HightemperatureoxidationofAZ31+0.3wt.%Ca andAZ31+0.3wt.%CaOmagnesiu malloys

合集下载

ga2o3, 熔点

ga2o3, 熔点

ga2o3, 熔点英文回答:Gallium oxide (Ga2O3) is a transparent conducting oxide (TCO) semiconductor material with a wide bandgap of 4.5-4.9 eV. It possesses excellent optical, electrical, and thermal properties, making it a promising candidate for various optoelectronic and electronic applications. One of the key physical properties of Ga2O3 is its melting point, which plays a crucial role in determining the material's processing and device fabrication conditions.The melting point of Ga2O3 is highly dependent on its crystal structure and stoichiometry. Pure, stoichiometric Ga2O3 exists in three main polymorphic phases: α-Ga2O3,β-Ga2O3, and γ-Ga2O3. Among these phases, α-Ga2O3 is the most stable and commonly encountered phase at ambient conditions.The melting point of α-Ga2O3 has been extensivelystudied and reported in the literature. According tovarious experimental measurements, the melting point of α-Ga2O3 is approximately 1720-1760 °C (3128-3200 °F). This high melting point indicates that Ga2O3 is a thermallystable material and can withstand high-temperature processing conditions.The melting point of Ga2O3 can be influenced by various factors, such as impurities, defects, and non-stoichiometry. The presence of impurities or defects can lower the melting point of Ga2O3, while non-stoichiometry can lead to the formation of secondary phases with different melting points. Therefore, controlling the purity, stoichiometry, andcrystal structure of Ga2O3 is essential for achieving the desired melting point and material properties.中文回答:氧化镓(Ga2O3)是一种宽带隙(4.5-4.9 eV)的透明导电氧化物(TCO)半导体材料。

温度对Zn(II)-TiO2体系吸附可逆性的影响

温度对Zn(II)-TiO2体系吸附可逆性的影响

[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .,2007,23(6):807-812June Received:December 14,2006;Revised:January 19,2007;Published on Web:April 27,2007.∗Corresponding author.Email:gpan@;Tel:+8610⁃62849686.国家自然科学基金(20073060)和中国科学院优秀“百人计划”资助项目ⒸEditorial office of Acta Physico ⁃Chimica Sinica温度对Zn(II)⁃TiO 2体系吸附可逆性的影响李薇潘纲∗陈灏张美一何广智李晋杨玉环(中国科学院生态环境研究中心环境水质学国家重点实验室,北京100085)摘要:用延展X 射线吸收精细结构光谱(EXAFS)研究了不同温度对Zn(II)⁃锐钛矿型TiO 2吸附产物微观构型和吸附可逆性的影响机制.宏观的吸附⁃解吸实验表明,不同温度下的吸附等温线可以用Langmuir 模型进行较好的描述(R 2≥0.990).随温度升高,吸附等温线显著升高,Zn(II)在TiO 2表面的饱和吸附量由5℃时的0.125mmol ·g -1增至40℃时的0.446mmol ·g -1;而体系的不可逆性明显减弱,解吸滞后角θ由32.85°减至8.64°.求得体系反应的热力学参数ΔH 、ΔS 分别为24.55kJ ·mol -1和159.13J ·mol -1·K -1.EXAFS 结果表明,Zn(II)主要是通过共用水合Zn(II)离子及TiO 2表面上的O 原子结合到TiO 2表面上,其平均Zn ⁃O 原子间距为R Zn ⁃O =(0.199±0.001)nm.第二配位层(Zn ⁃Ti 层)的EXAFS 图谱分析结果表明,存在两个典型的Zn ⁃Ti 原子间距,即R 1=(0.325±0.001)nm (边⁃边结合的强吸附)和R 2=(0.369±0.001)nm(角⁃角结合的弱吸附).随温度升高,强吸附比例(CN 1)基本不变而弱吸附比例(CN 2)增加,两者比值(CN 1/CN 2)逐渐减小.该比值的变化从微观角度解释了宏观实验中温度升高,不可逆性减弱的吸附现象.关键词:EXAFS;微观构型;温度;吸附⁃解吸;吸附可逆性;Zn(II);锐钛矿型TiO 2中图分类号:O642Temperature Effects on Adsorption ⁃Desorption Irreversibility ofZn(II)onto AnataseLI WeiPAN Gang ∗CHEN Hao ZHANG Mei ⁃Yi HE Guang ⁃ZhiLI Jin YANG Yu ⁃Huan(State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco ⁃Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,P.R.China )Abstract :Microscopic structures and mechanism of Zn(II)adsorbed onto anatase at different temperatures were studied using extended X ⁃ray absorption fine structure (EXAFS)spectroscopy.Macroscopic adsorption ⁃desorption experiments indicated that adsorption isotherms and adsorption reversibility increased substantially with increasing temperature.When temperature increased from 5℃to 40℃,the adsorption capacity increased from 0.125mmol ·g -1to 0.446mmol ·g -1,while the desorption hysteresis angle (θ)decreased from 32.85°to 8.64°.The thermodynamic parameters ΔH and ΔS of the reaction were evaluated as 24.55kJ ·mol -1and 159.13J ·mol -1·K -1,respectively.EXAFS spectra results showed that Zn(II)was adsorbed onto the solid surface in the form of octahedral hydrous Zn(II)ions,which were linked to TiO 2surface by sharing O atoms,with an average bond length R Zn ⁃O =(0.199±0.001)nm.EXAFS analysis of the second Zn ⁃Ti coordination sphere resulted in two Zn ⁃Ti atomic distances of (0.325±0.001)nm and (0.369±0.001)nm,corresponding to edge ⁃sharing linkage (stronger adsorption site)and corner ⁃sharing linkage (weaker adsorption site),respectively.The number of stronger adsorption sites (CN 1)remained relatively stable while the number of weaker adsorption sites (CN 2)increased remarkably as the temperature increased,making the proportion of two adsorption modes (CN 1/CN 2)drop from 0.690to 0.543.These results revealed that the increased adsorption capacity and reversibility at higher temperature were due to the increase in CN 2and the decrease in CN 1/CN 2.This result implies that,in a given environment (soils or rivers),the bioavailability of zinc is higher at high temperature than that at low temperature.807Acta Phys.鄄Chim.Sin.,2007Vol.23Key Words :EXAFS;Microscopic structures;Temperature;Adsorption ⁃desorption;Adsorptionreversibility;Zn(II);Anatase图1锐钛型TiO 2X 射线衍射图谱Fig.1XRD pattern of anatase TiO 2目前,污染物在颗粒物表面的吸附可逆性问题已成为环境研究领域的一个热点.污染物在颗粒物表面吸附⁃解吸的可逆程度直接决定着其在水环境中的浓度、生物可利用性与毒性.已有大量文献报道了pH [1-3]、离子强度[4,5]、金属阳离子浓度[6,7]、吸附剂浓度及表面特征[8-11]、反应时间[12,13]等对金属离子在颗粒物表面的吸附可逆性的影响.然而,温度对吸附可逆性的影响却鲜见报道[14-16].众所周知,温度是环境的一个重要变量,不但季节的变化可以导致上下40℃左右的温度波动,湖泊、海洋等天然水体的水深变化同样会引起温度的很大差异[17].环境中的温度变化可以通过影响重金属在颗粒物表面的吸附⁃解吸过程而影响其在水体中的浓度、迁移和转化.因此,研究固⁃液界面吸附⁃解吸的宏观温度效应及微观机理,对于解释和预测环境中重金属污染物的污染行为具有重要意义.几十年来,由于固⁃液界面体系的复杂性,其吸附可逆性的研究主要停留在宏观的动力学和热力学水平上[18-20].1998年,Pan 等人[21]提出的亚稳平衡态吸附(MEA)理论,为固⁃液界面科学向分子水平发展提供了理论依据.它指出,对于理想的可逆吸附过程,吸附态分子在固体表面以平衡态存在;而对于不可逆吸附过程,吸附态分子是以不同的亚稳平衡态结合于固体表面,具有较大的亚稳平衡态效应.而反应过程和可逆性可以直接影响实际反应终态的微观结构,这一行为是传统热力学所不能解释因而无法预测的.近几年,随着EXAFS(延展X 射线精细结构吸收光谱)技术在吸附产物的微观构型研究中的广泛应用[22-25],MEA 理论亦得到多方验证.作者的前期研究表明,金属吸附在固体表面的微观构型与可逆性密切相关[26-29].但是,一直以来,人们尚未认识到温度对吸附可逆性的宏观影响,也未见相应的微观机理研究.本文将EXAFS 技术与宏观的吸附⁃解吸实验相结合,以水溶液中Zn(II)⁃TiO 2吸附体系为研究对象,对吸附可逆性的宏观温度效应及微观机理进行了研究.这对解释和认识金属污染物的吸附本质及从分子水平发展环境界面科学具有重要意义.1实验部分1.1TiO 2的表征本实验所用的吸附剂TiO 2由北京化学试剂公司提供.经XRD 鉴定(图1),该吸附剂为纯的锐钛矿,对其进行粒度分析(Mastersizer 2000,英国马尔文公司),所得体积平均粒径D [4,3]为0.979μm.BET 比表面法测得该TiO 2颗粒物的比表面为201.3m 2·g -1.1.2吸附鄄解吸实验参照文献[30]的方法,根据吸附pH 曲线,选取pH=6.30,浓度0.1mol ·L -1NaNO 3的支持电解质,颗粒物浓度1.0g ·L -1,在温度分别为5、20、40℃下测定Zn(II)在TiO 2的吸附等温线.在50mL 聚丙烯塑料离心管中,依次加入TiO 2悬浊液,0.1mol ·L -1NaNO 3溶液和Zn(II)溶液,总体积为30mL,得到固体颗粒物浓度为1.0g ·L -1,一系列Zn(II)初始浓度不同的悬浊液.在设定温度下振荡24h,用0.1mol ·L -1NaOH 或0.1mol ·L -1HNO 3多次调节pH 到6.30±0.02.然后,离心20min (4500r ·min -1),用0.22μm 滤膜过滤,取滤液,用伏安极谱仪(Metrohm,797型)测定反应终了时Zn(II)的平衡浓度,由总初始浓度与平衡浓度之差计算吸附量得到吸附等温线.离心之后的固体选取具有相近平衡浓度、不同吸附量的三个样品S 5、S 20、S 40用于EXAFS 测定(实验条件见表1).解吸实验:将离心之后的吸附样品除去大部分上清液,留10mL,加入20mL 0.1mol ·L -1NaNO 3溶液.振荡均匀后,用0.1mol ·L -1NaOH 或0.1mol ·L -1HNO 3调节体系pH 值到6.30±0.02(与吸附反应条件一致),在设定温度下恒温振荡24h.其他操作条件同吸附实验.每一点的解吸实验如上述操作重复两次,从而得到解吸等温线上的三个实验点.808No.6李薇等:温度对Zn(II)⁃TiO 2体系吸附可逆性的影响1.3EXAFS 样品的制备及EXAFS 数据的采集将用于EXAFS 实验的吸附样品装入有机玻璃小槽中,用胶带将小槽固定在EXAFS 测定器上测定.对于液体参照物(如Zn(II)溶液),用微量进样器将液体注入一个有机玻璃容器中;对于固体参照物(如ZnO),将研磨之后的固体粉末均匀地涂于胶带上,折叠之后用于EXAFS 测定.EXAFS 实验测定在日本光子工厂高能加速器研究机构的BL ⁃12C 实验站进行.因该实验站的光束线具有电子流强大、能量高、分辨率高、探测信号强等优点.储存环电子能量为2.5GeV,平均电流强度为300mA,平面双晶Si(111)为单色器,前电离室为有效长度5cm 的充氩电离室.由于吸附样品中Zn 含量较低,故采用荧光模式测定,探测器用19元SSD 探测器,每元通路都经过调试只允许Zn 信号通过,因此,测定过程中不需滤波片.参照样品ZnO 固体和Zn(II)水样采用透射模式测定.所有样品采集的均是Zn 原子的K 吸收边(9659eV)EXAFS 谱,能量扫描范围在9159-10759eV.2结果与讨论2.1宏观吸附⁃解吸实验及吸附热力学在pH 为6.30±0.02,0.1mol ·L -1的NaNO 3介质中,5、20、40℃下的吸附⁃解吸等温线见图2.由图2可以看出,Zn(II)在TiO 2表面的吸附具有明显的温度效应和解吸滞后现象.随温度升高,吸附等温线明显升高,而解吸滞后逐渐减弱.不同温度下的吸附等温线可以用Langmuir 吸附模型[31]进行较好的拟合(拟合参数见表2).Langmiur 吸附模型:q eq =q max K L C eq 1+K L C eq (1)式中,q eq (mmol ·g -1)为反应终了时Zn(II)在TiO 2表面的吸附量,C eq (mmol ·L -1)为反应终了时溶液中的Zn(II)浓度,K L (L ·mmol -1)为Langmuir 型等温式的拟合常数,q max (mmol ·g -1)为拟合所得的饱和吸附量.吸附反应的不可逆性可以用解吸滞后角(θ)进行定性描述,其大小可以根据文献[27]计算求出(见表2).由表2可以看出,随温度由5℃升高至40℃,Zn(II)在TiO 2表面的饱和吸附量q max 由0.125mmol ·g -1增加至0.446mmol ·g -1;而解吸滞后角由32.85°减小至8.64°.这初步说明该体系的吸附反应为吸热过程,温度升高有利于吸附反应的进行;同时,体系的吸附⁃解吸不可逆性随温度升高明显减弱.针对不同温度下的吸附等温线,参照Khan 和Singh 的方法[32],将ln(q eq /C eq )对q eq 作图(见图3),线性拟合后的截距即为不同温度下的吸附热力学平衡常数K 的自然对数值ln K ;然后,由Van ′t Hoff 方程(2)6.306.306.300.1890.3140.393S 5S 20S 40C 0(mmol ·L )Zn ⁃TiO 2adsorption datapH Sample 0.0930.2130.290q eq(mmol ·g )0.0900.0920.092C eq(mmol ·L )1.01.01.0C P (g ·L )表1Zn ⁃TiO 2的EXAFS 样品吸附实验条件Table 1The adsorption conditions of EXAFS samplesEXAFS samples are indicated by S T ,where T represents different temperatures (℃).C P :concentration of particles;C 0:initialconcentration;C eq :equlibrium concentration;q eq :equilibriumadsorption图2不同温度下Zn(II)⁃TiO 2吸附⁃解吸等温线Fig.2Adsorption ⁃desorption isotherms of Zn(II)ontoTiO 2at different temperaturesSolid curves represent Langmiur ⁃type adsorption isotherms,while dotted curves represent desorption isotherms.T /℃Langmuir ⁃type parameters θ/(°)Thermodynamic parametersR 2q max /(mmol ·g -1)K L /(L ·mmol -1)R 10-3K ΔG /(kJ ·mol -1)ΔS /(J ·mol -1·K -1)ΔH /(kJ ·mol -1)50.9900.12531.7132.850.958 4.76-19.58200.9950.30723.7321.350.9959.36-22.28159.1324.55400.9920.44618.118.640.98515.71-25.04表2Zn(II)在TiO 2表面吸附的热力学参数Table 2Thermodynamic parameters of the Zn adsorption ontoTiO 2at different temperatures809Acta Phys.鄄Chim.Sin.,2007Vol.23和(3)可以求得反应的吉布斯自由能(ΔG )、熵变(ΔS )和焓变(ΔH )(结果见表2).ΔG =-RT ln K (2)ln K =ΔS R -ΔHRT(3)结果表明,体系吸附反应的ΔH 为24.55kJ ·mol -1,表明体系的吸附过程为化学吸附,且是吸热反应,与吸附等温线得出的结论一致.三个温度下的ΔG <0,表明体系的吸附反应是自发的,且温度越高,自发程度越大.ΔS >0,吸附过程是熵驱动过程.在固液吸附体系中,同时存在溶质的吸附和溶剂的解吸.溶质分子吸附在吸附剂上,自由度减小,是一熵减小过程,而溶剂分子的解吸是一熵增大的过程.吸附过程的熵变是两者的总和.对于Zn(II)在TiO 2表面的吸附,Zn(II)是以Zn(H 2O)2+6水合离子及其四配位的水解产物Zn(OH)2或Zn(OH)2-4混合形式结合在TiO 2表面,每个Zn(II)的吸附会对应着多个H +或OH -的释放[33].由于H +或OH -的释放引起的熵增加的速度大于熵减小的速度,致使总和ΔS >0.因此,Zn(II)在TiO 2表面的吸附是一个熵增大过程.2.2EXAFS 结果经Cordt3U 、FMT 程序处理后的EXAFS 数据采用Winxas 3.1软件进行分析处理.扣除背景后的EXAFS 数据通过Fourier 变换得到径向分布函数.然后,在波矢κ范围22-108nm -1,采用Bessel 窗函数分别对第一、第二配位层进行Fourier 反变换,每个配位层的Fourier 滤波分别采用曲线拟合法进行拟合处理得到每个配位层中配位原子的种类、数目(CN)、配位原子与中心原子间距(R )、Debye ⁃Waller 因子(σ2)等结构参数.吸附样品及参照物Zn(II)(aq)和ZnO 固体的归一化的κ3权重的EXAFS 图谱和没有相位修正的Fourier transformation (FT)图分别见图4、图5.从样品的FT 图可以看出,样品的第一个峰主要在0.16nm 附近,第二个峰在0.28nm 附近.用曲线拟合法分别对这两个峰进行分析,得到第一层、第二层的拟合结果如配位数、原子间距等(见表3),实验与拟合图谱见图6、图7.距离中心原子Zn 最近一层为O 原子,表明第一配位层为Zn ⁃O 层.Zn(II)(aq)的Zn ⁃O 原子间距为0.207nm,配位数为6.30;ZnO 固体的Zn ⁃O 原子间距为0.195nm,配位数为4.04.样品Zn ⁃O 的平均原子间距R =(0.199±0.001)nm,配位数4.5左右.随着温度的升高,Zn ⁃O 原子间距和配位数无明显变化.第二配位层存在两个Zn ⁃Ti 原子间距,即R 1=(0.325±0.001)nm 和R 2=(0.369±0.001)nm.2.3Zn 在TiO 2上吸附的微观构型与可逆性的关系最常见的Zn(II)配位构型为六配位的八面体构型和四配位的四面体构型[34,35],典型的八面体构型Zn ⁃O 间平均距离为0.210nm [35,36],四面体构型的Zn ⁃O 间距为0.195nm [34-36].可以依据样品的Zn ⁃O原子间图3不同温度下Zn(II)⁃TiO 2的ln(q eq /C eq )对q eq 图Fig.3Plots of ln(q eq /C eq )v s q eq for the Zn(II)adsorption onto TiO 2at 5,20,40℃图4归一化、扣除背景后κ3权重的EXAFS 图谱Fig.4Normalized,background ⁃subtracted andκ3⁃weighted EXAFSspectra图5傅立叶变换后的半径分布函数Fig.5Radial distribution functions obtained byFourier transformation (FT)810No.6李薇等:温度对Zn(II)⁃TiO 2体系吸附可逆性的影响距和配位数判断Zn(II)的构型,因此本研究中的参照物Zn(II)(aq)是以六配位的Zn(H 2O)2+6水合离子形式存在,6个水分子围绕在Zn 周围形成八面体构型;ZnO(s)则是以四配位的四面体形式存在,中心原子Zn 被4个O 原子围绕,与文献值相吻合[37,38].Zn(II)等金属水合离子与金属氧化物发生吸附时以共用边⁃边和角⁃角的两种方式结合最常见[39,40],对应的原子间距R 边⁃边<R 角⁃角.Zn ⁃TiO 2吸附样品Zn ⁃O 平均键长(0.199nm)介于Zn(H 2O)2+6水合离子(0.207nm)与固体ZnO(0.195nm)之间,这表明吸附样品的配位构型介于四配位与六配位之间,Zn(II)是以六配位的Zn(H 2O)2+6及其四配位的水解产物Zn(OH)2或Zn(OH)2-4混合形式结合在TiO 2表面.EXAFS 结果分析进一步表明第二配位层分别在0.325和0.369nm 左右出现两个Zn ⁃Ti 配位层,它们分别对应着边⁃边和角⁃角两种结合方式.Zn ⁃Ti 原子间距较短的边⁃边结合方式对应着较强的固⁃液界面作用力(强吸附),吸附较不可逆;而原子间距较长的角⁃角结合方式则对应着较弱的固⁃液界面作用力(弱吸附),吸附较为可逆.Zn(II)在TiO 2表面上的两种不同的结合方式所具有的能量状态是不一样的.对于吸附等温线上平衡浓度相近、吸附量不同的三个样品(S 5、S 20、S 40),其EXAFS 图谱结果表明,随温度升高、吸附量增大,边⁃边结合的强吸附比例CN 1基本不变,而角⁃角结合的弱吸附比例CN 2增加,从而导致所对应的强吸附位与弱吸附位之比CN 1/CN 2从0.690降至0.543.由于以边⁃边结合和角⁃角结合的吸附态Zn(II)的能量状态是不一样的,而且两种结合方式的比例是随着温度的变化而变化的.因此,高温下吸附态Zn(II)更多的以弱吸附位结合,具有较高而不稳的能量状态,易于解吸;而低温下主要以强吸附位结合,对应着较低而稳定的能量状态,较不易解吸.所以,高温下吸附态Zn(II)的吸附可逆性比低温时强.这一发现预示着高温下(如夏季)某一环境(河流、土壤)中锌的生物可给性比低温下(如冬季)要高.这可为研究污染物在环境中的毒性/生物可给性机理提供一个新的视角.3结论在pH 6.30、0.1mol ·L -1NaNO 3介质中,Zn (II)在TiO 2表面的吸附⁃解吸具有明显的温度效应.随温度升高,Zn(II)的吸附量显著增大;而不可逆性明显减弱.Zn(II)主要是通过共用水合Zn(II)及TiO 2表面上的O 原子结合到TiO 2固体表面上,配位构型介于四配位和六配位之间,其平均Zn ⁃O 原子间距为Reference Zn ⁃O shell Sample Zn ⁃O shell First Zn ⁃Ti shell Second Zn ⁃Ti shell R /nm R /nm R 1/nm R 2/nm CN 2Zn 2+0.207S 50.1990.3260.370 1.640.690ZnO0.195S 200.1990.3240.368 1.800.634S 400.1980.3250.3692.150.543CN 6.304.04CN 4.504.464.49CN 11.131.141.17CN 1/CN 2表3Zn ⁃TiO 2吸附样品第一配位层(Zn ⁃O 层)、第二配位层(Zn ⁃Ti 层)EXAFS 结果Table 3EXAFS results of the first Zn ⁃O coordination sphere and the second Zn ⁃Ti coordinationsphere图6第一配位层(Zn ⁃O)滤波后的EXAFS 谱(线)及拟合结果(点)Fig.6EXAFS spectra (solid line)and fit results(dashed line)for Zn ⁃Oshell 图7第二配位层(Zn ⁃Ti)滤波后的EXAFS 谱(线)及拟合结果(点)Fig.7EXAFS spectra (solid line)and fit results(dashed line)for Zn ⁃Ti shell811Acta Phys.⁃Chim.Sin.,2007Vol.23(0.199±0.001)nm.Zn(II)在TiO2表面存在两种结合方式,即吸附力较强的边⁃边结合与吸附力较弱的角⁃角结合,分别对应的平均Zn⁃Ti原子间距为0.325和0.369nm.平衡浓度相近的吸附态Zn(II)在不同温度下所占据的吸附位不同.低温下主要以强吸附位结合,较不易解吸;而高温下则更多的以弱吸附位结合,易于解吸.所以,高温下Zn(II)在TiO2表面的吸附可逆性比低温时强.Zn(II)在TiO2表面的吸附可逆性随温度变化的规律预示着高温下环境中锌的毒性/生物可给性比低温下要高.这将为污染物在环境中的毒性/生物可给性的机理研究提供一个新的方向.致谢:感谢日本光子工厂XAFS实验站的NOMURA教授、中国科学院高能物理研究所同步辐射实验室的谢亚宁教授在日本光子工厂BL⁃12C实验站的支持和帮助!References1Gerth,J.;Brummer,G.W.;Tiller,K.G.Zeitsc.Pflanzener.Boden., 1993,156:1232Davis,A.P.;Upadhyaya,M.Water Res.,1996,30:18943Ghulam,M.;Balwant,S.;Rai S.K.Chemosphere,2004,57:1325 4Boekhold,A.E.;Temminghoff,E.J.M.;van der Zee,S.E.A.T.M.J.Soil Sci.,1993,44:855Jia,C.X.;Pan,G.;Chen,H.Acta Sci.Circum.,2006,26(10):1611 [贾成霞,潘纲,陈灏.环境科学学报,2006,26(10):1611] 6Li,J.;Chen,H.;Pan,G.;Gao,M.Y.Acta Sci.Circum.,2006,26(10):1606[李晋,陈灏,潘纲,高美缓.环境科学学报,2006,26(10):1606]7Christensen,T.H.Water Air Soil Pollut.,1984,21b:1158Pan,G.;Liss,P.S.;Krom,M.D.Colloids and Surfaces A,1999,151:1279Naidu,R.;Bolan,N.S.;Kookana,R.S.;Tiller,K.G.Eur.J.SoilSci.,1994,45:41910Naidu,R.;Kookana,R.S.;Sumner,M.E.;Harter,R.D.;Tiller,K.G.J.Environ.Qual.,1997,26:60211Hettiarachchi,G.M.;Ryan,J.A.;Chaney,R.L.;La Fleur,C.M.J.Environ.Qual.,2003,32:168412Gray,C.W.;McLaren,R.G.;Roberts,A.H.C.;Condron,L.M.Aust.J.Soil Res.,1998,36:19913Glover II,L.J.;Eick,M.J.;Brady,P.V.Soil Sci.Soc.Am.J., 2002,66:79714Mustafa,G.;Kookana,R.S.;Singh,B.Chemosphere,2006,64(5): 85615Johnson,B.B.Environ.Sci.Technol.,1990,24:11216Brady,P.V.;Cygan,R.T.;Nagy,K.L.J.Colloid Interface Sci.,1996,183:35617Zhu,D.W.;Shi,L.;Liu,W.D.Pedosphere,1999,9(3):24318Bruemmer,G.W.;Gerth,J.;Tiller,K.G.J.Soil Sci.,1988,39:37 19Ford,R.G.;Bertsch,P.M.;Farley,K.J.Environ.Sci.Technol., 1997,31:202820Gray,C.W.;McLaren,R.G.;Roberts,A.H.C.;Condron,L.M.Eur.J.Soil Sci.,1999,50:12721Pan,G.;Liss,P.S.J.Colloid Interface Sci.,1998,201:7122Randall,S.R.;Sherman,D.M.;Ragnarsdottir,K.V.;Collins,C.R.Geochim.Cosmochim.Acta,1999,63(19-20):297123Matocha,C.J.;Elzinga,E.J.;Sparks,D.L.Environ.Sci.Technol., 2001,35:296724Elzinga,E.J.;Reeder,R.J.Geochim.Cosmochim.Acta,2002,66(22):394325Zhu,M.Q.;Pan,G.;Li,X.L.;Liu,T.;Yang,Y.H.Acta Phys.⁃Chim.Sin.,2005,21(10):1169[朱孟强,潘纲,李贤良,刘涛,杨玉环.物理化学学报,2005,21(10):1169]26Li,X.L.;Pan,G.;Qin,Y.W.;Hu,T.D.;Xie,Y.N.;Chen,H.;Du, Y.H.High Energy Phys.Nuc.Phys.,2003,27:2327Pan,G.;Qin,Y.W.;Li,X.L.;Hu,T.D.;Wu,Z.Y.;Xie,Y.N.J.Colloid Interface Sci.,2004,271:2828Li,X.L.;Pan,G.;Qin,Y.W.;Hu,T.D.;Wu,Z.Y.;Xie,Y.N.J.Colloid Interface Sci.,2004,271:3529Pan,G.;Li,X.L.;Qin,Y.W.;Chen,H.;Jia,C.X.;Chang,G.H.;Yang,Y.H.Abstracts of Papers of the American Chemical Society, 2004,228:64030Pan,G.;Liss,P.S.J.Colloid Interface Sci.,1998,201:7731Lyubchik,S.I.;Lyubchik,A.I.;Galushko,O.L.;Tikhonova,L.P.;Vital,J.;Fonseca,I.M.;Lyubchik,S.B.J.Colloids and SurfacesA:Physicochem.Eng.Aspects,2004,242:15132Khan,A.A.;Singh,R.P.Colloids Surf.A:Physicochem.Eng.Aspects,1987,24:3333Zhu,M.Q.;Pan,G.;Liu,T.;Li,X.L.;Yang,Y.H.;Li,W.;Li,J.;Hu,T.D.;Wu,Z.Y.;Xie,Y.N.Acta Phys.⁃Chim.Sin.,2005,21(12): 1378[朱孟强,潘纲,刘涛,李贤良,杨玉环,李薇,李晋,胡天斗,吴自玉,谢亚宁.物理化学学报,2005,21(12):1378] 34Zhu,M.;Pan,G.J.Phys.Chem.A,2005,109:764835Pavlov,M.;Siegbahn,P.E.M.;Sandstrom,M.J.Phys.Chem.A, 1998,102:21936Trainor,T.P.;Brown,Jr.G.E.;Parks,G.A.J.Colloid Interface Sci.,2000,231:35937Mokili,B.;Charreire,Y.;Cortes,R.;Lincot,D.Thin Solid Films, 1996,288:2138Munoz,P.A.;Diaz,S.;Perez,P.J.;Martín⁃Zamora,M.E.;Martínez,J.M.;Pappalardo,R.R.;Marcos,E.S.Physica B:Condensed Matter,1995,208&209:39539Bochatay,L.;Persson,P.J.Colloid Interface Sci.,2000,229:593 40Manceau,A.;Schlegel,M.L.;Musso,M.;Sole,V.A.;Gauthier,C.;Petit,P.E.;Trolard,F.Geochim Cosmochi Acta,2000,64(21):3643812。

模拟汽车冷却液中海藻酸钠对AZ31镁合金的缓蚀作用

模拟汽车冷却液中海藻酸钠对AZ31镁合金的缓蚀作用

模拟汽车冷却液中海藻酸钠对AZ31镁合金的缓蚀作用饶楚仪;张大全;金星;高立新;郭兴伍【摘要】The inhibition of sodium alginate on AZ31 magnesium alloy corrosion in simulated automotive coolant was investigated by electrochemical impedance spectroscopy (EIS) and polarization curves measurement. Results show that sodium alginate of 0. 005 g/L had good inhibitive effect on the corrosion of AZ31 magnesium alloy. Sodium alginate is a cathodic type corrosion inhibitor and retards the hydrogen evolution of AZ31magnesium alloy.%采用电化学阻抗谱(EIS)、极化曲线和微观表面形貌分析研究不同浓度的海藻酸钠对AZ31镁合金在模拟汽车冷却液中的缓蚀作用。

结果表明:0.005g/L的海藻酸钠能够明显抑制AZ31镁合金在模拟汽车冷却液中的腐蚀,但随着浓度的继续增加海藻酸钠的缓蚀能力有所下降。

海藻酸钠是一种抑制镁合金阴极析氢反应的阴极型缓蚀剂。

【期刊名称】《腐蚀与防护》【年(卷),期】2011(032)012【总页数】3页(P936-938)【关键词】镁合金;海藻酸钠;缓蚀作用;汽车冷却液【作者】饶楚仪;张大全;金星;高立新;郭兴伍【作者单位】上海电力学院能源与环境工程学院,上海200090;上海电力学院能源与环境工程学院,上海200090;上海电力学院能源与环境工程学院,上海200090;上海电力学院能源与环境工程学院,上海200090;上海交通大学材料学院,上海200030【正文语种】中文【中图分类】TG174.42镁合金是目前应用的最轻的结构材料,具有高比强度、高比弹性模量、高阻尼减震性、高导热性、高静电屏蔽性、高机械加工性和极低的密度等优良性能,已应用于航空、航天、汽车、计算机、通讯和家电行业等[1]。

A review of research progress on CO2 capture, storage, and utilization

A review of research progress on CO2 capture, storage, and utilization

2A review of research progress on CO capture,storage,and utilization in 34Q156789111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576with 58%of the sources being located within the east and south 77central regions.The contributions of large point sources in each 78sector to total CO 2emissions in China are listed in Fig.2[13].With 79rapid development of energy technologies in the 21st century,fos-80sil fuels,especially coal,will still remain the dominant energy0016-2361/$-see front matter Ó2011Elsevier Ltd.All rights reserved.doi:10.1016/j.fuel.2011.08.022⇑Corresponding authors.Q2Address:State Key Laboratory of Coal Conversion,Institute of Coal Chemistry,Chinese Academy of Sciences,Taiyuan 030001,China (Y.Sun).Tel.:+863514049612;fax:+863514041153.E-mail addresses:zhaoning@ (N.Zhao),weiwei@ (W.Wei),yhsun@ (Y.Sun).Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022source in China for decades to come.Chinese government recognized the huge challenge of CO 2abatement while satisfying ever-increasing energy demand.In the light of this situation,November 26,2009,China officially announced action to control emissions per unit of GDP by 40–45%by 2020,based on 86levels [14].To address this,China is undertaking a range of techni-87cal research and development projects on CCSU,including the na-88tional fundamental research and high-tech programs,as well as a 89large number of international programs.The CCS projects,fun-90dings,and research institutes in China is shown in Table 1.91Since 1990,China had carried out a series of climate change 92projects under framework of national programs,such as China’s 93National Climate Change Program (CNCCP),National Hi-tech R&D949596979899100101102103104105106107108109110111112113114115116117118119120121cooperation with international on CCSU.On the basis of the finical 122support of both Chinese government and CAS,a lot of progresses 123were obtained in several academic institutes in CAS including 124CO 2capture;enhanced oil recovery (EOR)and enhanced coal bed 125methane (ECBM)projects as well as CO 2chemical utilizations.This 126brief review has covered the research progress in CO 2capture,stor-127age,and utilization in CAS.2.The contributions of large point sources in each sector to overall total emissions in China [12].Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022128129130131132133134135136137aration,and cryogenic fractionation.138 2.1.Amine-based scrubbing solvent139Amine scrubbing is a well known technology for capturing CO 2140from flue gas,which has been widely deployed on a large scale 141across several industries [25–28].The industrially most important142143144145146147148149150151152the environment [30].1532.2.Ionic liquids154Therefore,a nonvolatile solvent that could facilitate CO 2capture 155without the loss of solvent into the gas stream would be advanta-156geous.Ionic liquids (ILs)are commonly defined as liquids whichTable 1CCS projects,fundings,and research institutes in China.China and international cooperation on CCS projects and fundingsResearch institutes aBNLMS–CAS IET–CAS RCEES–CAS ICC–CAS IPE–CAS LICP–CAS CIAC–CAS National High Technology Research and Development Program of China (863)SIC–CAS National Key Basic Research and Development Program of China (973)IGG–CAS China’s National Climate Change Program (CNCCP)IAP–CAS L.L Q1i et al./Fuel xxx (2011)xxx–xxx3Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022157are composed entirely of ions with a melting point of less than 158100°C.ILs have many unique properties in comparison to other 159solvents as extremely low volatility,broad range of liquid temper-160ature,high thermal and chemical stability,and tunable physico-161chemical characteristics and as a result,ILs have been considered 162as a potential substitute of aqueous amine solutions for CO 2cap-163ture [31–34].164In Changchun Institute of Applied Chemistry,Chinese Academy 165of Sciences (CIAC–CAS),a novel dissolving process for chitin and 166chitosan was developed by using the ionic liquid 1-butyl-3-167methyl-imidazolium chloride ([Bmim]Cl)as a solvent for capturing 168and releasing CO 2.The results showed that the chitin/IL and chito-169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201tant to consider the maximum mass loading when considering the 202support of ILs on inert substrates –yes,these can enhance the ILs’203ability to take up CO 2,but at the expense of cycling an inert sorbent 204round a thermal cycle.The ILs are also monstrously expensive,the 205complex structure,and high cost for preparation,compared to sim-206pler solvents such as MEA or ammonia.Thus,the potential for 207improving CO 2solubilities and reducing cost of the ILs still needs 208to be studied for future applications.In 2010,in Beijing National 209Laboratory for Molecular,Chinese Academy of Sciences (BNLMS–210CAS),Zhang and co-workers first reported on CO 2capture by 211hydrocarbon surfactant liquids.It also found that CO 2had high sol-212ubility in low-cost hydrocarbon surfactant liquids,and the ab-213and the 214215216such as corrosion,at 217regenerable solid sor-218concept for CO 2recov-219into amine-based and 220221222with various so-223as silica gels,activated 224have been shown to phys-225enhance the sorp-226of many amine-based 227In Dalian Institute of 228(DICP–CAS),Zhang 229silica foam (MCF)materi-230with polyethyl-231The results showed that 232having large window 2333.45mmol CO 2/g sorbent 234In Institute of Coal Chem-235Zhao et al.studied 236materials derived 237sorption capabili-238°C and 1bar.The as-pre-239selectivity for CO 2over 240prepared a series of CO 2241pentamine (TEPA)was 242(PMHS)based mesopor-243The highest absorption 24475°C with the 10vol.%245was higher than most 246Desorption could 247in 1h [46].248of amine-based sorbent 249capacity of solid sorbent.250have poor mechanical 251amine-based sorbents 252and require signifi-253processes.254255sorbents for CO 2capture 256Alkali earth metal,such 257form alkali earth metal-258vapor at high tempera-259and post-combus-260simplified process flow 261the calcium looping 262vessel (the carbonator)4L.L Q1i et al./Fuel xxx (2011)xxx–xxxPlease cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022the carbonation reaction between CO 2and solid CaO separates CO from coal-combustion flue gas at a temperature between 600°and 650°C.The CaCO 3formed is then passed to another vessel (the calciner),where it is heated to reverse the reaction (900–950°C),releasing the CO 2suitable for sequestration,and regener-ating the CaO-sorbent which is then return to the carbonator.The carbonation process is exothermic,which is matched with the temperature of a steam cycle,allowing recuperation of the heat.In IPE–CAS,the decomposition conditions of CaCO 3particles for CO 2capture in a steam dilution atmosphere (20–100%steam 307308309310311312313314315316317318319320321322323324325326327328329330332333334335336337338339340341342343344345346347348349350351352353354355Fig.3.The process flow diagram of post-combustion capture using the calcium looping cycle [47,48].Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022strength (998N/cm 2)and exhibited good stability in multiple cy-cles [74,75].Furthermore,the application of a conceptual CO 2cap-ture process using this sorbent was proposed for an existing coal fired power plant [75].However,to optimize CO 2sorption capacity,understand of the interaction between CO 2and the sorbent need to be studied in the further work.Moreover,much work remains before the technology fluidized bed CO 2capture can be commercialized.Simulta-neously,the numerical simulation based on the computational fluid 365dynamics (CFD)method will become a research focus in the future.366 3.CO 2storage367Following the capture and transport process,CO 2can be dis-368posed of in natural sites such as deep geological sequestration,369mineral carbonation,or ocean storage [76].There are three geolog-370ical formations that have also been recognized as major potential 371CO 2sinks:deep saline-filled sedimentary (DSFs),depleted oil 372natural gas reservoirs,and unmineable coal-seams.The geology 373also suggests possibilities for CO 2enhanced oil recovery (CO 374EOR),CO 2enhanced gas recovery (CO 2–EGR)and CO 2enhanced 375coal-bed methane recovery (CO 2–ECBM)projects [12].3763.1.Geological sequestration377Geological storage involves injecting CO 2at depths greater than 3781000m into porous sedimentary formations using technologies 379derived from the oil and gas industry [77].CO 2can be stored in 380supercritical state at depth below 800–1000m,which provides 381the potential for efficient utilization of the space,due to the li-382quid-like density of supercritical CO 2.The point at which CO 2Table 2Performance summary of K-based sorbents capturing CO 2.Material Temperature (°C)CO 2partial pressure (bar)e Total capacity (mmol CO 2/g sorbent)Method f Regenerature temperature (°C)Ref.K 2CO 3/AC a 600.01 1.95TCD g 150[62]K 2CO 3/SiO 2600.010.23TCD g –[62]K 2CO 3/USY 600.010.43TCD g –[62]K 2CO 3/CsNaX 600.01 1.35TCD g –[62]K 2CO 3/Al 2O 3600.01 1.93TCD g 350[62]K 2CO 3/CaO 600.01 1.11TCD g –[62]K 2CO 3/MgO 600.01 2.70TCD g 400[62]K 2CO 3/TiO 2600.01 1.89TCD g 150[62]K 2CO 3/Al 2O 3600.01 1.96TCD g >300[63]Re-KAl(I)30b 600.01 1.86TCD g <200[63]g Fig.5.The schematic diagram of experimental apparatus for the fluidized bed [74,75].6L.L Q1i et al./Fuel xxx (2011)xxx–xxxPlease cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022383transforms from critical to supercritical point is 31.1°C and 3847.38MPa [78].CO 2is injected usually in the supercritical form into 385the saline aquifer or depleted oil or gas reservoir.Four major clas-386ses of deep geologic reservoirs present within China have been 387identified and evaluated as candidates for the long-term storage 388of anthropogenic CO 2:deep saline-filled sedimentary (DSFs)for-389mations,depleted gas basins,depleted oil basins with potential 390for CO 2–EOR,and deep unmineable coal seams with potential for 391CO 2–ECBM.Fig.6shows the map of the combined location and ex-392tent of candidate geologic CO 2storage formations in China [13].393Because the CO 2industry is not mature,there are few active CO 2394storage projects which can provide site specific information;hence417China are also potential storage candidates.Recently,other re-418search has also focused on estimating the distance between CO 2419sources and potential sinks.Zheng et al.superimposed the loca-420tions of these 27facilities onto maps of sedimentary basins in each 421of the five regions of China (Huabei,Ordos,Dongbei,Yuwan,and 422Xinjiang).The majority of the candidate CO 2sources are found in 423the Ordos,Huabei and Dongbei regions [85].424The China–UK Near Zero Emissions Coal (NZEC)Initiative exam-425ined options for carbon (CO 2)capture,transport and geological 426storage in China,which was developed under the 2005EU–China 427NZEC Agreement that aims to demonstrate CCS in China and the 428EU [16,86–88].The NZEC Initiative has evaluated the potential to 429430431432433434435436437438439440441442443444445446447448449450451L.L Q1i et al./Fuel xxx (2011)xxx–xxx7Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022452Kailuan mining area (Hebei Province)and deep saline aquifers in 453the Jiyang Depression (Shandong province)[89,90].The results 454show that the Dagang oilfield is not suitable for large-scale storage,455though could be considered for EOR pilots.The Shengli oilfield was 456considered more promising for storage (472Mt in eight selected 457fields).Storage potential in the Kailuan mining area is 504,000458Mt adsorbed onto the coal and 38,100Mt void storage capacity.459However,the coals have low porosity and permeability that will af-460fect future energy resources [90].The Institute of Geology and Geo-461physics,Chinese Academy of Sciences (IGG–CAS)studied the 462potential for storage in the Jiyang Depression.The results revealed 463that Guantao Formation in the Jiyang Depression has good porosity 464and permeability 465areas was 4662010,in South China 467of Sciences 468storage capacity in 469the Pearl River 470CCS-related 471China [78].There 472saline formations 473tive storage 474including 60Mt in 475large for storaging 476in Guangdong in 477In a word,these 478age of CO 2in deep 479Although this is 480countries,it will 481and there was 482characteristics.483 3.1.2.CO 2–EOR484Although CO 2485oil recovery (EOR)486this process can be 487oil,the cost of CO 2,488the CO 2source [92].489the production of 490be an ideal option 49184commercial or 492tion worldwide [1].493been implemented 494Oil Corporation 495in the Daqing,496ernments of Japan 497out a project to 498plant in China into a 499duced from the 500that between 270501ered by using CO 2502including IGG–CAS 503three large oil fields 504oil reservoirs in the 505were suitable both 506found suitable for 507showed that the 508CO 2storage 509the oil recovery by steam injection has been already applied at Lia-510ohe oil field.Each single well,in average,had conducted 7.6times 511of steam injection-oil recovery processing for EOR propose.The to-512tal recovered oil amounts were 12.06Mt [92].Active oil producing 513fields where CO 2–EOR is technically possible provide credible 514opportunities to initiate CO 2storage demonstration projects.How-515ever,significant further investigations,including detailed site516appraisals would be necessary before such fields can be considered 517as technically and economically suitable for CO 2storage.5183.1.3.CO 2–ECBM519In a similar manner,ECBM recovery can be used to store CO 2520while improving methane recovery.A bright prospect of gas injec-521tion technology for ECBM production has been suggested by Chi-522nese engineers since the late 1990s [94].More recently,a joint 523venture was formed between the China United Coal Bed Methane 524Corporation and the Alberta Research Council of Canada to develop 525a project entitled ‘‘Development of China’s coalbed methane tech-526nology/CO 2sequestration’’[12].This project was initiated in March 527project was performed 528in the anthracitic coals of 529China [95],which is 530in China up to now 531at ICC–CAS in 2005532were investigated based 533An equipment simulated 534middle pressures was 535in coal seam,536behaviors were studied.537coal mine and salt-water 538four coals of various rank 539China were tested for 540one of the most impor-541process.The result 542capacities for methane 543>Bulianta coal >Zhangji 544adsorption isotherms 545lattice model [100].546given to estimate the 547[101],which was 548underground stress is so 5492and CH 4respectively 550the mechanical sta-551of the impact factors of 552stress could be obviously 553of the casing or by using 554and Young’s modulus 555China was also estimated 556prospecting data of coal 557and the replacement ratio 558different ranks,it is esti-559methane resources will 560technology is uti-561in coalbeds is about 562as the total CO 2emission 563also developed 564simulation of the CO 2–565is a lack of knowledge 566due to the complexity 567fluid transport processes.568will be the next 569570571Large amounts of CO 2can also be fixed by a process called min-572eral carbonation,which is natural or artificial fixation of CO 2into 573carbonates.It has been proposed as a promising CO 2sequestration 574technology e.g.the silicate rocks (calcium or magnesium)could be 575turned into carbonates by reacting with CO 2following this mech-576anism [8,105]:577ðMg ;Ca Þx Si y O x þ2y þx CO 2!x ðMg ;Ca ÞCO 3þy SiO 25798L.L Q1i et al./Fuel xxx (2011)xxx–xxxPlease cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639hanced by the fact that this method of storage is highly verifiable 640and unquestionably permanent,the grinding energy required to 641produce particles of the size required to react rapidly with the 642acids is large,and the residence times on the order of hours re-643quired to allow carbonation of the solids,via either route,is so long 644that immense reactors would be required,associating environmen-645tal concerns.Furthermore,mineral carbonation will always be646expensive than most applications of geological storage 647important gap in mineral carbonation is the lack of 648onstration plant.649Ocean storage650Captured CO 2also could help reduce the atmospheric 6516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836842685carbonic acid,which would be likely harmful to ocean organisms 686and ecosystems [17].Additionally,it is not known whether the 687public will accept the deliberate storage of CO 2in the ocean as part 688of a climate change mitigation strategy.The development of ocean 689storage technology is generally at a conceptual stage;thus,further 690research and development would be needed to make technologies 691available.3.Reaction mechanism for enhanced carbonation crystallization Q1Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022692693694695696697698699700701702703704705706707708709710711712713714715716717718719721722723the reaction [131–135],such as in ICC–CAS,Zhao et al.had reported 724a catalyst system composed of KI supported on metal oxides for 725cycloaddition of propylene oxide with CO 2.It was found that the 726activity of KI for cycloaddition was greatly enhanced by ZnO as both 727support and promoter,resulting in a high yield of propylene 728carbonate within a short reaction time.The mechanism is also pro-729posed (Scheme 4)[133].Recently,a large number of catalytic730systems,such as metal oxides,transition metal,ammonium 731well as main group complexes,were reported to be active 732reactions [136–139].In ICC–CAS,the efficient ultrasonic tech-733nique was used for the preparation of amine-functionalized porous 734catalysts for CO 2coupling with epoxide.According to 735study by Zhang and co-workers [140],the reaction conditions 736great influence on the performance and the silanols on the surface 737played an important role in the chemical fixation of CO 2.In addi-738they also proposed the possible reaction mechanism for 739coupling with epoxide over such type of catalysts (Scheme 5).740In recent years,ionic liquids as environmentally benign media 741organic synthesis and catalytic reaction significant progress 7427437447457467477487492750catalyst system without using additional organic solvents was 751achieved in excellent selectivity and TOF (5410h À1)[144].In 752IPE–CAS,an efficient Lewis acid/base catalyst composed of ZnCl 2/753PPh 3C 6H 13Br was developed and showed high activity and selectiv-754ity for the coupling reaction of CO 2and epoxide under the mild 755conditions [145].Sun et al.prepared a series of hydroxyl-function-756alized ionic liquids (HFILs)which showed efficient reactivity andScheme 4.The proposed diagram of reaction mechanism [133].Q1Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022780781782783784785786787788789790791792793794795796797798799800802803804805806807Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022CO 2þCH 4¼2CO þ2H 2841842In the past decade,a lot of researches have been devoted to the 843catalytic performance of noble metals,including Pt,Ru,Rh,Pd,844and Ir for this reaction [165–169].It showed that Rh and Ru845exhibited both high activity and stability in CH 4dry reforming,846while Pd,Pt and Ir were less active and prone to deactivation.847Nevertheless,considering the aspects of high cost and limitedPlease cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022848availability of noble metals,it is more practical to develop non-849noble metal catalysts which exhibited both high activity and pared with noble metals,Ni-based catalysts have been 851widely investigated because of their high activity and relatively 852low price [170–172].Nevertheless,application of Ni-based cata-853lysts in a large scale process is not so straightforward due to rapid 854carbon deposition,resulting in the deactivation of the catalyst 855[173].It was found that when Ni is supported on a alkaline earth 856metal oxide such as MgO,CaO,and BaO with strong Lewis basi-857city,carbon deposition can be attenuated or even suppressed 858[174]which is because that the support could promote chemi-859sorption of CO 2and thus,accelerated the reaction of CO 2and C 8608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968974.4.Reaction of CO 2with ethane and propane898Ethylene and propylene are basic raw material in the petrol-899chemical industry.Thermal cracking of hydrocarbons (such as eth-900ane)in the presence of steam is currently the main source of eth-901ylene [181,182].Nevertheless,steam cracking of ethane to 902ethylene is a highly endothermic process that must be performed 903at high temperatures,which means the consumption of a large 904amount of energy.The introduction of CO 2could reduce the extent 905of deep oxidation which results in many byproducts whereas eth-906ylene selectivity drops when oxygen is used as oxidant [183].907Thermodynamics analysis and experimental results have indi-908909910911912913915916917918919920921922923924925926927928929930931932933934935936938939940941L.L Q1i et al./Fuel xxx (2011)xxx–xxx13Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022969970971972973974975976977978979980981982983984985986987988990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.0221015DMC in supercritical phase was proposed in Scheme 11.Recently,developed a supported Cu-Ni/V 2O 5-SiO 2heterogeneous because the reaction can be carried out in a fixed-bed the side production of water molecules 10341035103610371038103910401041104210431044and theoretical approaches,which enable the development of 1045CO 2selective sorbents.Besides,the sorbent performance,lifetime,10461047104810491050105110521053105410551056105710581059106010611062106310641065Scheme 11.The proposed catalytic reaction mechanism Please cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.0221066of component costs,specific Chinese market conditions,and other 1067factors impacting costs of deployment in China will be important 1068to consider in greater detail.To propose the storage mechanism,1069monitoring,simulation,risk assessment,control methods as well 1070as engineering design will be studied in future.1071The utilization of CO 2to chemicals has attracted considerable 1072attention as a possible way to manufacture useful commercial 1073chemicals from CO 2in some specific locations (Scheme 12)[222].1074The utilization of CO 2as a raw material in the synthesis of chemi-1075cals was also conducted by CAS,including synthesis of cyclic car-1076bonate from CO 2and epoxide,reaction of CO 2and propylene 1077glycol (PG),CO 2reforming of CH 4,reaction of CO 2and ethane 1078and propane,CO 21079methyl carbonate 1080amount of CO 2can 1081to the order of 1082ent the typical 1083cations is only 1084laminates are used 1085of the materials can 1086and overall net 1087ation.1088and fundamental 1089lue-added chemicals 1090tive net carbon 1091moderate reaction 1092the energy or 1093clear,wind,1094also important to 1095 6.Uncited 1096[201].Q31097Acknowledgments1098This work was 1099vation Programme 1100323);the Ministry of 1101lic of China 1102Climate Change:1103Academy of 1104the Natural Science 1105References1106[1]Mikkelsen M,1107fixation and 11082010;3(1):43–81.1109[2]Xu XC,Song CS,1110separation from 111111121113[3]Shukla R,Ranjith P,1114and caprock 1115[4]Bredesen R,Jordal 1116generation with CO 1117[5]Barelli L,Bidini 1118sorption-enhanced 1119review.Energy 1120[6]Drage TC,1121adsorbents for CO 2capture in gasification.Energy Fuels 2009;23:2790–6.1122[7]Stewart C,Hessami M.A study of methods of carbon dioxide capture and1123sequestration –the sustainability of a photosynthetic bioreactor approach.1124Energy Convers Manage 2005;46:403–20.1125[8]Yang HQ,Xu ZH,Fan MH,Gupta R,Slimane RB,Bland AE,et al.Progress in1126carbon dioxide separation and capture:a review.J Environ Sci 11272008;20(1):14–27.1128[9]Khatri RA,Chuang SSC,Soong Y,Gray M.Thermal and chemical stability of1129regenerable solid amine sorbent for CO 2capture.Energy Fuels 11302006;20(4):1514–20.1131[10]Jin HG,Gao L,Han W,Hong H.Prospect options of CO 2capture technology1132suitable for China.Energy 2009:1–8.1133[11]Hashim H,Douglas P,Elkamel A,Croiset E.Optimization model for energy1134planning with CO 2emission considerations.Ind Eng Chem Res 11352005;44(4):879–90.1136[12]Meng KC,Williams RH,Celia MA.Opportunities for low-cost CO 2storage1137demonstration projects in China.Energy Policy 2007;35(4):2368–78.1138[13]Dahowski RT,Li X,Davidson CL,Wei N,Dooley JJ,Gentiled RH.A preliminary1139cost curve assessment of carbon dioxide capture and storage potential in 1140China.Energy Procedia 2008;1(1):2849–56.1141[14]Wang R,Liu WJ,Xiao LS,Liu J,Kao W.Path towards achieving of China’s 20201142carbon emission reduction target –a discussion of low-carbon energy policies 1143at province level.Energy Policy 2011;39(5):2740–7.1144[15]China’s scientific &technological actions on climate change;2007.<http:///WebSite/CCChina/UpFile/File199.pdf >.1146Pearce J,et al.Carbon capture1147near zero emissions coal 11481149capture and storage for CO 211502010;38(9):5281–9.1151R,Mezghani K,Imashuku S,1152capture utilizing oxy-fuel 1153membrane systems.Int J 11541155and size effects of activated1156Ind Eng Chem Res 11571158to produce hydrogen with1159combustion.Int J Hydrogen 11601161combustion CO 2capture by1162Prog Energy Combust Sci 11631164DA,McMichael WJ.Carbon1165sorbents.Energy Fuels 11661167Park AHA,et al.High efficiency1168based on amine-functionalized 11691170Gimenez A,Sanchez-Biezma A,1171for low cost CO 2capture in 11722008;49(10):2809–14.1173organogels via ‘‘latent’’gelators.1174their ammonium carbamates.11751176and prediction of the solubility1177and mixed alkanolamine 11781179of the structural features1180of CO 2and regeneration in 11811182Svendsen HF.Modeling and1183in aqueous alkanolamine 1184Ind Eng Chem Res 11851186of products of the oxidative1187aqueous monoethanolamine 1188gases.Ind Eng Chem Res 11891190Galindo A,Jackson G,et al.An1191Energy Environ Sci 11921193and thermodynamic11941-n-butyl-3-methylimidazolium 11951196High-pressure phase behavior1197ionic liquids.J Phys Chem B 11981199JF.Anion effects on gas12001201liquids for post-combustion CO 212021203dissolved in ionic liquids as12041205W,Zhang XP.Dual amino-1206for CO 2capture.Chem Eur J 12071208[37]Zhang JM,Zhang SJ,Dong K,Zhang YQ,Shen YQ,Lv XM.Supported absorption1209of CO 2by tetrabutylphosphonium amino acid ionic liquids.Chem Eur J 12102006;12(15):4021–6.1211[38]Sairi NA,Yusoff R,Alias Y,Aroua MK.Solubilities of CO 2in aqueous N-1212methyldiethanolamine and guanidinium trifluoromethanesulfonate ionic 1213liquid systems at elevated pressures.Fluid Phase Equilibria 2011;300(1–12142):89–94.1215[39]Zhang JL,Han BX,Zhao YJ,Li JS,Hou MQ,Yang GY.CO 2capture by1216hydrocarbon surfactant liquids.Chem Commun 2011;47(3):1033–5.16L.L Q1i et al./Fuel xxx (2011)xxx–xxxPlease cite this article in press as:L Q1i L et al.A review of research progress on CO 2capture,storage,and utilization in Chinese Academy of Sciences.Fuel(2011),doi:10.1016/j.fuel.2011.08.022。

离子掺杂对提高锐钛型TiO2高热稳定性的研究

离子掺杂对提高锐钛型TiO2高热稳定性的研究

离子掺杂对提高锐钛型TiO2高热稳定性的研究刘艳敏1,张萍2,李平蕊1,张艳峰1,魏雨1(1.河北师范大学化学与材料科学学院,河北石家庄050016 2. 石家庄学院河北石家庄)摘要:结合本课题组的工作,归纳分析了离子掺杂对二氧化钛由锐钛矿型向金红石型转化的抑制作用,对相关文献数据分析得出不同掺杂离子对TiO2相转化温度和粒径具有较大影响的结论。

本课题组以TiCl4为原料,通过添加少量磷酸二氢钠,采用强迫水解法制备的纯锐钛相纳米TiO2,相变温度提高到了1000℃,有效抑制了TiO2粒径的长大,与文献结果一致。

但掺杂后TiO2的相变机理尚处于探索阶段,如何选择适当添加剂实现高热稳定性锐钛矿型纳米TiO2产业化是今后研究的重点。

关键词:锐钛矿相纳米TiO2;相变;掺杂;高热稳定性中图分类号:TF123 文献标识码:A 文章编号Research on Improvement of High Thermal Stability of AnataseTitania by Doping IonsResearch on Improvement of Ion Dopants on High ThermalStability of Anatase TitaniaLIU Yan-min1, ZHANG Ping2, LI Ping-rui1, ZHANG Yan-feng1, WEI Yu1(1.College of Chemistry and Material Sciences,Hebei Normal University,HebeiShijiazhuang 050016,China;2. China)Abstract:The suppressing effects on the anatase-to-rutile phase transformation by doping ions were systematically concluded combining with our research group’s work. And we came to the conclusion that the ion dopants have large influences on the phase transition temperature and particle size through analysing interrelated literatures. Anatase TiO2 was prepared by forced hydrolysis under boiling reflux method using TiCl4 as the raw material and NaH2PO4 as the additive in our laboratory. The obtained sample has a high stability at 1000℃and the crystallite size was effectively inhibited, which is in accordance with the literatures. However, the mechanism of the phase transformation of TiO2 is still in the exploratory stage, how to choose the appropriate additives to achieve the industrial production of anatase TiO2 with high thermal stability is the emphasis in future research.Key words:Anatase TiO2;phase transformation; doping; high thermal stability1.引言:纳米TiO2凭借其独特的光电特性、自清洁、化学稳定性、无毒和低成本等优势,在高级涂料、环境保护、半导体材料、高级油漆、化妆品、催化剂等领域得到了广泛应用[1-3]。

AZ31镁合金高温热压缩流变应力行为的研究

AZ31镁合金高温热压缩流变应力行为的研究

AZ31镁合金高温热压缩流变应力行为的研究徐静;戚文军;黄正华;周楠【摘要】在Gleeble 1500D型热模拟试验机上,在应变速率为0.01~1 s-1、变形温度为573~723 K条件下,对AZ31合金的流变应力行为进行了研究.结果表明:AZ31镁合金在热压缩变形时,当应变速率-定时,流变应力随着变形温度的升高而减小;而当变形温度一定时,流变应力随着应变速率的增大而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下AZ31镁合金热变形应力指数n=8.34,其热变形激活能Q=196 kJ/mol.【期刊名称】《材料研究与应用》【年(卷),期】2013(007)001【总页数】4页(P21-24)【关键词】AZ31-1Sm镁合金;热压缩变形;流变应力;热变形激活能【作者】徐静;戚文军;黄正华;周楠【作者单位】广东省工业技术研究院(广州有色金属研究院),广东广州 510650【正文语种】中文【中图分类】TG146.2金属镁及其合金是迄今在工程中应用的最轻的结构材料[1-3].由于镁合金的结构为密排六方结构,可开动的滑移系比面心立方和体心立方金属少,导致镁合金的室温塑性较低、成型能力差,从而限制了变形镁合金的推广应用,通常情况下通过热加工来提高变形镁合金的变形能力[4].因此,研究镁合金在热加工过程中的变形特性具有十分重要的理论意义及应用价值.材料变形的基本信息是通过材料的本构方程进行描述的,它表明了在热加工变形条件下变形热力参数之间的关系,即流变应力与应变、应变速率以及温度之间的关系.在现代化的生产中,为提高生产效率及模具与加工材料的适合性,需建立材料的本构关系,以计算加工过程中各阶段的应力场和流变场,从而制定工艺规程、设计和校核压力加工的设备及模具,所以确定材料的本构方程具有重要的意义[5-8]. 本研究在变形温度为573~723K和应变速率为0.01~1s-1条件下,对AZ31合金的高温压缩变形流变应力行为进行研究,以便为合金的挤压变形研究提供理论依据.1 实验方法实验所用的材料为铸态AZ31镁合金.首先从铸锭上切取小块试样,经400℃保温12h均匀化处理后,加工成直径为10mm,高为15mm的压缩试样.然后在Gleeble 1500D型热模拟机上进行高温热压缩实验,压缩变形温度分别为573,623,673和723K,以5K/s的速度加热试样,保温3min,应变速率分别为0.01,0.1和1s-1,试样真应变均为1.变形完毕后,立即对试样淬火,以保留其高温下的组织.2 结果与分析2.1 真应力-应变曲线图1为在不同应变速率下AZ31镁合金高温压缩真应力-应变曲线.从图1可以看出:在变形温度不变时,应变速率越低,对应的流变应力越低;当应变速率不变时,变形温度越高,所对应的流变应力越低;在微应变阶段,流变应力上升很快,说明该阶段加工硬化占主导地位,镁合金中只发生了部分动态回复或动态再结晶,其硬化作用大大超过软化作用;随变形量的继续增加,位错密度不断增高,加快了动态回复和动态再结晶,使软化作用增强,加工硬化逐渐被动态回复和动态再结晶软化作用抵消,此时表现为曲线斜率逐渐减小;当流变应力达到峰值时,加工硬化和动态再结晶软化达到平衡,随着变形的继续进行,动态再结晶继续发展,使流变应力继续下降,最后达到一稳定值.另外,随温度升高及变形速率减小,应力峰值朝应变减小方向移动,这有可能是因为随着温度的升高,滑移系的临界切应力下降,导致镁合金的变形抗力降低;温度越高,动态回复或动态再结晶就越容易发生,进而导致峰值随着温度的升高而提前[9].图1 不同应变速率下AZ31镁合金热压缩变形的应力-应变曲线(a)0.01s-1;(b)0.1s-1;(c)1s-1Fig.1 True stress-strain curves for AZ31-1Sm magnesium alloy during hot compression deformation under different strain rate2.2 合金热变形流变应力方程及材料常数的确定金属材料热变形过程中,在任何应变或稳态下的高温流变应力σ取决于变形温度T 和应变速率.塑性变形时的流动应力模型通常可基于Arrhenius方程的三种形式进行构建[10].低应力水平下,流变应力σ和应变速率之间的关系可以用指数关系来描述:式(1)中,A1和n1为与温度无关的常数.在高应力水平下,流变应力和应变速率之间的关系可以用幂指数关系描述:式(2)中,A2和β为与温度无关的常数.金属及合金热加工变形时存在热激活过程,而应变速率受热激活过程控制.虽然热加工变形时的应变速率通常比蠕变时的应变速率大几个数量级,但热加工仍可视为蠕变在大应变速率及较高的应力水平下的一种外延,两者的变形机制和软化机制都非常相似.为此,Sellars和Tegart于1966年提出了一种包括变形激活能Q和温度T的双曲正弦形式的修正Arrhenius关系,用以描述流变应力、应变速率和变形温度之间的关系[11].式(3)中:A,n,α是与温度无关的常数;R=8.314J/(mol·K),为气体常数;n为应力指数,Q是变形激活能;σ表示峰值应力或稳态流变应力,或相应于某指定应变量时对应的流变应力.该式在低应力水平(ασ<0.8)和高应力水平(ασ>1.2)下,分别与式(1)和式(2)接近,因而该式可应用于整个应力范围. 应变速率和试验温度的影响可以整合为一个参数表征,即Zener-Hollomom参数,称为温度补偿的变形速率因子Z.假设试验合金的流变应力和应变速率之间的关系满足上述方程,并假设变形激活能Q与温度T无关,那么在低应力水平及高应力水平下,将式(1)和式(2)两边取对数,分别转化为式(5)和式(6):根据式(5)和式(6),取流变应力为峰值应力,Mc-Queen指出,对于发生动态回复的合金,流变应力取稳态值σs;对于发生动态再结晶的合金流变应力取峰值σp.绘制出ln-lnσp,lnε·-σp 关系图(图2).n1和β分别为ln-lnσp,ln -σp 曲线的斜率,可以得到n1=11.26,β=0.15,则α=β/n1=0.013.对式(3)两边取对数,整理得:对式(7)进行变形,可以得到变形激活能Q的表达式:图2 流变应力与应变之间的关系(a)ln-lnσp;(b)ln-σpFig.2 Relationshipbetween flow stress and strain rate式(8)中:S,可由ln[sinh(ασ)]-1/T直线斜率确定(图3),得到S=2841.04;n为lnε·-ln[sinh(ασ)]的斜率(图4),得到n=8.34.从而算出激活能Q=196kJ/mol.将变形激活能Q值和变形条件带入式(4)中,可求出A =3.01×1014.由此可以得到AZ31镁合金流变应力方程:图3 ln[sinh(ασ)]-1/TFig.3 ln[sinh(ασ)]-1/T根据双曲正弦函数的反函数公式,即可得到AZ31镁合金用Z参数表达的流变应力方程:图4 lnε·-ln[sinh(ασ)]Fig.4 lnε·-ln[sinh(ασ)]3 结论(1)AZ31镁合金高温压缩应力-应变曲线呈现动态再结晶特征,当应变速率一定时,流变应力随着变形温度的升高而减小;而当变形温度一定时,流变应力随着应变速率的增大而增大.(2)在应变速率为0.01~1s-1、变形温度为573~723K条件下,AZ31镁合金的流变应力与应变条件满足双曲正弦关系,经计算热变形应力指数n=8.34,热变形激活能Q=196kJ/mol.(3)通过回归分析,建立了AZ31镁合金热压缩本构方程:【相关文献】[1]BEN-HAMU G,ELIEZER D,SHIN K S.The role of Si and Ca on new wrought Mg-Zn-Mn based alloy[J].Mater Sci Eng A,2007,447(1-2):35-43.[2]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005:119.[3]曾小勤,王渠东,吕宜振.镁合金应用新进展[J].铸造,1998(11):39-43.[4]MWEMBELA A,MCQUEEN H J,MYSHLYAEV M,et al.Proceedings of the international symposium on enabling technologies for light metals and composite materi-als and their end-products[M].Montreal:Canadian Institute of Mining,Metallurgy and Petroleum,2002.[5]胡燕辉,李建国,谭敦强,等.细晶AZ31镁合金高温压缩变形行为研究[J].航空材料学报,2010,30(1):36-40.[6]LANGKRUIS J V D,KOOL W H,ZWAAG S V D.Assessment of constitutive equations in modeling the hot deformability of some overaged Al-Mg-Si alloys with varying solute contents[J].Mat Sci Eng A,1999,266(1-2):135-145.[7]GALIYEV A,KAIBYSHEV R,GOTTETEIN G.Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J].Acta Materials,2001,49(7):1199-1207.[8]张新明,彭卓凯,邓运来,等.Mg-9Gd-4Y-0.6Mn合金在293-723K时的变形行为及微观组织演变[J].中南大学学报:自然科学版,2006,37(2):223-228.[9]BARNETT M R.Deformation microstructures and textures of some cold rolled Mg alloys[J].Materials Science Forum,2003,419-422(1):503-508.[10]MCQUEEN H J,RYAN N D.Constitutive analysis in hot working[J].Mater Sei and Eng A,2002,322(1-2):43-63.。

211064127_逆水煤气变换反应研究进展

211064127_逆水煤气变换反应研究进展

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 3 期逆水煤气变换反应研究进展王晓月,张伟敏,姚正阳,郭晓宏,李聪明(太原理工大学省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024)摘要:逆水煤气变换(RWGS )反应是将二氧化碳(CO 2)加氢转化为甲醇、低碳烯烃、芳烃以及汽油等高附加值化学品和燃料的关键步骤,对于实现CO 2资源化利用具有重要意义。

本文综述了近年来RWGS 反应的研究进展,包括RWGS 反应热力学分析、催化机理、可选择的催化剂种类以及提升催化剂性能策略等方面。

文章从热力学角度分析,RWGS 反应在高温下有利,而低温下存在甲烷化竞争反应。

RWGS 反应机理主要包括氧化还原机理以及缔合机理,其中缔合机理包括甲酸盐路径和羧酸盐路径等。

相比于其他催化体系,负载型金属催化剂展现出较优异的RWGS 反应性能。

另外,通过添加碱金属助剂、形成双金属合金以及选择合适载体和减小金属颗粒尺寸以优化金属-载体相互作用等手段可实现低温高效稳定的RWGS 反应催化剂的设计开发。

关键词:逆水煤气变换反应;二氧化碳;一氧化碳;热力学;催化剂中图分类号:TQ073 文献标志码:A 文章编号:1000-6613(2023)03-1583-12Research progress of reverse water gas shift reactionWANG Xiaoyue ,ZHANG Weimin ,YAO Zhengyang ,GUO Xiaohong ,LI Congming(State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China)Abstract: Reverse water gas conversion (RWGS) reaction is a key step in the catalytic hydrogenation ofcarbon dioxide (CO 2) to high value-added chemicals and fuels such as methanol, light olefins, aromatics and gasoline, which is of great significance for the utilization of CO 2. This review summarizes the research progress of RWGS reaction in recent years, including thermodynamic analysis of RWGS reaction, catalytic mechanisms, selective catalysts and strategies to improve the performance of catalysts. From the perspective of thermodynamics, RWGS reaction is favorable at high temperature, as methanation reaction emerges at low temperature. The mechanisms of RWGS reaction mainly consist of redox mechanism and association mechanism, and the latter further contains a formate route and/or carboxylate route. Compared with other catalyst system, supported metal catalysts commonly exhibit a superior RWGS reaction performance. In addition, the rational design of RWGS reaction catalysts with high reactivity and durability could be realized by adding alkali metal additives, forming bimetallic alloy as well as modulating the metal-support interaction via selecting a good support or reducing the metal particle size.Keywords: reverse water gas shift reaction; carbon dioxide; carbon monoxide; thermodynamics; catalyst综述与专论DOI :10.16085/j.issn.1000-6613.2022-0816收稿日期:2022-05-05;修改稿日期:2022-07-13。

一种无机盐铝涂层涂覆镍基粉末高温合金的高温氧化组织分析

一种无机盐铝涂层涂覆镍基粉末高温合金的高温氧化组织分析

2023 年第 43 卷航 空 材 料 学 报2023,Vol. 43第 5 期第 67 – 75 页JOURNAL OF AERONAUTICAL MATERIALS No.5 pp.67 – 75一种无机盐铝涂层涂覆镍基粉末高温合金的高温氧化组织分析李佳琳1, 杨 杰1*, 穆春辉2, 姜国杰2, 刘光旭1, 王晓峰1, 邹金文1(1.中国航发北京航空材料研究院 先进高温结构材料重点实验室,北京 100095;2.中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京 100095)摘要:使用TWL12+TWL20无机盐铝涂层喷涂于镍基粉末高温合金表面,采用XRD、SEM、EPMA和TEM研究无机盐铝涂层与粉末高温合金经700、750、800 ℃高温氧化后的组织变化。

结果表明:高温氧化后涂层表层结构出现剥落,涂层中的铝与基体合金发生扩散,形成由氧化区、扩散区、互扩散区组成的过渡层,其中氧化区为最外层,该区域主要富集O、Al元素,形成Al2O3层;随之的扩散区主要含有Ni、Al元素,形成NiAl相及在其中弥散分布的α-Cr相;最后是富集Ti、Cr、Co、Ta等元素的互扩散区,存在于扩散区与基体之间,主要由Ni2AlTi相基体及在其中弥散分布的σ相组成;分析表明过渡层厚度随着氧化温度升高而变化,主要表现为互扩散区宽度增加,扩散区中的α-Cr相与互扩散区的σ相尺寸增大,且σ相沿垂直过渡区方向生长的趋势加剧;氧化增重曲线表明,涂层表层结构脱落后,过渡层在750、800 ℃高温氧化过程中表现出良好的抗氧化性能,说明TWL12+TWL20无机盐铝涂层具有为航空发动机用先进粉末高温合金提供高温氧化涂层保护的潜力。

关键词:TWL12+TWL20无机盐铝涂层;镍基粉末高温合金;高温氧化;显微组织doi:10.11868/j.issn.1005-5053.2023.000003中图分类号:TG146.1+5 文献标识码:A 文章编号:1005-5053(2023)05-0067-09High temperature oxidation microstructure analysis of Ni-based P/M superalloy coated with an inorganic aluminum coatingLI Jialin1, YANG Jie1*, MU Chunhui2, JIANG Guojie2, LIU Guangxu1,WANG Xiaofeng1, ZOU Jinwen1(1. Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;2. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China)Abstract: In this paper, TWL12 + TWL20 inorganic salt aluminum coating was sprayed on the surface of Ni-based P/M superalloy. The microstructure changes of inorganic salt aluminum coating and P/M superalloy after high temperature oxidation at 700, 750 ℃and 800 ℃ were studied by XRD, SEM, EPMA and TEM. The results show that after high temperature oxidation, the surface structure of the coating peels off, and the aluminum in the coating diffuses with the substrate to form a transition layer composed of oxidation zone, diffusion layer and interdiffusion zone. The oxidation zone is the outermost layer, where is mainly enriched with O and Al elements to form Al2O3 layer. The diffusion layer mainly contains Ni and Al elements, forming NiAl phase and α-Cr phase dispersed in it. Finally, the interdiffusion zone rich in Ti, Cr, Co, Ta and other elements exists between the diffusion zone and the matrix, which is mainly composed of Ni2AlTi phase matrix and σ phase dispersed in it. The analysis shows that the thickness of transition layer changes with the increase of oxidation temperature, it is mainly manifested by the increase of the width of the interdiffusion zone, the increase of the size of α-Cr phase in the diffusion layer and σ phase in the interdiffusion zone, and the growth trend of σ phase along the vertical transition zone is intensified. The oxidation weight gain curve shows that the transition layerexhibits good oxidation resistance during high temperature oxidation at 750 ℃ and 800 ℃ after the surface structure of the coating falls off, it indicates that the TWL12 + TWL20 inorganic salt aluminum coating has the potential to provide high temperature oxidation coating protection for advanced P/M superalloy used in aeroengines.Key words: TWL12+TWL20 inorganic aluminum coating ;Ni-based P/M superalloy ;high temperature oxidation ;microstructure镍基粉末高温合金因其优异的组织均匀性和优异的综合力学性能成为先进航空发动机涡轮盘的首选材料[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

increases the oxidation resistance of Mg alloys, however the reason for this has not been adequately pursued [8–10]. The use of lowcost, stable CaO instead of Ca is strongly desirable for industrial applications. In case of Ca, special precaution is needed during packing, shipping, and handling due to its high reactivity with air. In contrast, CaO can be handled safely without any fire hazard, and is much cheaper than Ca. Both Ca and CaO are known to improve the mechanical properties of Mg alloys through grain refinement owing to the formation of secondary phases such as Mg2Ca in pure Mg [7,9,11] or Al2Ca in Mg–Zn–Al alloys [10] along grain boundaries during casting. In this study, AZ31 alloys were cast under a CO2 + 1%SF6 protective atmosphere, whereas AZ31 + 0.3 wt.%Ca and AZ31 + 0.3 wt.%CaO alloys were cast in atmospheric air. Casting in air would be a considerable advantage in light of global warming, since the SF6 that has been used together with CO2 for casting in magnesium production industries is the most potent greenhouse gas, with a global warming potential of 23,900 times that of CO2 and a life-time of 3200 years [12,13]. In this study, AZ31 alloys with and without 0.3 wt.%Ca or CaO were oxidized between 450 and 650 °C in air. The AZ31 alloys are widely used in industries to produce lightweight parts because of their high level of toughness and ductility. The microstructure, oxide scales formed, and the oxidation mechanism of the alloys were investigated. The effect of CaO on the casting and the subsequent oxidation of AZ31 alloys was compared with that of Ca. This study was performed in order to develop oxidation-resistant, environmentfriendly CaO-added Mg alloys.
2. Experimental procedures
The commercial AZ31 alloy ingot (Al = 3.0, Zn = 0.7, Mn = 0.3, Si = 0.02, Cu = 0.002, Ni = 0.001, Fe = 0.001 in wt.%, Mg = balance)
Previously, the addition of Ca was found to suppress the vigorous reaction of molten Mg with oxygen during casting, and increase the oxidation resistance of Mg alloys. The formation of a thin CaO-rich outer layer on the surface effectively retarded oxidation and ignition of Mg alloy [5–7]. The inner layer was either a mixture of MgO and CaO in the case of Mg + (0.5–3) wt.%Ca alloys [5], or a mixture of MgO, CaO, and Al2O3 in the case of AZ91 + (0.3– 5) wt.%Ca alloys [6,7]. Recently, Kim et al. has found that CaO also
Ó 2013 Elsevier Ltd. All rights reserved.
1. Introduction
Magnesium alloys are used as light-weight structural components, because magnesium has the lowest density (1.7 g/cm3) among metallic materials in practical use, high specific strength, good castability, good machinability, and a low elastic modulus (45 GPa). However, the widespread usage is limited due to poor oxidation resistance [1–4]. When magnesium alloys are exposed to hot air, the oxide scales that form are initially thin and protective, but they suffer from severe oxidation or even burning after certain time. This results in complete disintegration into oxide powders. The origins of poor oxidation resistance are as follows [1–4]. (1) The MgO scales cannot cover the whole sample surface because its Pilling– Bedworth ratio is 0.81, and as such does not act as a barrier to oxidative attack. (2) The vapor pressure of Mg keeps increasing as the temperature increases. At high temperatures, the MgO layer is entirely nonprotective, leading to ever increasing linear oxidation rates. (3) The oxidation of Mg to MgO is an exothermic reaction that gives off a large amount of heat. Hence, initially thin, adherent MgO scales soon become highly porous, and poorly adherent at high temperatures, eventually leading to ignition.
abstract
Magnesium alloys of AZ31 + 0.3 wt.%Ca and AZ31 + 0.3 wt.%CaO were cast and oxidized between 450 and 650 °C in atmospheric air. The initially added Ca and CaO enabled to cast the alloys in air without using environmentally hazardous SF6 gas, by forming a thin CaO-rich barrier layer at the surface during casting. A thin CaO-rich barrier layer was also formed at the surface during oxidation in air, thereby increasing the oxidation resistance of the AZ31 alloy considerably. The initially added Ca and CaO reacted with Al to become Al2Ca along the grain boundaries of the AZ31 alloy during casting.
article info
Article history: Received 30 October 2012 Accepted 22 January 2013 Available online 1 February 2013
相关文档
最新文档