定积分知识点汇总word版本
(整理)数学定积分知识总结

定积分1. 概念: 定积分源自于求曲边梯形的面积, 它的计算形式为:01()l i m ()nbk k ak f x dx f x λξ→==∆∑⎰, 结果是一个数值, 其值的大小取决于两个因素(被积函数与积分限).2. 几何意义: 是曲线[](),y f x a b=介于之间与x 轴所围的面积的代数和; 3. 经济意义: 若()f x 是某经济量关于x 的变化率(边际问题), 则()ba f x dx ⎰是x 在区间[],ab 中的该经济总量.4. 性质: 本章共列了定积分的八条性质, 其中以下几条在计算定积分中经常用到.(1)()()baabf x dx f x dx =-⎰⎰; (2)[]()()()()bbbaaaf xg x d x f x d xg x d x±=±⎰⎰⎰; (3)()()b b a akf x dx k f x dx =⎰⎰; (4)()()()bc b aacf x d x f x d xf x d x=+⎰⎰⎰; (5)00()2()aaaf x f x dx f x dx f x -⎧⎪=⎨⎪⎩⎰⎰为奇函数时()()为偶函数时.1.公式: 若()f x 在[],a b 上连续, ()F x 是()f x 的一个原函数, 则()()()baf x d x F b F a =-⎰. 2.换元法: 若()f x 在[],a b 连续, ()x t ϕ=在[],c d 上有连续的导数'()t ϕ, 且()t ϕ单调, 则有 ()()(())'()bdx t acf x dxf t t dt ϕϕϕ=⋅⎰⎰.3. 分部积分法: 若()u x 与()v x 在[],a b 上有连续的导数, 则有()()()()()()bba ab u x dv x u x v x v x du x a =⋅-⎰⎰. 1.=⎰__42a π_____;2. 定积分112121x e dx x⎰ = ___e e -_____;3. 若广义积分2011k dx x +∞=+⎰ , 其中k 为常数,则k = __π2_____; 4. 定积分1321sin xxdx -=⎰__0____ ;5.1211xdx x -=+⎰___0___; 6. 30(sin )xt t dt '=⎰__3sin x x _____ ;7. 广义积分211dx x+∞=⎰__1_____ ; 8. ()bad f x dx dx =⎰ __0______;9. 设 )(x f 在 [,]a b 上连续,则()()bbaaf x dx f t dt -=⎰⎰ __0_____ ;10. 若函数 )(x f 在 [,]a b 上连续,)(x h 可导,则()()h x ad f t dt dx=⎰_)()]([x h x h f '⋅_____ ;11. 当 =x _0___ 时,⎰-=xt dt te x F 02)( 有极值;12. 设 0()xt f x te dt =⎰ ,则 (0)f ''= __1_______ ;13. 若2kx e dx +∞-=⎰ ,则 k = ___21_______ ; 14.21(ln )edx x x +∞=⎰_1_______ ;15. 2131xx e dx -=⎰__0_________ ;二1.arctan xxdx =⎰ ( B )(A)1112-+x(B) 21arctan ln(1)2x x x -+ (C) 1112++x (D) 211x+ 2. 下列积分可直接使用牛顿─莱不尼兹公式的有 ( A )(A)53201x dx x +⎰(B)1-⎰ (C)4322(5)xdx x -⎰ (D)11ln eedx x x ⎰ 3. 设 )(x f 为连续函数,则()xaf t dt ⎰为 ( C )(A) ()f t 的一个原函数 (B) ()f t 的所有原函数 (C) )(x f 的一个原函数 (D) )(x f 的所有原函数4.11()()22xf t dt f x =-⎰,且 (0)1f =,则 ()f x = ( A ) (A) 2x e (B)12x e (C) 2x e (D) 212x e 5.1211dx x -=⎰ ( D ) (A) -2 (B) 2 (C) 0 (D) 发散三、1.求下列各函数的导数:(1)211()1xF x dt t =+⎰解:.1111)(212xdt t dx d x F x +=+='⎰ (2)02()cos xF x t tdt =⋅⎰ 求'()F π解:.cos )('.cos cos )cos (cos )(222020202ππππ-===-=-=='⎰⎰⎰F x x tdt t dx d tdt t dx d tdt t dx d x F x x x (3)22()1tx xte F x dt t =+⎰解:⎰⎰⎰⎰⎰+-+=+++=+=x tx t x t x t x x t dt t te dx d dt t te dx d dt t te dt t te dx d dt t te dx d x F 02020202211)11(1)('222 2223222221)(121)()(122x xe x e x x xe x dx d x e x xx x x +-+=+-⋅+= 2.求下列各极限:(1)203sin limxx tdt x→⎰解:).(3lim 3sin lim )()sin (limsin lim312202203020320上代换倒数第二步用等价无穷===''=→→→→⎰⎰xx x x x tdt xtdt x x xx x x (2)02(2)limxt t x e e dtx-→+-⎰解:.02lim )2()2(lim 22lim )())2((lim)2(lim0002002=-=''-+=-+=''-+=-+-→-→-→-→-→⎰⎰xx x x x x x x x xt t x xt t x e e x e e x e e x dt e e x dte e 3.求下列各定积分:(1)1(1)x dx -⎰10221|)(x x -= (2)120(3)x x dx +⎰103313ln 1|)3(x x+=(3)20cos 2xdx π⎰2021|2sin πx = (4)1310x e dx -⎰=10331103|)(x x e e dx e e =⎰(5)212x dx -⎰⎰⎰+-=-200122xdx xdx (6)0cos x dx π⎰⎰⎰-=πππ22cos cos 0xdx xdx(7)2adx ⎰a ax x a ax dx x x a a 0221340|)()2(2321+-=+-=⎰(8)21201x dx x +⎰⎰+-=102)111(dx x (9)4⎰ 解:令t =x 2,则d t =2x d x ,当t =0时,x =0;当t =4时,x =2.于是.|))1ln((2)111(2121120202040x x dx x dx x x dt t +-=+-=+=+⎰⎰⎰(10)20ax ⎰解:令x =a sin t ,则d x =a cos t d t ,当x =0时,t =0;当x =a 时,t =2π.于是.|)4sin ()4cos 1(24cos 1)2(sin )2sin ()cos (sin cos sin cos sin sin 16041880402402214242242222202224242424242222πππππππππa a a a a at t dt t dt tdt t dt t a dtt t a tdt t a tdta t a a t a dx x a x=-=-=-=====⋅-⋅=-⎰⎰⎰⎰⎰⎰⎰⎰(11)0⎰解:令x =t 2,则d x =2t d t ,当x =0时,t =0;当x =1时,t =1.于是).1(2|)arctan (2)111(212211410102102210210π-=-=+-=+=⋅+=+⎰⎰⎰⎰t t dt tdtt t tdt t tdx x x(12)21dx x⎰解:令x =sec t ,则d x =tan t sect t d t ,当x =1时,t =0;当x =2时,t =3π.于是.|)(tan )1(sec tan sec tan sec 1sec 133330121212212ππππt t dt t tdt tdtt tt dx xx -=-==⋅-=-⎰⎰⎰⎰(13)221x edx -⎰2122121221|)12(--=-=⎰x x ex d e(14)0cos3xdx π⎰ππ031031|3sin )3(3cos x x xd ==⎰(15)20cos 2xdx π⎰ππ0210)sin (2cos 1x x dx x +=+=⎰ (16)212ln e xdx x+⎰=⎰⎰+=2200ln 2e e dx x x dx x22220221000|)(ln |ln 2)(ln ln 12e e e e x x x xd dx x +=+=⎰⎰. (17)210x xe dx ⎰101221|22x x e dx e ==⎰(18)120x ⎰⎰-=133311dx x.|)1()1()1(113941033311033312321x x d x dx x --=---=-=⎰⎰(19)1201x xe dx e +⎰ .|)arctan()(1110102x x x e de e =+=⎰ (20)12⎰⎰-=2121)(arcsin )(arcsin 2x d x2121|)(arcsin 331-=x 四、解答题1.求0()(4)xF x t t dt =-⎰在区间[]1,5-上的最大值与最小值;解:)4()(-='x x x F ,令0)(='x F ,得x =0,x =4.由此可得在),4[]0,(+∞-∞ 上F(x)单调增加,在[0,4]单调减少. 由此可知,在[-1,5]中,F(x)在x =0处取极大值,极大值为F(0)=0;在x =4处取极小值,极小值为F(4)=.|)2()4()4(332402331424-=-=-=-⎰⎰t t dt t t dt t t又F(-1)=.|)2()4()4(37102331124-=-=-=---⎰⎰t t dt t t dt t tF(5)=.|)2()4()4(325502331525-=-=-=-⎰⎰t t dt t t dt t t故在[-1,5]上的最大值为F(0)=0,最小值为F(4)=.332- 2.设20()(1)xf t dt x x =+⎰, 求(0),'(0)f f ;解:两边求导得26)(,23)1(2))1(()(222+='+=++='+=x x f x x x x x x x x f ,故.2)0(,0)0(='=f f。
定积分Word 文档

一、微积分基本定理(牛顿—莱布尼兹公式)定理 设()f x 在区间[,]a b 上连续,且()F x 是它在该区间上的一个原函数,则有()()()()()()b b a a f x dx F x F b F a f x dx F x C==-=+⎰⎰例1计算121dx x--⎰ 解:2ln 2ln 1ln |||ln 11212-=-==----⎰x dx x例2设1(0)()(0)x x x f x e x -+≥⎧=⎨<⎩ ,求21()f x dx -⎰ 解:202110()()()f x dx f x dx f x dx --=+⎰⎰⎰ 02102210(1)1()|()|32x x e dx x dx e x x e ----=++=-++=+⎰⎰注意:在定积分的计算中,要注意带绝对值的积分和分段函数的积分,按照积分可加性计算。
二、 定积分的计算(一)、凑微分法例3求210x xe dx -⎰ 解 222211001211001(2)2111()()|(1)222x x x x xe dx x e dx e d x e e -----=--=--=-=--⎰⎰⎰ 可见,这种计算方法对应于不定积分的第一类换元积分法,即凑微分法。
(二)、换元积分法------(换元必换限)例4计算30⎰ 解:t =,则 21x t =- 2dx tdt =当0x =时,1t = 当3x =时 2t =;得232011.2t tdt t -=⎰⎰38= 练习: ⎰+411x dx解:令t x =,则tdt dx t x 2,2==,当2,4;1,1====t x t x ,原式=()2211212121112ln(1)2((2ln 3)(1ln 2))2(1ln 3ln 2)321ln 2tdt dt t t t t ⎛⎫=- ⎪++⎝⎭=-+=---=-+⎛⎫=- ⎪⎝⎭⎰⎰例5 若)(x f 在],[a a -上连续,则为奇函数为偶函数)()(,0,)(2)(0x f x f dx x f dx x f a a a⎪⎩⎪⎨⎧=⎰⎰-。
数学定积分知识总结

定积分1. 概念: 定积分源自于求曲边梯形的面积, 它的计算形式为:01()lim ()nbk k a k f x dx f x λξ→==∆∑⎰, 结果是一个数值, 其值的大小取决于两个因素(被积函数与积分限).2. 几何意义: 是曲线[](),y f x a b =介于之间与x 轴所围的面积的代数和;3. 经济意义: 若()f x 是某经济量关于x 的变化率(边际问题), 则()ba f x dx ⎰是x 在区间[],ab 中的该经济总量.4. 性质: 本章共列了定积分的八条性质, 其中以下几条在计算定积分中经常用到.(1)()()baabf x dx f x dx =-⎰⎰;(2)[]()()()()b bbaaaf xg x dx f x dx g x dx ±=±⎰⎰⎰;(3)()()bbaakf x dx k f x dx =⎰⎰; (4)()()()bcbaac f x dx f x dx f x dx =+⎰⎰⎰;(5)00()2()aaaf x f x dx f x dx f x -⎧⎪=⎨⎪⎩⎰⎰为奇函数时()()为偶函数时.1.公式: 若()f x 在[],a b 上连续, ()F x 是()f x 的一个原函数, 则()()()baf x dx F b F a =-⎰.2.换元法: 若()f x 在[],a b 连续, ()x t ϕ=在[],c d 上有连续的导数'()t ϕ, 且()t ϕ单调, 则有()()(())'()bdx t acf x dxf t t dt ϕϕϕ=⋅⎰⎰.3. 分部积分法: 若()u x 与()v x 在[],a b 上有连续的导数, 则有()()()()()()bbaabu x dv x u x v x v x du x a =⋅-⎰⎰.1.=⎰__42a π_____; 2. 定积分112121x e dx x⎰ = ___e e -_____;3. 若广义积分2011k dx x +∞=+⎰ , 其中k 为常数,则k = __π2_____;4. 定积分1321sin x xdx -=⎰__0____ ; 5.1211xdx x -=+⎰___0___; 6. 30(sin )xt t dt '=⎰__3sin x x _____ ;7. 广义积分211dx x +∞=⎰__1_____ ; 8. ()bad f x dx dx =⎰ __0______; 9. 设 )(x f 在 [,]a b 上连续,则()()bbaaf x dx f t dt -=⎰⎰ __0_____ ;10. 若函数 )(x f 在 [,]a b 上连续,)(x h 可导,则()()h x ad f t dt dx=⎰_)()]([x h x h f '⋅_____ ;11. 当 =x _0___ 时,⎰-=xt dt te x F 02)( 有极值;12. 设 0()xt f x te dt =⎰ ,则 (0)f ''= __1_______ ;13. 若2kxedx +∞-=⎰ ,则 k = ___21_______ ;14.21(ln )edx x x +∞=⎰_1_______ ; 15. 2131x x e dx -=⎰__0_________ ;二1.arctan xxdx =⎰ ( B )(A)1112-+x(B) 21arctan ln(1)2x x x -+ (C) 1112++x (D) 211x + 2. 下列积分可直接使用牛顿─莱不尼兹公式的有 ( A )(A)53201x dx x +⎰(B)1-⎰ (C)4322(5)xdx x -⎰ (D)11ln eedx x x ⎰ 3. 设 )(x f 为连续函数,则()xaf t dt ⎰为 ( C )(A) ()f t 的一个原函数 (B) ()f t 的所有原函数 (C) )(x f 的一个原函数 (D) )(x f 的所有原函数4.11()()22xf t dt f x =-⎰,且 (0)1f =,则 ()f x = ( A ) (A) 2x e (B)12x e (C) 2x e (D) 212x e 5.1211dx x -=⎰ ( D ) (A) -2 (B) 2 (C) 0 (D) 发散三、1.求下列各函数的导数:(1)211()1xF x dt t =+⎰解:.1111)(212x dt t dx d x F x +=+='⎰ (2)02()cos xF x t tdt =⋅⎰ 求'()F π解:.cos )('.cos cos )cos (cos )(222020202ππππ-===-=-=='⎰⎰⎰F x x tdt t dx d tdt t dx d tdt t dx d x F x x x (3)22()1tx xte F x dt t =+⎰解:⎰⎰⎰⎰⎰+-+=+++=+=x tx t x t x t x x t dt tte dx d dt t te dx d dt t te dt t te dx d dt t te dx d x F 020********)11(1)('222 2223222221)(121)()(122x xe x e x x xe x dx d x e x xx x x +-+=+-⋅+= 2.求下列各极限: (1)203sin limxx tdt x →⎰解:).(3lim 3sin lim )()sin (limsin lim312202203020320上代换倒数第二步用等价无穷===''=→→→→⎰⎰xx x x x tdt xtdt x x xx xx (2)02(2)limxt t x e e dtx-→+-⎰解:.02lim )2()2(lim 22lim )())2((lim)2(lim0002002=-=''-+=-+=''-+=-+-→-→-→-→-→⎰⎰xx x x x x x x x xt t x xt t x e e x e e x e e x dt e e xdte e 3.求下列各定积分:(1)1(1)x dx -⎰10221|)(x x -= (2)120(3)x x dx +⎰103313ln 1|)3(x x+=(3)20cos 2xdx π⎰2021|2sin πx = (4)1310x e dx -⎰=10331103|)(x x e e dx e e =⎰ (5)212x dx -⎰⎰⎰+-=-200122xdx xdx (6)0cos x dx π⎰⎰⎰-=πππ22cos cos 0xdx xdx(7)2adx ⎰a ax x a ax dx x x a a 0221340|)()2(2321+-=+-=⎰(8)21201x dx x +⎰⎰+-=102)111(dx x (9)4⎰ 解:令t =x 2,则d t =2x d x ,当t =0时,x =0;当t =4时,x =2.于是.|))1ln((2)111(2121120202040x x dx x dx x x dt t +-=+-=+=+⎰⎰⎰(10)20ax ⎰解:令x =a sin t ,则d x =a cos t d t ,当x =0时,t =0;当x =a 时,t =2π.于是.|)4sin ()4cos 1(24cos 1)2(sin )2sin ()cos (sin cos sin cos sin sin 16041880402402214242242222202224242424242222πππππππππa a a a a at t dt t dt tdt t dt t a dtt t a tdt t a tdta t a a t a dx x a x =-=-=-=====⋅-⋅=-⎰⎰⎰⎰⎰⎰⎰⎰(11)101dx x+⎰解:令x =t 2,则d x =2t d t ,当x =0时,t =0;当x =1时,t =1.于是).1(2|)arctan (2)111(212211410102102210210π-=-=+-=+=⋅+=+⎰⎰⎰⎰t t dt tdtt t tdt t tdx x x(12)21dx x⎰解:令x =sec t ,则d x =tan t sect t d t ,当x =1时,t =0;当x =2时,t =3π.于是.|)(tan )1(sec tan sec tan sec 1sec 133330121212212ππππt t dt t tdt tdtt tt dx xx -=-==⋅-=-⎰⎰⎰⎰(13)2210x e dx -⎰20122121221|)12(--=-=⎰x x e x d e (14)0cos3xdx π⎰ππ031031|3sin )3(3cos x x xd ==⎰(15)20cos 2xdx π⎰ππ0210)sin (2cos 1x x dx x +=+=⎰ (16)212ln e xdx x+⎰=⎰⎰+=2200ln 2e e dx x x dx x22220221000|)(ln |ln 2)(ln ln 12e e e e x x x xd dx x +=+=⎰⎰. (17)210x xe dx ⎰101221|22x x e dx e ==⎰(18)120x ⎰⎰-=133311dx x.|)1()1()1(110394103331133312321x x d x dx x --=---=-=⎰⎰(19)1201x xe dx e +⎰ .|)arctan()(1110102x x x e de e =+=⎰ (20)12⎰⎰-=2121)(arcsin )(arcsin 2x d x2121|)(arcsin 331-=x四、解答题1.求0()(4)xF x t t dt =-⎰在区间[]1,5-上的最大值与最小值;解:)4()(-='x x x F ,令0)(='x F ,得x =0,x =4.由此可得在),4[]0,(+∞-∞ 上F(x)单调增加,在[0,4]单调减少. 由此可知,在[-1,5]中,F(x)在x =0处取极大值,极大值为F(0)=0;在x =4处取极小值,极小值为F(4)=.|)2()4()4(332402331424-=-=-=-⎰⎰t t dt t t dt t t又F(-1)=.|)2()4()4(371023311240-=-=-=---⎰⎰t t dt t t dt t tF(5)=.|)2()4()4(325502331525-=-=-=-⎰⎰t t dt t t dt t t故在[-1,5]上的最大值为F(0)=0,最小值为F(4)=.332- 2.设20()(1)xf t dt x x =+⎰, 求(0),'(0)f f ;解:两边求导得26)(,23)1(2))1(()(222+='+=++='+=x x f x x x x x x x x f ,故.2)0(,0)0(='=f f。
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分公式Word版

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x=++⎰ (5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰ (16)2211tan xdx arc C a x a a=++⎰(17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+⎰(19)ln(x C =+(20)ln |x C =+⎰(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
(完整版)定积分知识点汇总

(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。
我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。
一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。
1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。
2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。
三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。
对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。
2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。
3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。
常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。
分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。
5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。
1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。
利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。
定积分不等式word文档良心出品

第三章一元积分学第三节定积分值的估计及不等式定积分值的估计及不等式证明是一个较难的问题,方法多样,用到的知识(微分学的知识,积分学的知识等)也很多。
总的说来:(1)主要用积分学的知识,除了定积分的性质、积分中值定理、计算方法外,以下几个简单的不等式也是有用的:b b(i)若f(x) <g(x)(x 引a,b]),则J f (x)dx < J g(x)dx .a ab b(ii) I f f(x)dx| 兰f l f (x) |dx.ad b(iii )若f(X)>0(X 引a,b]), a<c<d<b,则f f (x)dx < f f (x)dx.9 £(iv)(柯西不等式)[f f (x)g(x)dxr < a f 2(x)dx a g2(x)dx(2)主要用微分学的知识,包括前面己讲过的利用微分学知识证明不等式的一切方法.(3)利用二重积分、级数等.值得注意的是:题目的解法往往有多种,同一题目其解答过程中往往要用到各种知识和方法.、■莎 2例1.判断积分[sin x dx的符号分析:这个积分值是求不出来的.如果被积函数在积分区间上有确切的符号,那么积分值的符号很容易判断.如果被积函数在积分区间上有正、有负,那么应根据被积函数的正、负情况将积分区间分成部分区间,然后利用积分学等方面的知识比较在这些部分区间上的积分值(实际上是比较积分值的绝对值).本题中被积函数si nx2在积分区间上有正、有负,先作,一2*烦2 1 ^sin t换兀:t =x ,把积分变为(sinx dx=5t -^dt后,问题更清晰,因而想到/莎 2 1 2;rs int 1 F兀sin t ,^si ntsinxdx=?0 ;r dt=2d寅dx+J兀至此积分的符号凭直觉已经能判断了. 但严格说明还需做一些工作,上式右端两个积分的积分区间不一样,为了方便比较,应将两个积分放在同一积分区间上进行比较. 有了这些分析和思路后,解答就容易了.解:令t =x2,则0 sin/dx^L 于dt—2(0 于dx+J兀于dt)2兀sin t 兀一sin u 兀sin t对上式右端后一积分换元,u*得d r 右du—0右dt从而广sinx2dx—丄(f字dx-f严dt) 0 2 0JT看V u +兀1兀1 1=-f (k -- )sintdt >02 J t+J注:本题的解答过程不复杂,但其过程中有两个技巧很有用(1)将积分区间分成部分区间 (尤其是等分区间,特别是二等分) (2)如要比较两个在不同积分区间上的积分的大小,可通过换元变成相同积分区间上的积分,然后比较.迟. 3例 2 .设a A 0,证明:(xa sinx dx『a ■sinx dx > 亍分析::从形式上看很象柯西不等式,但两个积分的积分区间不一样,前面的积分可用教材上介绍的一个等式0,f(sinx)dx = jr 02 f(sinx)dx变为[0,亍]上的积分,再用柯西不等式便可得结论。
定积分知识总结(总9页)

定积分知识总结(总9页)1. 定积分的定义定积分是数学中的一个概念,它表示将一个函数沿着一条给定的路径积累起来的总和。
在数学上,定积分是描述函数在一定区间上的面积、体积、虚功等概念的一种工具。
(1)可加性:若f(x)在[a,b]、[b,c]上可积,则:∫(a,c)f(x)dx=∫(a,b)f(x)dx+∫(b,c)f(x)dx∫(a,b)f(x)dx≥03. 函数可积的充分条件Riemann可积的充分条件有:(1)区间[a,b]上f(x)存在上下积分,且上下积分相等;(2)对任意ϵ>0,可找到划分P及加细之后的划分P1,使得S(P1,f)-s(P1,f)<ϵ,其中S(P1,f)表示P1的上和式,s(P1,f)表示P1的下和式。
4. 定积分的计算方法定积分可以通过换元法、分部积分法、牛顿-莱布尼茨公式等数学方法进行计算。
(1)求曲线下面的面积;(2)求曲线绕x轴或y轴旋转的体积;(3)求物理问题中的虚功;(4)求平均值、方差等统计量。
6. 常用定积分公式$\int x^ndx={x^{n+1}}/{n+1}+C$$\int\sin xdx=-\cos x+C$7. 例题(1)计算定积分: $\int_{0}^{\frac{\pi}{2}}\sin xdx$解:$ \int_{0}^{\frac{\pi}{2}}\sin xdx=\left . -\cos x \right |\begin{matrix} 0\\\frac{\pi}{2} \end{matrix} =1$8. 求导与积分的对应关系如果函数f(x)在区间[a,b]上可导,则:$\int_{a}^{b}f'(x)dx = f(b)-f(a)$微积分是数学的一个分支,其中包括微分和积分两个部分。
微积分对象是函数的导数和原函数。
定积分是微积分中的积分部分,用于计算函数在一定区间内的积累量。
因此,微积分中的求导和积分是密不可分的,两者相辅相成,是微积分学中的核心概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分知识点汇总
定积分
一.定积分的几何意义
①
()0f x >时,
()b
a
f x dx S =⎰
()0f x <时,()b
a
f x dx S =-⎰
()f x 有正有负时,
1(),
b
a
f x dx S =⎰2(),
c
b
f x dx S =-⎰
3()d
c
f x dx S =⎰
面积和123()()()b
c
d
a
b
c
S S S f x dx f x dx f x dx ++=
-+⎰
⎰⎰
[()()]b
a
f x
g x dx S -=⎰
二.定积分基本性质
①当a b =时,()0b
a
f x dx =⎰
.
②()()b
b a
a
kf x dx k f x dx =⎰
⎰
③1212[()()()]()()()b
b b b
n n a
a
a
a
f x f x f x dx f x dx f x dx f x dx
±±⋅⋅⋅±=±±÷⋅⋅±⎰
⎰⎰⎰
④
12
1
()()()()n
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =++⋅⋅⋅+⎰
⎰⎰⎰
⑤若奇函数()y f x =在[,]a a -上连续不断,则
()0a
a
f x dx -=⎰
123()()()().d b c d a
a
b
c
f x dx f x dx f x dx f x dx S S S =++=-+⎰
⎰⎰⎰
⑥若偶函数()y f x =在[,]a a -上连续不断,则
()2()a
a
a
f x dx f x dx -=⎰
⎰
微分基本定理:如果()f x 是区间[,]a b 上的连续函数,且'()()F x f x =,则
()()
()()b
b a
a
f x dx F x F b F a ==-⎰
(牛顿—莱布尼兹公式)
1.直线0,,0x x y π===与曲线sin y x =所围成图形的面积用定积分表示为
2.用定积分表示抛物线223y x x =-+与直线3y x =+所围成图形的面积为
3.曲线21,2,0,0y x x x y =-===围成的阴影部分的面积用定积分表示为
4.由曲线24,4,0,0y x x x y =-===和x 轴围成的封闭图形的面积是( )
4
20
.(4)A x dx -⎰ 4
20
.|(4)|B x dx -⎰
420
.|4|C x dx -⎰ 24
2202
.(4)(4)D x dx x dx -+-⎰⎰
5.计算下列定积分
(1)3
2
3
9x dx --⎰ (2)1
21
44x dx --⎰
(3)2
1
1
(1)
dx x x +⎰ (4)10(2)x x e dx +⎰
(5)20cos 2
x
dx π⎰ (6)91(1)x x dx +⎰
6.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2
y x =ABCD 中,则质点落在图中阴影区域的概率是
7.已知函数2
y x =与y kx =的图象所围成的阴影部分的面积是
4
,3
则k =
8.求曲线24y x =与直线24y x =-围成的图形面积
9.已知函数32()f x x ax bx =++的图象如图所示,它与直线0y =在原点处相切,此切线
与函数图象所围区域的面积是
27
,4
求a .。