方程的意义:分母中含有未知数的方程叫做分式方程。

8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。

人教新课标版八年级数学下册每章知识点

人教新课标版八年级数学下册每章知识点

第十一章《三角形》知识归纳与三角形有关的线段(1)①边③角:(2) ①⎪⎩⎨⎩⎨⎧等边三角形底和腰不相等的三角形等腰三角形三角形按边)(②⎪⎩⎪⎨⎧⎩⎨⎧钝角三角形锐角三角形斜三角形直角三角形三角形按角 (3)三角形的主要线段①三角形的中线:顶点与对边中点的连线,三中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三角角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)(4)三角形三边间的关系. ①两边之和大于第三边 b a c a c b c b a >+>+>+,, ②两边之差小于第三边 a c b c b a b a c <-<-<-,,(5)三角形的稳定性:三角形的三条边确定后,三角形的形状和大小不变了,这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中有广泛的应用.第十二章《全等三角形》知识归纳一、全等三角形1、定义:能够完全重合的两个三角形叫做全等三角形。

①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形性质..(1)全等三角形的对应边相等、对应角相等。

①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定..边边边:三边对应相等的两个三角形全等(可简写成“SSS ”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。

性质:角的平分线上的点到角的两边的距离相等.判定:角的内部到角的两边的距离相等的点在角的平分线上。

新人教版八年级数学下册知识点总结归纳

新人教版八年级数学下册知识点总结归纳

八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a≥0,b≥0);b ba a=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。

,那么这个三角形是直角三角形。

3.直角三角形的性质(1)、直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90°a (a >0)a -(a <0)0 (a =0);(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°可表示如下: ⇒BC=21AB ∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点4、常用关系式由直角三角形面积公式可得:ch ab 2121= (其中a 、b 是直角边,c 是斜边,h 是斜边上的高。

八年级下册数学书的知识点

八年级下册数学书的知识点

八年级下册数学书的知识点包括以下内容:
一、代数运算
1. 有理数的加减乘除运算及其性质
2. 一元一次方程和不等式的解法
3. 平方根、绝对值、分式、分式方程等的运算及应用
二、几何基础
1. 直角三角形及斜角三角形的性质
2. 平面图形的面积和周长的计算
3. 空间几何图形的面积和体积的计算
三、概率统计
1. 随机事件的概念和基本性质
2. 频率和概率的关系
3. 抽样调查和数据处理的方法
四、函数基础
1. 函数的概念和基本性质
2. 一次函数、二次函数的图像和性质
3. 反比例函数和指数函数的概念和应用
五、图形的变换
1. 平移、旋转、对称和放缩的概念和性质
2. 直线对称、中心对称和轴对称的应用
3. 图形变换对坐标的影响和应用
以上是八年级下册数学书的主要知识点,每个知识点都包含着多个子知识点,需要同学们认真理解和掌握。

同时,巩固前一年的数学基础也是十分重要的,只有掌握好基础才能更好地学习新
知识。

数学是一门需要不断练习和思考的学科,同学们需要勤奋用心,不断提高自己的数学能力。

八年级下册数学课所有知识点

八年级下册数学课所有知识点

八年级下册数学课所有知识点一、代数1. 小数1.1 小数的定义1.2 小数的四则运算1.3 小数的比较1.4 小数的化分2. 代数式2.1 代数式的定义2.2 代数式的基本性质2.3 代数式的加减法2.4 代数式的乘法2.5 代数式的因式分解3. 方程式3.1 方程式的定义3.2 方程式的解法3.3 一元一次方程式的应用3.4 一元二次方程式的解法及应用4. 不等式4.1 不等式的定义4.2 不等式的性质4.3 不等式的解法4.4 一元一次不等式的应用4.5 一元二次不等式的应用二、几何1. 相似1.1 相似的定义1.2 相似的判定1.3 相似的性质1.4 相似的应用2. 三角形2.1 三角形的分类2.2 三角形的性质2.3 三角形的面积公式2.4 相似三角形的比例关系2.5 直角三角形的性质及应用3. 四边形3.1 四边形的分类3.2 四边形的性质3.3 矩形和正方形的性质及应用3.4 菱形和平行四边形的性质及应用4. 圆和圆周角4.1 圆的性质4.2 圆的刻画4.3 圆上的重要定理4.4 圆周角的性质及应用5. 三维图形5.1 空间直角坐标系5.2 空间的位置关系5.3 立体图形的表面积及体积公式5.4 空间中重要的定理及应用三、数据与统计1. 统计表1.1 统计表的定义及构成1.2 统计表的分类1.3 统计表的读取及分析2. 统计图2.1 统计图的定义及构成2.2 统计图的分类2.3 统计图的制作及分析3. 常见的统计指标3.1 平均数的计算及应用3.2 中位数的计算及应用3.3 众数的计算及应用3.4 极差及标准差的计算及应用四、概率1. 基本概念1.1 随机事件1.2 样本空间1.3 事件的概率2. 概率的运算2.1 事件的互斥和独立2.2 联合事件的概率2.3 条件事件的概率3. 应用3.1 掷骰子与正反面3.2 抽样调查与比例估计。

人教版八年级下册数学知识点全面总结

人教版八年级下册数学知识点全面总结

人教版八年级下册数学知识点全面总结一、实数与代数式1.1 有理数- 概念:整数和分数的统称,包括正整数、0、负整数、正分数、负分数。

- 加减乘除法则:同号相加(减)取其相加(减)后的结果,并保留原来的符号;异号相加(减)取其相加(减)后的结果,并保留绝对值较大的数的符号。

乘法法则:同号得正,异号得负。

除法法则:除以一个不等于0的数等于乘这个数的倒数。

1.2 代数式- 概念:由数字、字母和运算符号组成的式子。

- 代数式的运算:加减乘除、乘方、开方等。

二、方程(组)与不等式(组)2.1 方程- 概念:含有未知数的等式。

- 一元一次方程:形式为ax+b=0,解法:移项、合并同类项、化系数为1。

- 二元一次方程:形式为ax+by=c,解法:消元法、代入法、矩阵法等。

2.2 不等式- 概念:含有不等号的式子。

- 一元一次不等式:形式为ax+b>0或ax+bc或ax+by<c,解法:同二元一次方程。

2.3 方程(组)与不等式(组)的应用- 线性方程组的解法:代入法、消元法、矩阵法等。

- 不等式组的解法:同线性方程组。

三、函数3.1 一次函数- 概念:形式为y=kx+b(k、b为常数,k≠0)的函数。

- 图像:一条直线。

- 性质:随着x的增大,y的值会按照k的正负和大小变化。

3.2 二次函数- 概念:形式为y=ax²+bx+c(a、b、c为常数,a≠0)的函数。

- 图像:一个开口向上或向下的抛物线。

- 性质:开口方向由a的正负决定,顶点坐标为(-b/2a, c-b²/4a)。

四、几何4.1 平面几何- 点、线、面的基本概念。

- 线段的性质:长度、中点、垂直平分线等。

- 角的性质:度量、分类、补角、对顶角等。

- 三角形的基本性质:边长、角度、高、中线、角平分线等。

- 四边形的基本性质:边长、对角线、内角和等。

4.2 立体几何- 空间点、线、面的基本概念。

- 三角形、四边形、圆锥、球等立体图形的性质和计算。

202X年八年级数学下册知识点总结人教新课标版

202X年八年级数学下册知识点总结人教新课标版

千里之行,始于足下。

202X年八年级数学下册知识点总结人教新课标

202X年八年级数学下册的知识点总结如下:
1. 函数与方程
- 函数的概念与表示法
- 一次函数与二次函数
- 一元一次方程与一元二次方程的解法
- 实际问题中的函数与方程应用
2. 三角形与全等
- 三角形的分类与性质
- 三角形的全等条件及判定方法
- 全等三角形的性质与性质应用
3. 相交线与平行线
- 平行线与横线
- 平行线之间的性质
- 平行线与相交线之间的性质
- 平行线与全等三角形
4. 线性方程组与不等式
- 二元一次方程组的解法
- 二元一次不等式的解法
- 实际问题中的线性方程组与不等式应用
5. 点与线
第1页/共2页
锲而不舍,金石可镂。

- 斜率与直线的性质
- 坐标系与坐标变换
- 直线与线段的计算
6. 数据处理
- 统计图表的制作与分析
- 数据的整理与概括
- 四则运算与问题应用
7. 空间图形
- 空间图形的表示与投影
- 空间图形的表面积与体积的计算
- 空间图形间的关系与性质
8. 概率与统计
- 简单事件与复合事件
- 概率的计算与问题应用
- 统计的方法与应用
以上是202X年八年级数学下册的知识点总结,希望能对你有所帮助!。

八年级数学人教版下册各章知识点

八年级数学人教版下册各章知识点

八年级数学人教版下册各章知识点一、有理数的加减运算1. 有理数的概念有理数是整数和分数的统称,包括正数、负数和零。

2. 有理数的加法同号两数相加,异号两数相减,绝对值大的数的符号作为和的符号。

3. 有理数的减法减去一个数等于加上这个数的相反数,即a-b=a+(-b)。

4. 有理数加减混合运算的简便法则先加同号数,再加异号数,同时考虑有括号的运算。

5. 有理数的加减法则的应用例如,温度的变化、海拔的高低、海水深度等都可以用有理数表示,可以考虑使用加减法则进行运算。

二、有理数的乘除运算1. 有理数的乘法同号两数相乘为正,异号两数相乘为负。

2. 有理数的除法被除数和除数同号,商为正;被除数和除数异号,商为负。

除数不能为0。

3. 有理数乘除法综合运用例如,计算温度的变化率、质量比等都可以用有理数的乘除法进行运算。

三、平方根与实数1. 平方数和非平方数2. 平方根的概念3. 二次根式的简化和化简4. 平方根的运算法则乘方和除方的运算法则。

四、一次函数与线性方程组1. 一次函数的概念2. 点斜式和斜截式方程3. 一次函数的分类和性质4. 线性方程组及其解法高斯消元法、分离变量法、克莱姆法则、作图法等。

五、相似形与比例1. 相似形的概念2. 相似比的概念3. 相似形的性质4. 相似形的判定5. 应用:几何建模、图形变换等。

六、几何运算1. 直角三角形的概念和性质勾股定理、正弦定理和余弦定理等。

2. 平行四边形的概念和性质3. 正方形、长方形和平行四边形的关系4. 圆的概念和性质圆的面积和周长、弧度制和角度制等。

七、统计图及其分析1. 统计调查的概念和方法2. 数据的整理和组织方式3. 统计图的分类和意义柱形图、折线图、饼图、散点图等。

4. 统计图的读取和分析如何根据图形信息提取数据特征和规律。

八、概率的概念与计算1. 实验和随机事件的概念2. 概率的定义和性质3. 事件的互斥和独立性质4. 基本概率计算公式的应用5. 事件的总概率和条件概率的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级下册数学知识点归纳第十六章 分式一、分式1. 分式:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

(分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 )2. 分式的基本性质:分式的分子与分母同乘(或除)以一个不等于0的整式,分式的值不变。

用式子表示如下: (C ≠0) 其中A,B,C 是整式3.最简公分母:取各分母的所有因式的最高次幂的积做公分母,它叫做最简公分母4.通分:分子和分母同乘最简公分母,不改变分式值,把几个整式化成相同分母的分式。

这个过程叫通分。

(分母为多项式时要分解因式)5.约分:约去分子和分母的公因式,不改变分式值,这个过程叫约分。

二、分式的运算 1.分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

2.分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

上述法则可以用式子表示:3分式乘方法则:一般地,当n为正整数时 这就是说, 分式乘方要把分子、分母分别乘方C B C A B A ⋅⋅=C B C A B A ÷÷=bc ad c d b a d c b a bd ac d c b a =⋅=÷=⋅;n nn b a b a =)(4.分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减。

上述法则可用以下式子表示:,ab a b ac ad bc ad bc c c c b d bd bd bd±±±=±=±= 5.整数指数幂1.任何一个不等于0的数的0次幂等于1,即)0(10≠=a a ; 当n 为正整数时,n n a a 1=- ()0≠a ,也就是说a n (a≠0)是a -n 的倒数。

正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:n m n m a a a+=⋅;(2)幂的乘方:mn n m a a =)(;(3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a-=÷( a ≠0); (5)商的乘方:n nn b a b a =)(( n 是正整数);(b ≠0)三、分式方程1. 分式方程:分母中含未知数的方程叫分式方程。

(解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

)2.解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根。

3.分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

四、列方程应用题1.列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答。

2.应用题有几种类型;基本公式是什么?基本上有五种:(1)行程问题:基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题.(2)数字问题 在数字问题中要掌握十进制数的表示法.(3)工程问题 基本公式:工作量=工时×工效.(4)顺水逆水问题 v 顺水=v 静水+v 水. v 逆水=v 静水-v 水.五、科学记数法:把一个数表示成n a 10⨯的形式(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数的负数(包括小数点前面的一个0)第十七章 反比例函数一、反比例函数1.反比例函数:一般地,函数x k y =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

其他形式xy=k1-=kx y x k y 1=2.反比例函数的图象和性质①图像:反比例函数的图像属于双曲线。

它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

②性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小;当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x值的增大而增大。

③|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

K=xy二、实际问题与反比例函数由于在反比例函数中,只有一个待定系数k,因此只需要一对对应值或图像上的一个点的坐标,即可求出k (K=xy)的值,从而确定其反比例函数解析式。

一般用待定系数法。

第十八章勾股定理一、勾股定理1.勾股定理:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2.勾股定理的逆定理:如果三角形三边长a,b,c满足a2+b2=c2。

,那么这个三角形是直角三角形。

2.经过证明被确认正确的命题叫做定理。

3.逆命题:我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)第十九章四边形19.1平行四边行19.1.1平行四边形的性质1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:①平行四边形的对边相等;②平行四边形的对角相等。

③平行四边形的对角线互相平分。

19.1.2平行四边形的判定1.两组对边分别相等的四边形是平行四边形AC BD2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。

5.三角形的中位线:连接三角形两边中点的线段。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

19.2特殊的平行四边形19.2.1矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。

2.矩形的性质:①矩形的四个角都是直角;②矩形的对角线平分且相等。

AC=BD3.矩形判定定理:①有一个角是直角的平行四边形叫做矩形。

②对角线相等的平行四边形是矩形。

③有三个角是直角的四边形是矩形。

4.黄金矩形:宽和长的比是21-5(约为0.618)的矩形叫做。

19.2.2菱形1.菱形的定义 :有一组邻边相等的平行四边形叫做菱形。

2.菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

3.菱形的判定定理:①一组邻边相等的平行四边形是菱形。

②对角线互相垂直的平行四边形是菱形。

③四条边相等的四边形是菱形。

S 菱形=1/2×ab (a 、b 为两条对角线)19.2.3正方形1.正方形定义:一个角是直角的菱形或邻边相等的矩形。

2.正方形的性质:四条边都相等,四个角都是直角。

3.正方形判定定理:①邻边相等的矩形是正方形。

②有一个角是直角的菱形是正方形。

19.3梯形1.梯形:一组对边平行,另一组对边不平行的四边形叫做梯形。

2.直角梯形:有一个角是直角的梯形3.等腰梯形:两腰相等的梯形。

4.等腰梯形的性质:①等腰梯形同一底边上的两个角相等;②等腰梯形的两条对角线相等。

5.等腰梯形判定定理:①同一底上两个角相等的梯形是等腰梯形。

6.解梯形问题常用的辅助线:如图19.4课题学习重心重心:是物体的质量中心,能够保持物体平衡的点就是重心。

(是一个平衡点)①线段的重心就是线段的中点。

②平行四边形的重心是它的两条对角线的交点。

③三角形的三条中线交于一点,这一点就是三角形的重心。

第二十章数据的分析20.1数据的代表20.1.1平均数:包括加权平均数和算术平均数。

加权平均数与算术平均数类似,不同点在于,数据中的每个点对于平均数的贡献并不是相等的,有些点要比其他的点更加重要。

加权平均数的概念在描述统计学中具有重要的意义,并且在其他数学领域产生了更一般的形式。

如果所有的权重相同,那么加权平均数与算术平均数相同。

加权平均数作为算术平均数的更广义的表现形式1.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

20.1.2中位数和众数1.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

2.众数:一组数据中出现次数最多的数据就是这组数据的众数。

20.2.数据的波动20.2.1极差1.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。

20.2.2方差方差的定义:衡量一组数据的波动大小的一个数据s2,其计算方法如下:备注:方差等于各数据与平均数的差的平方的平均数1.方差:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

2. 平均数:平均数受极端值的影响,众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

20.3课题学习体质健康测试中的数据分析7.数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流(1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。

2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。

3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。

中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。

4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。

5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。

相关文档
最新文档