模考3数学
2024届浙江省Z20联盟高三三模数学试题答案

Z20名校联盟(浙江省名校新高考研究联盟)2024届高三第三次联考数学参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.8.设12,,PF m PF n ==由双曲线的定义知2m n a −=①,在12F PF ∆中,由余弦定理得2221242cos c m n mn F PF =+−⋅∠,222647c m n mn ∴=+−②,又()()()2222232m n a c +=+,2222942a c m n +∴+=③,由①③得2214mn a c =+④,把③④代入②得2222294614()274a c c a c +=−+,化简得222030,c a =222202030a b a ∴+=,a ∴=∴渐近线方程为0x =. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.11.A 选项当1λμ+=时,点P 在线段1D B 上,且EF B D //1,D PEF B DEF V V −−=为定值,A 正确.B 选项当12λμ==时,点P 为线段1D B 的中点,易求正四棱锥P ABCD −的外接球的半径为34,则表面积是94π,B 正确.C 选项点P 在矩形11D B BD 及其内部,取线段11A D 的中点1F ,由对称性知,1PF PF =,11PF PE PF PE F E ∴+=+≥=PF PE FE ∴++≥,C 错误. D选项AP ,又点P 在矩形11D B BD 及其内部,∴点P 的轨迹为点A的球面被平面11D B BD 截且在矩形11D B BD 及其内部的图形,为圆(部分),1r ==,该圆是以BD 的中点为圆心,半径为1的圆的一部分(即41圆周),则轨迹长为2π,D 正确.三、填空题:本题共3小题,每小题5分,共15分.12.3; 13.180; 14.11,2e 2⎡⎤⎢⎥⎣⎦14.不等式可化为()()()22ln 210ax x ax x x −−−+≤,即2ln 21x ax x x ≤≤−+,数形结合得,122k a k ≤≤ 其中1k 为过原点且与ln y x =相切的直线,2k 为过原点且与21y x x =−+相切的直线,易得121,1ek k ==.故121e a ≤≤,112e 2a ≤≤.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.15.(13分)解:(1)221121211n n a a a a d a =+⇒=+⇒=+由题意①…………………………………………2分222151111()(4)2a a a a d a a d d a =⋅⇒+=+⇒=②……………………………………………2分由①②可得11,2a d ==…………………………………………………………………2分所以1(1)221n a n n =+−⋅=−…………………………………………………………………1分(2)212113521()++++22n n n a a na a a a n a n n −−+⋅==⋅=−……………………………………………6分16.(15分)解:(1)取BD 的中点M ,连AM ,CM ,由AB AD BC BD ===,可得BD AM ⊥,BD CM ⊥,………………………………2分 又因为AM CM M =,AM CM ACM ⊆、平面, 所以BD ACM ⊥平面,……………………………………………………………………2分 因为AC ACM ⊆平面,所以AC BD ⊥.……………………………………………2分 (2)方法1:因为23BD =,所以1AM CM ==,又3AC =,所以120AMC ∠=,由(1)可得BD ACM ⊥平面,所以BCD ACM ⊥平面平面, 作AH CM ⊥交CM 延长线于点H ,则32AH BCD AH ⊥=平面且,…………………3分 设点B 到平面ACD 的距离为h ,B ACD A BCD V V −−=………………………………………………………………………………2分 113332ACD BCD S h S ∆∆⋅=⋅ 13232322=11313322h ⋅⋅=⋅⋅………………………………………2分设直线AB 与平面ACD 所成角为θ39sin 13h AB θ==所以直线AB 与平面ACD 取成线面角的正弦值为3913.………………………………2分 方法2:因为23BD =,所以1AM CM ==,又3AC =, 所以120AMC ∠=,由(1)可得BD ACM ⊥平面 所以BCD ACM ⊥平面平面,作AH CM ⊥交CM 延长线于点H ,则32AH BCD AH ⊥=平面且,如图,以MB 为x 轴,MC 为y 轴,//z AH 轴建立空间直角坐标系13(0,,)22A −,(3,0,0)B ,(0,1,0)C ,(3,0,0)D −………………………………………3分33(0,,)22AC =−,(3,1,0)DC =,13(3,,)22AB =−设面ACD 的一个法向量为(,,)n x y z =0331,33300n AC y z x y z x y n DC ⎧⎧⋅==⎪⎪⇒⇒==−=−⎨⎨+=⋅=⎪⎪⎩⎩令则, 所以(1,3,3)n =−−…………………………………………………………………………4分设直线AB 与平面ACD 所成角为θ ||2339sin |cos ,|13132||||AB n AB n AB n θ⋅=<>===⋅⋅ 所以直线AB 与平面ACD 取成线面角的正弦值为3913.………………………………2分 17.(15分)解: (1)依题意,11=P ,4.04.012=⨯=P,52.06.06.04.04.03=⨯+⨯=P ………………3分 依题意5351)1(6.04.0111+−=−+=−−−n n n n P P P P ,………………………………………2分 整理得)21(51211−−=−−n n P P , 所以⎭⎬⎫⎩⎨⎧−21n P 是以21211=−P 为首项,51−为公比的等比数列,………………………2分即1)51(2121−−⋅=−n n P ,1)51(2121−−⋅+=n n P .…………………………………………………1分 (3)200,300X =………………………………………………………………1分 2.06.0)1(2.08.0)300(+=−+==n n n P P P X P ,……………………3分则他第n 天通过运动锻炼消耗的能量X 的期望为))300(1(200)300(300=−+=X P X P1)51(3025060220)300(100200−−+=+==+=n n P X P . ………………3分18.(17分)解:(1)由题意c =,2c a =,解得:2a =,1b =,所以椭圆C 的标准方程为2214x y +=.………………………………………………4分(2)折叠前设11(,)A x y ,22(,)B x y ,联立2222584(1)044y x mx mx m x y =+⎧⇒++−=⎨+=⎩ 直线y kx m =+与椭圆交于不同两点,所以0∆>,解得25m <,从而12212854(1)5m x x m x x ⎧+=−⎪⎪⎨−⎪⋅=⎪⎩因为AB x 位于轴两侧,则24m <,从而22<<−m …………………………………4分 以O 为坐标原点,折叠后,分别以原y 轴负半轴,原x 轴,原y 轴正半轴所在直线为x ,y ,z 轴建立空间直角坐标系,则折叠后11(0,,)A x y ',22(,,0)B y x '− …………………1分①折叠后OA OB ''⊥,则0OA OB ''⋅=,即120x x ⋅=,所以21m =,1m =±.…………2分②折叠前12||||AB x x −==……………………2分 折叠后||AB ==5……………………………………………………………………2分所以3=542152m =,此时直线l 与椭圆无交点 故不存在m ,使折叠后的AB 与折叠前的AB 长度之比为34.……………………2分19.(17分)解:(1)函数y =不是“6π旋转函数”,理由如下:y =逆时针旋转6π后与y 轴重合,当0x =时,有无数个y 与之对应,与函数的概念矛盾,因此函数y =不是“6π旋转函数” . ………………………………3分(2)由题意可得函数()ln(21)(0)f x x x =+>与函数y kx b =+最多有1个交点,且tan()2k πα=−即ln(21)(0)x kx b x +=+>最多有一个根, ln(21)(0)x kx b x ⇒+−=>即函数ln(21)(0)y x kx x =+−>与函数()y b b R =∈最多有1个交点,即函数ln(21)(0,)y x kx =+−+∞在上单调, ……………………………………………2分221y k x '=−+. 因为0x >,2(0,2)21x ∈+,所以2021y k x '=−≤+,221k x ≥+,所以2k ≥,………2分 即tan()22πα−≥,1tan 2α≤,即1tan 2α的最大值为. ………………………………2分(3)由题意可得函数2()(1)e ln 2xx g x m x x x =−−−与函数y x b =+最多有1个交点,即22(1)e ln (1)e ln 22x xx x m x x x x b m x x x x b −−−=+⇒−−−−=,即函数2(1)e ln 2xx y m x x x x =−−−−与函数y b =最多有1个交点,即函数2(1)e ln (0,)2xx y m x x x x =−−−−+∞在上单调,e ln 2x y mx x x '=−−−,当0x →时,y '→+∞,所以max ln 20()e xx x y m x ++'≥⇒≥, …………………………………4分ln 2()e xx x x x ϕ++=令,则2(1)(ln 1)()e x x x x x x ϕ+−−−'=, 因为ln 1t x x =−−−在(0,)+∞上单调减,且1()04t >,(1)0t <,所以存在01(,1)4x ∈,使0()0t x =,即0000001ln 1ln(e )1e ex x x x x x +=−⇒⋅=−⇒⋅=,所以()x ϕ在()00,x ,()0,x +∞,所以000max 000ln 21()()e e e x x x x x x x x ϕϕ++====, 即e m ≥. ……………………………………4分。
上海市浦东新区2024届高三下学期三模数学试卷

浦东新区高三三模数学试卷一、填空题(本大题满分54分)本大题共有12题,考生应在答题纸相应编号的空格内填写结果,14题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分.1.已知全集U =R ,集合{}2320A x x x =-+≥,则A =______.2.已知复数2iiz -=(i 为虚数单位),则z =______.3.若正数a 、b 满足21a b +=,则11a b+的最小值为______.4.已知数列{}n a 为等比数列,58a =,81a =,则81ii a==∑______.5.有3名男生与2名女生排成一队照相,2名女生互不相邻的概率为______.6.若()62601261x a a x a x a x -=+++⋅⋅⋅+,则126a a a ++⋅⋅⋅+的值为______.7.已知lg5a =,则lg20=______(用a 表示)8.已知()()321,0,0x x x g x f x x ⎧+-≥⎪=⎨<⎪⎩为偶函数,若()11f a =,则a =______.9.一袋中装有大小与质地相同的2个白球和3个黑球,从中不放回地摸出2个球,记2球中白球的个数为X ,则[]D X =______.10.如图,某体育公园广场放置着一块高为3米的大屏幕滚动播放各项体育赛事,大屏幕下端离地面高度3.5米,若小明同学的眼睛离地面高度1.5米,则为了获得最佳视野(最佳视野指看到大屏幕的上下夹角最大),小明应在距离大屏幕所在的______平面米处观看?(精确到0.1米)11.已知点A 、B 位于抛物线()220y px p =>上,20AB =,点M 为线段AB 的中点,记点M 到y 轴的距离为d .若d 的最小值为7,则当d 取该最小值时,直线AB 的斜率()0k k >为______.12.已知实数1x 、2x 、1y 、2y 满足22111x y +=,22223x y +=,1221x y x y -=1212x x y y +=______.二、选择题(本大题满分18分)本大题共4题,每题有且只有一个正确答案考生必在答题纸的相应编号上,将代表答案的小方格涂黑,13-14题每题选对得4分,15-16题每题选对得5分,否则一律得零分。
2024届河北省临漳县第一中学高三教学质量检测试题(三模)数学试题试卷

2024届河北省临漳县第一中学高三教学质量检测试题(三模)数学试题试卷 请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,点E 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF //BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值2.若函数2sin(2)y x ϕ=+的图象过点(,1)6π,则它的一条对称轴方程可能是( )A .6x π= B .3x π= C .12x π= D .512x π=3.下列结论中正确的个数是( )①已知函数()f x 是一次函数,若数列{}n a 通项公式为()n a f n =,则该数列是等差数列;②若直线l 上有两个不同的点到平面α的距离相等,则//l α;③在ABC ∆中,“cos cos A B >”是“B A >”的必要不充分条件;④若0,0,24a b a b >>+=,则ab 的最大值为2.A .1B .2C .3D .04.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =,则阴影部分表示的集合是()A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞D .(3,1)--5.已知集合(){}lg 2A x y x ==-,集合1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( ) A .{}2x x >- B .{}22x x -<<C .{}22x x -≤<D .{}2x x < 6.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( )A .12B .1-C .±1D .12± 7.已知函数()1ln11x f x x x +=++-且()()12f a f a ++>,则实数a 的取值范围是( ) A .11,2⎛⎫-- ⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭ C .10,2⎛⎫ ⎪⎝⎭ D .1,12⎛⎫ ⎪⎝⎭8.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( )A .甲走桃花峪登山线路B .乙走红门盘道徒步线路C .丙走桃花峪登山线路D .甲走天烛峰登山线路9.设函数()21010 0x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( )A .(]0101, B .(]099, C .(]0100, D .()0+∞, 10.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D . 11.已知0.212a ⎛⎫= ⎪⎝⎭,120.2b -=,13log 2c =,则( ) A .a b c >> B .b a c >> C .b c a >> D .a c b >>12.521mx x ⎛⎫+ ⎪⎝⎭的展开式中5x 的系数是-10,则实数m =( ) A .2 B .1 C .-1 D .-2 二、填空题:本题共4小题,每小题5分,共20分。
2024年成都七中高三数学(理)三模考试卷附答案解析

2024年成都七中高三数学(理)三模考试卷时间:120分钟满分:150分2024.04一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若向量(),4a x = 与向量()1,b x = 是共线向量,则实数x 等于()A .2B .2-C .2±D .02.复数3i1iz +=-(其中i 为虚数单位)的共轭复数为()A .12i+B .12i -C .12i-+D .12i--3.已知全集{}02πU x x =≤≤,集合sin A x x ⎧⎪=≥⎨⎪⎪⎩⎭,{}sin cos B x x x =≥,则A B ⋂等于()A .π3π,44⎡⎤⎢⎥⎣⎦B .π2π,33⎡⎤⎢⎥⎣⎦C .ππ,43⎡⎤⎢⎥⎣⎦D .2,43ππ⎡⎤⎢⎥⎣⎦4.2nx⎛⎝的展开式中,第5项为常数项,则正整数n 等于()A .8B .7C .6D .55.三棱锥A BCD -的三视图如图所示,则该三棱锥的各条棱中,棱长最大值为()AB C .D .26.已知3sin 2cos 21αα+=,则tan α=()A .3B .13C .13或0D .3或07.已知圆22:1C x y +=,直线:0l x y c -+=,则“0c ≥”是“圆C 上任取一点(),x y ,使0x y c -+≤的概率小于等于12”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要8.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:优秀非优秀甲班10b乙班c30附:()()()()22()n ad bc K a b c d a c b d -=++++(n a b c d =+++),()20P K k ≥0.050.0250.0100.0050k 3.8415.0246.6357.879已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是()A .甲班人数少于乙班人数B .甲班的优秀率高于乙班的优秀率C .表中c 的值为15,b 的值为50D .根据表中的数据,若按97.5%的可靠性要求,能认为“成绩与班级有关系”9.若ln 1,ln3b a e c =-==,则,,a b c 的大小关系为()A .a c b >>B .b c a >>C .c b a>>D .a b c>>10.已知函数()cos f x x x =-,若()()12πf x f x +=,则()12f x x +=()A .π1-B .π1+C .πD .011.已知双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,左、右顶点分别为1A ,2A ,P 为双曲线上一点,且直线1PA 与2PA 的斜率之积等于3,则下列说法正确的是()A .双曲线的渐近线方程为3y x =±B .双曲线CC .若12PF PF ⊥,则12PF F △的面积为2aD .以1F 为半径的圆与渐近线相切12.设函数()3f x x x =-,正实数,a b 满足()()2f a f b b +=-,若221a b λ+≤,则实数λ的最大值为()A .2+B .4C .2D .二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.某班男女生的比例为3:2,全班的平均身高为168cm ,若女生的平均身高为159cm ,则男生的平均身高为cm .14.抛物线22y px =(0p >)的焦点为F ,过F 的直线l 与抛物线相交于A ,B 两点(A 在第一象限),分别过A ,B 作准线的垂线,垂足分别为C ,D ,若CD AF BF =-,则直线l 的倾斜角等于.15.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin cos 0c A C =,则22sin sin sin sin A B A B ++=.16.在三棱柱111ABC A B C -中,1AA ⊥平面1,90,1,2,ABC ABC BA BC BB P ∠=︒===是矩形11BCC B 内一动点,满足223PA PC +=,则当三棱锥-P ABC 的体积最大时,三棱锥-P ABC 的外接球的表面积为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.某保险公司为了给年龄在20~70岁的民众提供某种疾病的医疗保障,设计了一款针对该疾病的保险,现从10000名参保人员中随机抽取100名进行分析,这100个样本按年龄段[)[)[)[)[]20,30,30,40,40,50,50,60,60,70分成了五组,其频率分布直方图如下图所示,每人每年所交纳的保费与参保年龄如下表格所示.(保费:元)据统计,该公司每年为该项保险支出的各种费用为一百万元.年龄[)20,30[)30,40[)40,50[)50,60[]60,70保费x2x3x4x5x(1)用样本的频率分布估计总体的概率分布,为使公司不亏本,则保费x 至少为多少元?(精确到整数)(2)随着年龄的增加,该疾病患病的概率越来越大,经调查,年龄在[)50,60的老人中每15人就有1人患该项疾病,年龄在[]60,70的老人中每10人就有1人患该项疾病,现分别从年龄在[)50,60和[]60,70的老人中各随机选取1人,记X 表示选取的这2人中患该疾病的人数,求X 的数学期望.18.已知数列{}n a 的前n 项和为,342n n n S S a =-.(1)证明:数列{}n a 是等比数列,并求出通项公式;(2)设函数()21ln 2f x x x ⎛⎫=⋅-⎪⎝⎭的导函数为()f x ',数列{}n b 满足()n n b f a =',求数列{}n b 的前n 项和n T .19.如图,在三棱柱111ABC A B C -中,1AA ⊥平面1,90,2,ABC ABC BA AA D ∠=︒==是棱AC 的中点,E 在棱1BB 上,且1AE A C ⊥.(1)证明://BD 平面1AEC ;(2)若四棱锥111C AEB A -的体积等于1,求二面角11C AE A --的余弦值.20.在平面直角坐标系xOy 中,椭圆22221x y a b+=(0a b >>)过点()2,0A ,直线l 与椭圆相交于不同于A 点的P ,Q 两点,N 为线段PQ 的中点,当直线ON 斜率为14-时,直线l 的倾斜角等于4π(1)求椭圆的方程;(2)直线AP ,AQ 分别与直线3x =相交于E ,F 两点.线段E ,F 的中点为M ,若M 的纵坐标为定值12,判断直线l 是否过定点,若是,求出该定点,若不是,说明理由.21.已知函数()()()e sin 1,0,πxf x ax x x x =---∈.(1)若12a =,证明:()0f x >;(2)若函数()f x 在()0,π内有唯一零点,求实数a 的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,直线l 的参数方程1010x ty t =+⎧⎨=-⎩(为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin cos ρθθ=,且直线l 与曲线C 相交于,M N 两点.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设点()00,P x y 是直线l 上一点,满足20PM PN +=,求点P 的直角坐标.选修4-5:不等式选讲23.已知函数()1f x x =-.(1)求不等式()32f x x ≥-的解集;(2)若函数()()5g x f x x =+-的最小值为m ,正数a ,b 满足a b m +=,求证:224a bb a+≥.1.C【分析】根据向量共线列方程,解方程即可.【详解】因为a 与b共线,所以41x x ⋅=⨯,解得2x =±.故选:C.2.B【分析】先对复数z 化简,再根据共轭复数的概念求解.【详解】()()()()3i 1i 3i 24i12i 1i 1i 1i 2z ++++====+-+-,所以复数z 的共轭复数为12i -.故选:B.3.B【分析】先利用三角函数知识化简两个集合,结合交集运算可得答案.【详解】因为3sin 2x ≥,02x π≤≤,所以π2π33x ≤≤;因为sin cos x x ≥,所以πsin cos sin 04x x x ⎛⎫--≥ ⎪⎝⎭,所以π2π2ππ4k x k ≤-≤+,解得π5π2π+2π44k x k ≤≤+,Z k ∈;因为02x π≤≤,所以π5π44x ≤≤,所以π2π,33A B ⎡⎤⎢⎥⎣=⎦.故选:B 4.C【分析】利用二项式定理求出展开式通项,由条件列方程求n .【详解】二项式2n x⎛ ⎝的展开式的第1r +为()1C 2rn r rr n T x -+⎛= ⎝,所以()4444465C 2C 2n n n nn T x x---⎛== ⎝,由已知6n =,故选:C.5.A【分析】根据给定的三视图作出原三棱锥,再求出各条棱长即可得解.【详解】依题意,三视图所对三棱锥A BCD -如图,其中AB ⊥平面BCD ,BC CD ⊥,1,2AB CD BC ===,则AC ==,BD ==,AD ==故选:A 6.D【分析】将条件等价转化为()sin 3cos sin 0ααα-=,再利用等式性质得到结果.【详解】由于()23sin 2cos 26sin cos 12sin 2sin 3cos sin 1αααααααα+=+-=-+,故条件3sin 2cos21αα+=等价于()sin 3cos sin 0ααα-=,这又等价于sin 0α=或sin 3cos αα=,即tan 0α=或tan 3α=,所以D 正确.故选:D.7.C【分析】由事件从圆C 上任取一点(),x y ,使0x y c -+≤的概率小于等于12,求c 的范围,结合充分条件和必要条件的定义判断结论.【详解】直线0x y c -+=的斜率为1,在x 轴上的截距为c -,在y 轴上的截距为c ,当c >C 上不存在点(),x y ,使0x y c -+≤,所以事件圆C 上任取一点(),x y ,使0x y c -+≤的概率为0,当c =C 上有且仅有一个点(),x y ,使0x y c -+≤,所以事件圆C 上任取一点(),x y ,使0x y c -+≤的概率为0,若0c <,如图,圆C 上满足条件0x y c -+≤点为劣弧AB (含,A B )上的点,设劣弧AB 的长度为t ,则0πt <<,所以事件圆C 上任取一点(),x y ,使0x y c -+≤的概率12π2t P =<,若0c =,如图,圆C 上满足条件0x y c -+≤点为直线l 上方的半圆上的点,所以事件圆C 上任取一点(),x y ,使0x y c -+≤的概率π12π2P ==,若0c <<,如图,圆C 上满足条件0x y c -+≤点为优弧CD (含,C D )上的点,设优弧CD 的长度为s ,则π2πs <<,所以事件圆C 上任取一点(),x y ,使0x y c -+≤的概率12π2t P =>,若c ≤C 上所有点满足条件0x y c -+≤,所以事件圆C 上任取一点(),x y ,使0x y c -+≤的概率2π12πP ==,所以“圆C 上任取一点(),x y ,使0x y c -+≤的概率小于等于12”等价于“0c ≥”,所以“0c ≥”是“圆C 上任取一点(),x y ,使0x y c -+≤的概率小于等于12”的充要条件,故选:C.8.D【分析】根据条件解出45b =,20c =,然后直接计算即可判断A ,B ,C 错误,使用2K 的计算公式计算2K ,并将其与5.024比较,即可得到D 正确.【详解】对于C ,由条件知1030105b c +++=,1021057c +=,故65b c +=,1030c +=.所以45b =,20c =,故C 错误;对于A ,由于甲班人数为10104555b +=+=,乙班人数为3020305055c +=+=<,故A 错误;对于B ,由于甲班优秀率为1025511=,乙班优秀率为202250511=>,故B 错误;对于D ,由于()2210545201030 6.109 5.024********K ⋅⨯-⨯=≈>⋅⋅⋅,故D 正确.故选:D.9.A【分析】由题设ln e a e =,ln 2ln 424b ==,ln 33c =,构造ln ()xf x x=(0)x >,利用导数研究其单调性,进而判断,,a b c 的大小.【详解】由题设知:ln e a e =,ln 2ln 424b ==,ln 33c =,令ln ()xf x x=(0)x >,则21ln ()x f x x -'=,易知(0,)e 上()f x 单调递增,(,)e +∞上()f x 单调递减,即()(3)(4)(2)f e f f f >>=,∴a c b >>.故选:A.【点睛】关键点点睛:构造ln ()xf x x=(0)x >,利用导数研究其单调性,进而比较函数值的大小.10.B【分析】先利用导数证得()f x 在R 上单调递增,再利用条件得到()()12πf f x x =-,结合单调性即知12πx x +=,最后代入求值即可.【详解】因为()cos f x x x =-,所以()1sin 0f x x '=+≥.所以()f x 在R 上单调递增.因为()()12πf x f x +=,所以()()()()()1122222ππcos f x f x f x f x f x x x =-++-=-=()()222πcos ππf x x x =----=,结合()f x 在R 上单调递增,知12πx x =-,即12πx x +=.所以()()12ππππ1cos f x x f +===+-.故选:B.11.D【分析】通过123PA PA k k =求得22b a ,从而求得双曲线的渐近线方程,由此判断A ;进而可求得双曲线的离心率判断B ;求得三角形的面积判断C ;求得1F 到渐近线的距离可判断D.【详解】对于A ,设点(,)P x y ,则2222)1(x y b a-=,因为12(,0),(,0)A a A a -,所以1222222PA PA y y y b k k x a x a x a a ===+-- ,又123PA PA k k =,得223b a =,所以ba=y =,故A 错误;对于B,因为2c a ==,所以双曲线C 的离心率为2,故B 错误;对于C ,因为12PF PF ⊥,所以2221212||||||PF PF F F +=,又12||||||2PF PF a -=,所以22121212(||||||)2|||||||PF PF PF PF F F -+=,所以2212(2)2|||||(2)a PF PF c +=,所以212||||2PF PF b =,所以12121||||2PF F S PF PF ==2b ,故C 错误;对于D ,由B 选项可得2c a =,以1F到渐近线方程为y =的距离为:222a d ===,又1F,所以以1F为半径的圆与渐近线相切,故D 正确.故选:D.12.A【分析】依题意可得33a b a b +=-,从而得到222211a b b a b a b ba λ+⎛⎫ ⎪⎝⎭+-≤=-,再令()1at t b =>,最后利用基本不等式计算可得.【详解】因为()3f x x x =-,所以()3f a a a =-,()3f b b b =-,又()()2f a f b b +=-,所以332a a b b b -+-=-,即33a b a b +=-,因为0a >,0b >,所以330a b +>,所以0a b >>,所以331a b a b+=-,又221a b λ+≤,即3322a b a b a bλ++≤-,所以322b ba b a b λ≤+-,所以222211a b b a b a b ba λ+⎛⎫ ⎪⎝⎭+-≤=-,令at b=,则1t >,所以2221112211111a t t b b a t t t t ++-+===++-⎛⎫ ⎪⎝⎭---()2121t t =-++-22≥+=+,当且仅当211t t -=-,即1t时取等号,所以)22min221b a b a b ⎛⎫+=+ ⎪-⎝⎭,所以2λ≤+,则实数λ的最大值为2+.故选:A【点睛】关键点点睛:本题关键是推导出331a b a b +=-,从而参变分离得到222b a a b b λ≤+-,再换元、利用基本不等式求出222b a b b a +-的最小值.13.174【分析】设出男生的平均身高,然后根据条件列方程求解即可.【详解】设男生的平均身高为cm x ,则根据题目条件知321591683232x +⋅=++,即3318840x +=,所以84031852217433x -===.故答案为:174.14.4π##45︒【分析】由已知结合抛物线的定义分别表示CD ,AF ,BF ,求出直线l 的斜率,即可求解.【详解】抛物线22y px =的准线为:2p x =-,设()11,A x y ,()22,B x y ,则1,2p C y ⎛⎫- ⎪⎝⎭,2,2p D y ⎛⎫- ⎪⎝⎭,又A 在第一象限,所以10y >,20y <,所以12CD y y =-,由抛物线定义可得12pAF x =+,22p BF x =+,所以121222p pAF BF x x x x -=+--=-,又CD AF BF =-,所以12CD x x =-,所以1212x x y y -=-,故直线AB 的斜率12121y y k x x -==-,所以直线l 的倾斜角为π4.故答案为:π4.15.34##0.75【分析】由正弦定理可得sin sin cos 0C A A C =,可求得C ,由余弦定理可得222c a b ab =++,再结合正弦定理可得222sin sin sin sin sin A B A B C ++=,可求结论.【详解】由sin cos 0c A C =,结合正弦定理可得sin sin cos 0C A A C =,因为sin 0A ≠,所以sin 0C C =,所以tan C =因为(0,π)C ∈,所以2π3C =,由余弦定理可得2222cos c a b ab C =+-,可得222c a b ab =++,结合正弦定理可得2223sin sin sin sin sin 4A B A B C ++==.故答案为:34.16.73π##73π【分析】根据给定条件,确定点P 的位置,再结合球的截面小圆性质确定球心并求出球半径即得.【详解】显然三棱柱111ABC A B C -为直三棱柱,过P 作1//PQ AA 交BC 于Q ,连接AQ ,令,PQ x CQ y ==,显然PQ ⊥平面ABC ,,AQ BC ⊂平面ABC ,则,PQ AQ PQ BC ⊥⊥,而90ABC ∠=︒,则222222221(1),PA PQ AQ x y PC x y =+=++-=+,又223PA PC +=,于是22221(1)3x y y ++-+=,整理得2213()24x y =--+,当12y =时,max x 三棱锥-P ABC 的底面ABC 面积为12,要其体积最大,当且仅当x 最大,因此2PQ =,即1PC PB BC ===时,三棱锥-P ABC 的体积最大,PBC 的外接圆圆心2O 为正PBC 的中心,令三棱锥-P ABC 的外接球球心为O ,半径为R ,则2OO ⊥平面PBC ,显然AC 的中点1O 是ABC 的外接圆圆心,则1OO ⊥平面ABC ,由AB BC ⊥可得AB ⊥平面PBC ,于是21//O Q OO ,而1//O Q AB ,则1O Q ⊥平面PBC ,21//OO O Q ,四边形12OOQO 是平行四边形,因此121336OO O Q PQ ===,而11222O C AC ==,则22211712R OO O C =+=,所以三棱锥-P ABC 的外接球的表面积27π4π3S R ==.故答案为:7π3【点睛】关键点点睛:解决与球有关的内切或外接问题时,关键是确定球心的位置,再利用球的截面小圆性质求解.17.(1)30元(2)16【分析】(1)根据小矩形面积和为得到关于a 的方程,解出a 值,再列出不等式,解出即可;(2)首先分析出X 的取值为0,1,2,再列出对应概率值,利用期望公式计算即可.【详解】(1)()0.0070.0160.0250.02101a ++++⨯=,解得0.032a =,保险公司每年收取的保费为:()100000.070.1620.3230.2540.2510000 3.35x x x x x x +⨯+⨯+⨯+⨯=⨯,所以要使公司不亏本,则10000 3.351000000x ⨯≥,即3.35100x ≥,解得10029.853.35x ≥≈,即保费30x =元;(2)由题意知X 的取值为0,1,2,()14912601510150P X ==⨯=,()1914123115101510150P X ==⨯+⨯=,()11121510150P X ==⨯=,列表如下:X12P126150231501150()1262312510121501501501506E X ∴=⨯+⨯+⨯==.18.(1)证明见解析,212n n a -=(2)12520ln24399n n T n +⎤⎡⎫⎛⎫=⋅-+⎥ ⎪⎪⎢⎝⎭⎣⎭⎦【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩分两步求解即可;(2)方法一:根据题意,结合导数运算与212n n a -=得()ln2214nn b n =⋅-⋅,进而将{}n b 通项公式变形为125211ln2443939n n n b n n +⎡⎤⎛⎫⎛⎫=⋅--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再根据裂项求和求解即可.方法二:根据题意,结合导数运算与212n n a -=得()ln2214nn b n =⋅-⋅,再根据错位相减法求和即可.【详解】(1)解:342n n S a =- ,()11342,2n n S a n --∴=-≥,相减得1344n n n a a a -=-,即14n n a a -=,∴数列{}n a 是以4为公比的等比数列,又1113423S a a =-=,解得12a =121242n n n a --=⋅=.(2)解:方法一:()212ln 2ln f x x x x x x x x'=+⋅-= ,()n n b f a =',212n n a -=,()212122ln2ln2214n n n n b n --∴=⋅=⋅-⋅,()125211ln2214ln2443939n n n n b n n n +⎡⎤⎛⎫⎛⎫=⋅-⋅=⋅--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ,∴1231n n nT b b b b b -=+++++ 21324357137ln244ln244ln24499999191⎡⎤⎡⎤⎡⎤=⋅⨯+⨯+⋅⨯-⨯+⋅⨯-⨯+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦11252112520ln244ln243939399n n n n n n ++⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+⋅---=⋅-+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦∴12520ln24399n n T n +⎡⎤⎛⎫⋅-+ ⎪⎢⎝⎭⎣=⎥⎦.方法二:()212ln 2ln f x x x x x x x x'=+⋅-= ,()n n b f a =',212n n a -=,()212122ln2ln2214n n nn b n --∴=⋅=⋅-⋅∴()()2311ln214ln234ln254ln2234ln2214n nn T n n -+++++=⋅⋅⋅⋅⋅⋅⋅-⋅⋅-⋅ ()()12344ln214ln234ln254ln2234ln2214n n n T n n +++++=⋅⋅⋅⋅⋅⋅⋅-⋅⋅-⋅+ ,两式相减得:()11233ln214ln224ln224ln224ln2214n n n T n +-=⋅⋅⋅⋅⋅⋅⋅++⋅-⋅-⋅++ ()()1231ln2142ln2444ln2214n n n ++++=⋅⋅-⋅⋅+- ()()21114ln2142ln2ln22141414n n n +-=⋅⋅-+⋅⋅---()111ln2142ln2ln22414163n n n ++--⋅-⋅+=⋅⋅()()11165412ln22ln23ln221433ln 220432ln 2n n n n n +++⎡⎤-⋅+⋅⋅-=--⋅⎣=-⎦-∴()()1116546542520ln249939ln 220ln 2209n n n n n n T n +++⎡⎤⎡⎤-⋅-⋅⎡⎤⎛⎫⎣⎦⎣⎦===⋅-+ ⎪⎢⎥---⎭⎣+⎝⎦∴12520ln24399n n T n +⎡⎤⎛⎫⋅-+ ⎪⎢⎝⎭⎣=⎥⎦19.(1)证明见解析(2)12【分析】(1)先利用线面垂直的判定与性质定理证得1AE A B ⊥,再利用平行线分线段成比例的推论证得//BD FG ,从而利用线面平行的判定定理即可得证;(2)利用四棱锥111C AEB A -的体积求出11B C ,建系并写出相关点的坐标,求出两个平面的法向量,利用空间向量的夹角公式计算即得.【详解】(1)如图,连接1A B 交AE 于F ,连接1A D 交1AC 于G ,连接FG ,1AA ⊥ 平面ABC ,BC ⊂平面ABC ,1AA BC ∴⊥,又因11,,,BC AB AB AA A AB AA ⊥⋂=⊂平面ABE,故BC ⊥平面ABE,又AE ⊂平面ABE,则BC AE ⊥,又111,,,AE A C A C BC C A C BC ⊥=⊂ 平面1,A BC 则⊥AE 平面1,A BC 又1A B ⊂平面1A BC ,1AE A B ∴⊥,在1Rt A AB △中,由12AB AA ==知1A B =,2111AA A F A B ==即12A F BF =,又因1111//,2AD A C A C AD =,可得12A G GD =,即在1A BD 中,112AG A F GD FB==,,BD FG ∴∥FG ⊂ 平面1AEC ,BD ⊄平面1AEC//BD ∴平面1AEC ;(2)设11B C x =,四棱锥111C AEB A -的体积为()1121132⨯+=,解得x =,由(1)知11190,90AA B A BA EAB A BA ∠+∠=︒∠+∠=︒,所以1AA B EAB ∠=∠,又11tan tan AB BE AA B EAB AA AB ∠==∠==,则1BE =,所以E 为棱1BB 的中点.以1,,BC BA BB 分别为,,x y z轴建立空间直角坐标系,如图,则()())()11,0,0,1,2,0,A E C A ,则1(0,AE EC == ,设平面1AEC 的法向量为(),,n x y z =,由1n AE n EC ⎧⊥⎪⎨⊥⎪⎩,得00z z ⎧+=⎪⎨+=⎪⎩,令z =(n =- ,因BC ⊥平面11ABB A ,故可取平面1AEA 的法向量()1,0,0m =,1cos ,||||2n m n m n m ⋅〈〉==-,因为二面角11C AE A --为锐二面角,所以二面角11C AE A --的余弦值为12.20.(1)2214x y +=;(2)直线l 过点()2,1-.【分析】(1)根据点A 得到2a =,然后利用点差法得到2144b -=-,即可得到1b =,然后写椭圆方程即可;(2)设,P Q 的坐标,根据直线,AP AQ 的方程得到点,E F 的坐标,然后将α,β转化为方程sin 2cos x y kx x -=-的两根,根据M 的纵坐标和韦达定理得到00121422k kx y -⋅=-+,最后根据M 的纵坐标为定值得到0x ,0y ,即可得到直线l 过定点.【详解】(1)由已知得2a =,设()11,P x y ,()22,Q x y ,PQ 中点为()00,N x y 由22112222221414x y b x y b ⎧+=⎪⎪⎨⎪+=⎪⎩相减得222221212121221212044x x y y y y y y b b x x x x ---++=⇒⋅=--+,∴221144b b -=-⇒=,即1b =.所以椭圆方程为2214x y +=.(2)设()2cos ,sin P αα,()2cos ,sin Q ββ,所以AP l :()sin 22cos 2y x αα=--,即()122tan 2y x α=--,∴13,2tan 2E α⎛⎫ ⎪ ⎪ ⎪-⎝⎭,同理13,2tan 2F β⎛⎫ ⎪ ⎪ ⎪-⎝⎭,设直线l 过点()00,x y ,∴α,β是方程sin 2cos x y k x x -=-的两根.即20022002tantan 2222tan tan 22x x y y k x xx x --=---,整理得()200002tan2tan 2022x xy k kx y kx k ---+-+=,∴002tantan 222y k kx αβ+=--,00002tan tan 222y k kx y k kx αβ+-=--,∴00tantan1121224422tan tan 22M y k kx y αβαβ+=-=-⋅=-+,∴02x =,01y =-,所以直线l 过点()2,1-.【点睛】关键点睛:本题解题关键在于M 的纵坐标为定值,对于定值的问题关键在于与参数无关,本题中M 的纵坐标为定值可得与参数k 无关,即可得到02x =,然后求0y 即可.21.(1)证明见解析;(2)1,2⎛⎫+∞ ⎪⎝⎭【分析】(1)对()f x 求导后构造函数()()11e sin cos 122xg x f x x x x =-'=--,通过求导得出()f x '的单调性和范围得出函数()f x 的单调性,进而得出结论;(2)分类讨论参数a 与12的关系,并通过构造函数和多次求导来探究函数()f x 的单调性,即可得出满足函数在()0,π内有唯一零点的实数a 的取值范围.【详解】(1)由题意,在()()()e sin 1,0,πxf x ax x x x =---∈中,当12a =时,不等式()0f x >等价于1e sin 102xx x x --->,则()11e sin cos 122xf x x x x '=---,令函数()()g x f x =',则()1e cos sin 2xg x x x x +'=-,()10,π,e cos 1cos 0,sin 02x x x x x x ∈∴->->> ,所以函数()g x 在()0,π上单调递增,且()00g =,()()0g x f x '∴=>在()0,π上恒成立,即函数()f x 在()0,π上单调递增,且()00f =,所以()0,πx ∈时,不等式()0f x >成立;(2)由题意及(1)得,在()()()e sin 1,0,πxf x ax x x x =---∈中,当12a ≤时,()1e sin 1e sin 12x xf x ax x x x x x =---≥---,由(1)可知此时()0f x >,所以此时函数()f x 没有零点,与已知矛盾,12a ∴>,()()e sin cos 1xf x a x x x =-+-',令函数()()h x f x =',所以()()e sin 2cos xh x a x x x =-'+,令函数()()u x h x =',()()3sin cos x u x e a x x x ∴=++',①若()()π0,,e 3sin cos 02xx u x a x x x ⎛⎫∈=++'> ⎪⎝⎭,所以函数()()u x h x ='在π0,2⎛⎫ ⎪⎝⎭上递增,且()π2ππ0120,022u a u e a ⎛⎫=-=+ ⎪⎝⎭,0π0,2x ⎛⎫∴∃∈ ⎪⎝⎭,使函数()h x 在()00,x 上递减,在0π,2x ⎛⎫ ⎪⎝⎭上递增,②若π,π2x ⎡⎫∈⎪⎢⎣⎭时,显然()()e sin 2cos 0xh x a x x x =-'+>,所以函数()h x 在()00,x 上递减,在()0,πx 上递增,且()()0π0e 10,ππ10h h e a =-==+->()10,πx x ∴∃∈,使函数()f x 在()10,x 上递减,在()1,πx 上递增,又()()00e 10,πe π10f f π=-==--> ,()10f x ∴<,且()21,πx x ∃∈,使得()20f x =,综上得,当12a >时,函数()f x 在()0,π内有唯一零点,∴a 的取值范围是1,2∞⎛⎫+ ⎪⎝⎭.【点睛】关键点点睛:本题考查构造函数,多次求导,函数的单调性,函数的导数求零点,考查学生分析和处理问题的能力,计算的能力,求导的能力,具有很强的综合性.22.(1)200x y +-=,2y x=(2)()22,2-或()191,.【分析】(1)直线的参数方程消去参数t ,得到直线l 的普通方程,再利用直角坐标与极坐标的转化公式求得曲线C 的直角坐标方程;(2)将直线l 的参数方程,代入曲线C 中,得到韦达定理,利用直线参数方程中参数的几何意义求解.【详解】(1)由1010x t y t =+⎧⎨=-⎩,消去参数t ,得20x y +=,即直线l 的普通方程为200x y +-=,.由2sin cos ρθθ=得:22sin cos ρθρθ=,∵cos x ρθ=,sin y ρθ=,∴2y x =,即曲线C 的直角坐标方程为2y x =.(2)设直线l的参数方程为00222x x y y t ⎧=-⎪⎪⎨⎪=+⎪⎩,代入2y x =得:220001222t t y x t +=-,整理得(22000220t t y x +++-=,设点M ,N 对应的参数分别为1t ,2t,120t t +=-2120022t t y x =-,因为20PM PN +=u u u u r u u u r r ,可得1220t t +=且0020x y +=.解得022x =,02y =-,或019x =,01y =,经验证均满足0∆>,所以求点P 的直角坐标为()22,2-或()19,1.23.(1){4|3x x ≥或23x ⎫≤-⎬⎭;(2)证明见解析.【解析】(1)根据()32||f x x - ,可得3131x x -⎧⎨>⎩ 或1301x x +⎧⎨⎩ 或3130x x -+⎧⎨<⎩ ,然后解不等式组即可得到解集;(2)先利用绝对值三角不等式求出()g x 的最小值,再利用基本不等式求出22a b b a+的最小值即可.【详解】解:(1)当1x ≥时,得41323x x x -≥-⇒≥,∴43x ≥;当01x <<时,得1322x x x -≥-⇒≥,∴无解;当0x ≤时,得21323x x x -≥+⇒≤-;综上,不等式的解集为{4|3x x ≥或23x ⎫≤-⎬⎭.(2)∵()()()15154g x x x x x =-+-≥---=,∴4m =,即4a b +=,又由均值不等式有:22a b a b+≥,22b a b a +≥,两式相加得2222a b b a a b b a ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭,∴224a b a b b a +≥+=.【点睛】本题考查了绝对值不等式的解法,绝对值三角不等式和基本不等式,考查了转化思想和分类讨论思想,属于中档题.。
2023-2024学年北京高三三模数学模拟试题(含解析)

2023-2024学年北京市高三三模数学模拟试题一、单选题1.如图,集合A B 、均为U 的子集,()U A B ⋂ð表示的区域为()A .IB .IIC .IIID .IV【正确答案】D【分析】由补集和交集的概念求解即可.【详解】由补集的概念,U A ð表示的区域如下图所示阴影区域,∴()U A B ⋂ð表示的区域为下图所示阴影区域,即为图中的区域Ⅳ.故选:D.2.在下列四个函数中,在定义域内单调递增的有()A .()tan =f x xB .()f x x =C .()2xf x =D .()2f x x=【正确答案】C【分析】A.利用正切函数的性质判断;B.利用绝对值函数的性质判断;C.利用指数函数的性质判断;D.利用二次函数的性质判断.【详解】解:A.()tan =f x x 的增区间为πππ,π,Z 22k k k ⎛⎫-+∈ ⎪⎝⎭,在整个定义域上不单调,故错误;B.()f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;C.()2xf x =在R 上递增,故正确;D.()2f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;故选:C3.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.4.已知tan 2x =,则tan 4x π⎛⎫+ ⎪⎝⎭的值为()A .3B .-3C .13D .34-【正确答案】B【分析】利用两角和的正切公式求解.【详解】解:因为tan 2x =,所以πtan tanπ214tan 3π41211tan tan 4x x x ++⎛⎫+===- ⎪-⋅⎝⎭-⋅,故选:B5.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2023年5月1日12350002023年5月15日6035500注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A .6升B .8升C .10升D .12升【正确答案】D【分析】分析表中数据,得出行驶路径和耗油量,可计算结果.【详解】由表中的数据可知,行驶路径500千米耗油量为60升,则该车每100千米平均耗油量为60125=升.故选:D6.已知||1,||0OA OB OA OB =⋅=,点C 在AOB ∠内,且30AOC ∠=︒.设()OC mOA nOB m n =+∈R、,则mn等于()A .13B .3CD 【正确答案】B【分析】由题意可得OA OB ⊥,建立坐标系,由已知条件可得()OC m =,进而可得tan 30︒==,即可得答案.【详解】解:因为||1,||0OA OB OA OB =⋅=,所以OA OB ⊥ ,又因为点C 在AOB ∠内,且30AOC ∠=︒,建立如图所示的坐标系:则(1,0)OA = ,OB =,又因为()OC mOA nOB m n =+∈R、,所以()OC m =,所以tan 303m ︒==,所以3mn=.故选:B.7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A .B .C .D .【正确答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()14πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.8.已知{}n a 为无穷等差数列,则“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】B【分析】根据等差数列性质结合充分、必要条件分析判断.【详解】“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”,不能推出“存在2k ≥且*k ∈N ,使得0k a =”,例如32n a n =-,则121,1a a ==-,即1,2i j ==,满足120i j a a a a +=+=,但令320k a k =-=,则*32k =∉N ,故不存在存在2k ≥且*k ∈N ,使得0k a =,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的不充分条件;若“存在2k ≥且*k ∈N ,使得0k a =”,则取11,1i k j k =-≥=+,则1120i j k k k a a a a a -++=+==,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要条件;综上所述:“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要不充分条件.故选:B.9.十八世纪,瑞士数学家欧拉研究调和级数时,得到了以下结果:当n 很大时,1111ln 23n nγ++++=+ (其中γ为常数,其近似值为0.577)据此,可以估计111200012000230000+++ 的值为()A .4ln10B .ln6C .ln2D .3ln2【正确答案】D【分析】根据已知结论得两个等式相减即可得解.【详解】由题意得1111ln300002330000γ++++=+ ,1111ln200002320000γ++++=+ ,两式相减得,111300003ln 30000ln 20000ln ln 200012000230000200002+++=-== .故选:D .10.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”.已知常数0,0p q ≥≥,给出下列命题:①若0p q ==,则“距离坐标”为(0,0)的点有且仅有1个;②若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个;③若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个.上述命题中,正确命题的个数是()A .0B .1C .2D .3【正确答案】D【分析】根据“距离坐标”的定义,依次分析各命题即可得答案.【详解】解:①,若0p q ==,则“距离坐标”为()0,0的点是两条直线的交点O ,因此有且仅有1个,故正确.②,若0pq =,且0p q +≠,则“距离坐标”为()0,q 或(),0p 的点有且仅有2个,故正确.③若0pq ≠,则0,0p q ≠≠,“距离坐标”为(),p q 的点有且仅有4个,为123,,,M M M M ,如图,故正确.故正确的命题个数为3个.故选:D二、填空题11.若5(1a =+,a b 为有理数),则a b +=_______________.【正确答案】120【分析】利用二项式定理展开5(1并计算,再利用有理项、无理项求解作答.【详解】由二项式定理得:1234555555513C 9C 97644(1=+++++=+依题意,76a +=+,a b 为有理数,因此76,44a b ==,所以120a b +=.故12012.银行储蓄卡的密码由6位数字组成,某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,但记得密码的最后1位是偶数,则在第一次没有按对的条件下第2次按对的概率是_________.【正确答案】14/0.25【分析】根据条件概率公式直接计算即可.【详解】记事件A :第一次没有按对密码;事件B :第二次按对密码;()45P A =,()411545P AB =⨯=,()()()14P AB P B A P A ∴==.故答案为.14三、双空题13.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知14b c a -=,2sin 3sin B C =,则bc=_______,cos A 的值为________.【正确答案】3214-【分析】利用正弦定理边角互化即可求得b c,利用余弦定理即可求得cos A .【详解】因为ABC 中,2sin 3sin B C =,所以由正弦定理可得23b c =,即32b c =.又因为14b c a -=,所以2a c =,所以由余弦定理可得()2222223212cos 32422c c c b c a A bc c c ⎛⎫+- ⎪+-⎝⎭===-⨯⨯,故32;14-14.已知n S 是数列{}n a 的前n 项和,且对任意的正整数n ,都满足:11122n nn a a +-=+,若112a =,则3a =________,2023S =______________.【正确答案】11220232024【分析】直接利用条件可递推出第三项,利用累加法可得数列通项再用裂项相消法求和即可.【详解】由11122n n n a a +-=+和112a =可得:21232311111146,612,a a a a a a -=⇒=∴-=⇒=即3a =112;由11122n n n a a +-=+可得:()112211111112,21,...,4n n n n n n a a a a a a ----=-=--=,累加得()()()124111111211n n n n a a a n n n n +--=⇒==-++,所以20231111112023 (1223202320242024)S ⎛⎫⎛⎫⎛⎫=-+-++-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故112,20232024四、填空题15.已知曲线:44C x x y y -=.①若00(,)P x y 为曲线C 上一点,则0020x y ->;②曲线C 在()0,1-处的切线斜率为0;③R,20m x y m ∃∈-+=与曲线C 有四个交点;④直线20x y m -+=与曲线C无公共点当且仅当((),0,m ∈-∞⋃+∞.其中所有正确结论的序号是_____________.【正确答案】①②【分析】分x 、y 的符号情况化简曲线C 的方程,从而可画出曲线C 的图象,结合图象逐一分析即可.【详解】当0x ≥,0y ≥时,曲线C 的方程为2244x y -=,即2214x y -=,曲线C 是双曲线的一部分;当0x ≥,0y <时,曲线C 的方程为2244x y +=,即2214x y +=,曲线C 是椭圆的一部分;当0x <,0y ≥时,曲线C 的方程为2244x y --=,曲线C 不存在;当0x <,0y <时,曲线C 的方程为2244x y -+=,即2214x y -=,曲线C 是双曲线的一部分;双曲线2214x y -=和2214y x -=有一条共同的渐近线20x y -=,综上,可作出曲线C的图象,如图:由图象可知曲线C 的图象上的点都在直线20x y -=的下方,所以当00(,)P x y 在曲线C 上时,有0020x y ->,故①正确;设过点()0,1-的直线l 的方程是1y kx =-,若直线l 与椭圆2214x y +=相切,则由22114y kx x y =-⎧⎪⎨+=⎪⎩得221408()k x kx -+=,2640k ∆==,得0k =;若直线l 与双曲线2214x y -=相切,则由22114y kx x y =-⎧⎪⎨-=⎪⎩得22(41)80k x kx --=,则2410k -≠且2640k ∆==,得0k =,此时直线l 的方程是1y =-,与曲线C 相切,故②正确;直线20x y m -+=是表示与直线20x y -=平行或重合的直线,由曲线C 的图象可知,直线20x y m -+=与曲线C 不可能有四个交点,故③错误;设直线20x y n -+=与椭圆2214x y +=相切,则由222014x y n x y -+=⎧⎪⎨+=⎪⎩得228440y ny n -+-=,所以221632(4)0n n ∆=--=,解得n =±C的图象,取n =-,即直线20x y --=与曲线C 相切,所以若直线20x y m -+=与曲线C 无公共点,结合曲线C 的图象,0m ≥或m <-.故①②.方法点睛:1.曲线方程中带有绝对值,一般是分绝对值里的式子的符号讨论去绝对值;2.直线与曲线的交点问题常采用数形结合的方法.五、解答题16.在ABC 中,76cos a b B =.(1)若3sin 7A =,求B ∠;(2)若8c =,从条件①、条件②这两个条件中选择一个作为已知,使ABC 存在.求ABC 的面积条件①:sin 47A =;条件②:sin B =【正确答案】(1)4π;(2)【分析】(1)直接由正弦定理边化角,结合倍角公式即可求解;(2)若选①:由正弦定理及倍角公式得4sin 23B =,ABC 不存在;若选②:先判断cos 0B >,再由sin 2B =求出cos B ,由73a b =及余弦定理求得a ,再计算面积即可.【详解】(1)由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又3sin 7A =,故sin 21B =,又()0,B π∈,故22B π=,4B π=;(2)若选①:由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又sin 47A =,故4sin 23B =,此时ABC 不存在;若选②:由7cos 06a B b =>,又sin 2B =,则1cos 2B =,73a b =,由余弦定理得2222cos b a c ac B =+-,即2276483a a a ⎛⎫=+- ⎪⎝⎭,解得3a =或245a =-(舍去),故ABC的面积为1sin 2ac B =.17.如图,在四棱锥P ABCD -中,PA ⊥底面,,//ABCD AD AB AB DC ⊥,2,1AD DC AP AB ====,点E 为棱PC的中点.(1)证明:BE DC ⊥;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AB P --的余弦值.【正确答案】(1)证明见解析;(2(3.【分析】(1)可以建立空间直角坐标系,利用向量数量积来证明BE DC ⊥,;(2)向量法:先求平面PBD 的法向量A ,然后利用公式1sin cos ,n BE n BE n BEθ⋅==⋅ 求直线BE 与平面PBD 所成角的正弦值;(3)向量法:先求平面ABF 和平面PBA 的法向量12,n n ,再利用公式121212cos ,n n n n n n ⋅=⋅ 来求二面角F AB P --的余弦值.【详解】依题意,以点E 为原点建立空间直角坐标系(如图),可得(1,0,0),(2,2,0)B C ,(0,2,0),(0,0,2)D P ,由点E 为棱PC 的中点,得()1,1,1E .(1)向量()0,1,1BE = ,()2,0,0DC = ,故0BE DC ⋅= .∴BE CD ⊥.(2)向量(1,2,0),(1,0,2)BD PB =-=- ,设()1,,n x y z = 为平面PBD 的法向量,则00n BD n PB ⎧⋅=⎨⋅=⎩,即2020x y x z -+=⎧⎨-=⎩,不妨令1z =,可得()2,1,1n = 为平面PBD 的一个法向量.于是有3cos ,||||62n BE n BE n BE ⨯〈〉==⨯⨯ ,∴直线BE 与平面PBD 所成角的正弦值为33.(3)()2,2,2,(2,2,0),(1,0,0),CP AC AB =--== ,由点F 在棱PC 上,故(12,22,2)BF BC CF BC lCP l l l =+=+=-- ,由BF AC ⊥,得+22(12)(22=0)l l --,解得34l =,即113,,222BF ⎛⎫=- ⎪⎝⎭.设1(,,)n x y z = 为平面ABF 的法向量,则1100n AB n BF ⎧⋅=⎪⎨⋅=⎪⎩ ,即01130222x x y z =⎧⎪⎨-++=⎪⎩,不妨令1z =,可得1(0,3,1)n =- 为平面ABF 的一个法向量.取平面PAB 的法向量2(0,1,0)n = ,则121212310cos ,1010n n n n n n ⋅===-⋅ .易知,二面角F AB P --31010.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,下表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一个周期95%98%92%88%第二个周期94%94%83%80%第三个周期85%92%95%96%(1)计算表中十二周“水站诚信度”的平均数X ;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.【正确答案】(1)91%(2)见解析(3)两次活动效果均好.详见解析【分析】(1)利用平均数公式能求出表中十二周“水站诚信度”的平均数;(2)随机变量X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望;(3)根据后继一周都有提升可得两次活动效果均好.【详解】(1)表中十二周“水站诚信度”的平均数:959892889494838085929596191%12100x +++++++++++=⨯=.(2)随机变量X 的可能取值为0,1,2,3,()1212044464P X ==⨯⨯=,()3211211444444P X ==⨯⨯+⨯⨯1231444464+⨯⨯=,()3213212444444P X ==⨯⨯+⨯⨯3233044464+⨯⨯=,()32318344464P X ==⨯⨯=,∴X 的分布列为:X 0123P 1327321532932171590123232323232EX =⨯+⨯+⨯+⨯=.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%94%→和80%到85%看出,后继一周都有提升.本题考查平均数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.19.已知函数()ln f x ax x x =-.(1)当1a =时,求()f x 的零点;(2)讨论()f x 在[]1,e 上的最大值;(3)是否存在实数a ,使得对任意0x >,都有()f x a ≤?若存在,求a 的取值范围;若不存在,说明理由.【正确答案】(1)ex =(2)答案见解析(3)存在,a 的取值范围是1a =【分析】(1)利用导函数判断()f x 的单调性,进而判断零点的情况即可;(2)利用导函数判断()f x 在区间[]1,e 的单调性,进而求最值即可;(3)由题意只需()max f x a ≤即可,利用(2)中结论即1e 0a a --≤,利用导数求a 的范围即可.【详解】(1)()ln f x ax x x =-的定义域为()0,∞+,当1a =时,()ln f x x x x =-,()ln f x x '=-,所以当()0,1x ∈时,()0f x ¢>,()f x 单调递增,当()1,x ∈+∞时,()0f x '<,()f x 单调递减,又因为当0x →时()0f x >,()11f =,()e 0f =,所以()f x 仅有一个零点,e x =.(2)()1ln f x a x =--',令()0f x '=,解得1e a x -=,在区间()0,∞+内,x ()10,e a -1e a -()1e,a -+∞()f x '+0-()f x 单调递增极大值单调递减当1e 1a -≤(即1a ≤)时,在[]1,e 上()f x 单调递减,()max ()1f x f a ==,当1e e a -≥(即2a ≥)时,在[]1,e 上()f x 单调递增,()max ()e e e f x f a ==-,当11e e a -<<(即12a <<)时,在1e ,e a -⎡⎤⎣⎦上()f x 单调递增,在11,e a -⎡⎤⎣⎦上()f x 单调递减,()()1111max ()e e e 1e a a a a f x f a a ----==--=.综上所述,当1a ≤时,()f x 的最大值为a ,当2a ≥时,()f x 的最大值为e e a -,当12a <<时,()f x 的最大值为1e a -.(3)由(2)知在()0,∞+上,()11max ()ee a af x f --==,构造函数()()11e e a a g a f a a --=-=-,由题意应使()0g a ≤,()1e 1a g a -'=-,令()0g a '=,解得1a =.a (),1-∞1()1,+∞()g a '-0+()g a 单调递减极小值单调递增所以()min ()10g a g ==,所以使()0g a ≤的实数a 只有1a =,即a 的取值范围是1a =.20.已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.【正确答案】(Ⅰ(Ⅱ)1;(Ⅲ)平行,理由见解析.【详解】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用c e a=计算离心率;(Ⅱ)由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与3x =相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率;(Ⅲ)分直线AB 的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB 和直线AE 的方程,将椭圆方程与直线AB 的方程联立,消参,得到12x x +和12x x ,代入到1BM k -中,只需计算出等于0即可证明BM DE k k =,即两直线平行.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c所以椭圆C 的离心率c e a ==.(Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -.直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -.所以直线BM 的斜率112131BM y y k -+==-.(Ⅲ)直线BM 与直线D E 平行.证明如下:当直线AB 的斜率不存在时,由(Ⅱ)可知1BM k =.又因为直线D E 的斜率10121DE k -==-,所以//BM DE .当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠.设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--.令3x =,得点1113(3,)2y x M x +--.由2233{(1)x y y k x +==-,得2222(13)6330k x k x k +-+-=.所以2122613k x x k +=+,21223313k x x k -=+.直线BM 的斜率11212323BM y x y x k x +---=-.因为()()()()()()()11212121131232132BM k x x k x x x x k x x -+--------=--121221(1)[2()3)(3)(2)k x x x x x x --++-=--2222213312(1)[3)1313(3)(2)k k k k k x x -+-+-++=--0=,所以1BM DE k k ==.所以//BM DE .综上可知,直线BM 与直线D E 平行.椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.21.若项数为()3N N ≥的数列12:,,,N N A a a a 满足:()*11,N 2,3,,i a a i N =∈= ,且存在{}2,3,,1M N ∈- ,使得{}{}11,2,111,2,1n n n M a a M n N +⎧≤≤-⎪-∈⎨--≤≤-⎪⎩,则称数列N A 具有性质P .(1)①若3N =,写出所有具有性质P 的数列3A ;②若44,3N a ==,写出一个具有性质P 的数列4A ;(2)若2024N =,数列2024A 具有性质P ,求2024A 的最大项的最小值;(3)已知数列1212:,,,,:,,,N N N N A a a a B b b b 均具有性质P ,且对任意{},1,2,,i j N ∈ ,当i j ≠时,都有,i j i j a a b b ≠≠.记集合{}112,,,N T a a a = ,{}212,,,N T b b b = ,求12T T ⋂中元素个数的最小值.【正确答案】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)1013(3)3【分析】(1)直接根据性质P 的概念一一列举即可;(2)根据性质P 及累加法得M a M ≥和2025M a M ≥-,两式相加即可求解;(3)根据性质P 及累加法得23M a N ≤-,23M b N ≤-,求出并集中元素个数的最大值,从而求出交集中的元素个数最小值.【详解】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)当2024N =时,{}2,3,,2023M ∈ .由12111,1,,1M M a a a a a -=-≥-≥ ,累加得M a M ≥;又由20242023202411,1,,1M M a a a a a +≥-≥-≥ ,累加得2025M a M ≥-;相加得22025M a ≥,又*M a ∈N ,所以1013M a ≥.所以数列2024A 的最大项M a 的最小值为1013,一个满足条件的数列为()()1,2,,101320261014,1015,,2024n n n a n n ⎧=⎪=⎨-=⎪⎩ ;(3)由12111,2,,2M M a a a a a -=-≤-≤ ,累加得21M a M ≤-.又1M N ≤-,所以23M a N ≤-,同理,23M b N ≤-,所以{}()12121,2,,23,card 23T T N T T N ⋃⊆-⋃≤- ,因为()()12card card T T N ==,所以()()()()121212card card card card 3T T T T T T ⋂=+-⋃≥,所以12T T ⋂中元素个数的最小值为3,一组满足条件的数列为()()()()()11211,2,,1222,3,,12425n n n n n N a b n n N N n N N n N ⎧=⎧-=-⎪⎪==-=-⎨⎨-=⎪⎩⎪-=⎩ ,此时{}121,24,25T T N N ⋂=--.思路点睛:此题考查数列与集合结合的新定义问题,属于难题,关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.。
上海市控江中学2024届高三三模数学试卷

上海市控江中学2024届高三三模数学试卷一、填空题1.对于复数12z i =+(i 是虚数单位),Im z =.2.若排列数6654m P =⨯⨯,则m =3.函数sin cos y x x =的最小正周期为4.若数列{}n a 是首项为1,公比为2的等比数列,记其前n 项和为n S ,则4S =.5.在51()x x+的展开式中,1x -项的系数是. 6.若底面半径为1的圆锥的体积为3π,则该圆锥的高为.7.掷一颗骰子观察其向上一面的点数,在所得点数大于3的条件下,所得点数是偶数的概率为.8.已知向量a r 、b r 满足2=r a ,3b =r ,4a b +=r r ,则⋅=r r a b .9.设随机变量X 服从成功概率为()01p p <<的二项分布,若[]30E X =,[]20D X =,则p =.10.设0a >,已知函数()()2ln 2f x x ax =++的两个不同的零点1x 、2x ,满足121x x -=,若将该函数图像向右平移()0m m >个单位后得到一个偶函数的图像,则m =. 11.设R t ∈,若在区间()1,2上,关于x 的不等式12x x t >+有意义且能恒成立,则t 的取值范围为.12.对于没有重复数据的样本1x 、2x 、…、m x ,记这m 个数的第k 百分位数为()199,Z k P k k ≤≤∈.若80P 不在这组数据中,且在区间()8090,P P 中的数据有且只有5个,则m 的所有可能值组成的集合为.二、单选题13.已知集合{}1,2P =,{}1,3Q =,{|M x x P =∈或}x Q ∈,则M =( ) A .{}1 B .{}2 C .{}3 D .{}1,2,3 14.如图,已知,,P Q R 分别是正方体1111ABCD A B C D -的棱,AB BC 和11C D 的中点,由点,,P Q R确定的平面β截该正方体所得截面为( )A .三角形B .四边形C .五边形D .六边形15.在平面直角坐标系xOy 中,双曲线1Γ、2Γ的中心在原点,焦点都在x 轴上,且1Γ与2Γ不重合.记1Γ、2Γ的离心率分别为1e 、2e ,则“12e e =”是“1Γ与2Γ没有公共点”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 16.正方形区域Ω由9块单位正方形区域拼成,记正中间的单位正方形区域为D .对于Ω边界上的一点P ,若点Q 在Ω中且线段PQ 与D 有公共点,则称Q 是P 的“盲点”,将P 的所有“盲点”组成的区域P Ω称为P 所对的“盲区”.对于Ω边界上的一点M ,若在Ω边界上含M 在内一共有k 个点所对的“盲区”面积与M Ω相同,就称M 是“k 级点”;若在Ω边界上有无数个点所对的“盲区”面积与M Ω相同,就称M 是一个“极点”.对于命题:①Ω边界正方形的顶点是“4级点”;②Ω边界上存在“极点”.说法正确的是( )A .①和②都是真命题B .①是真命题,②是假命题C .①是假命题,②是真命题D .①和②都是假命题三、解答题17.在ABC V 中,设角A 、B 、C 所对边的边长分别为a 、b 、c ,cos sin A a B =+.(1)求角B 的大小;(2)当a =b =c 和ABC V 的面积S .18.如图,在直三棱柱111ABC A B C -中,12AA AB ==,1AC =,90ACB ∠=︒,D 是棱AB 上的一点.(1)若AD DB =,求异面直线1B D 与11AC 所成的角的大小;(2)若1CD B D ⊥,求点B 到平面1B CD 的距离.19.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期,一研究团队在当地感染某一种传染病的人群中随机抽取了200名患者,其中潜伏期超过5天的患者人数为80.(1)为了研究这200名患者中潜伏期超过5天的群体与不超过5天的群体的性别是否有显著性差异,该团队将患者按性别分成两组进行对比,人数分布如下表所示:请根据表中数据,判断这两类人群的性别有无显著性差异(显著性水平0.05α=),并说明理由;(附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++,()2 3.8410.05P χ≥=)(2)为了进一步深化研究,该团队拟在当地随机抽取(2)n n ≥名患者开展个案分析.现用200名患者中潜伏期超过5天的频率值,作为“从当地随机抽取一名患者,其潜伏期超过5天”的概率的估计值.若该团队希望事件“这n 名患者中,至少有2人的潜伏期超过5天”发生的概率不低于0.9,同时为了保障个案分析的质量,考虑到时间与成本的制约,希望抽取的患者数尽可能少,则该团队应该抽取多少名患者20.已知抛物线Γ:24y x =,P 为第一象限内Γ上的一点,直线l 经过点P .(1)设()4,4P ,若l 经过Γ的焦点F ,求l 与Γ的准线的交点坐标;(2)设()1,2P ,已知l 与x 轴负半轴有交点M ,l 与Γ有P 、Q 两个交点,若将这三个交点从左至右重新命名为A 、B 、C ,有AB BC =uu u r uu u r ,求出所有满足条件的l 的方程;(3)设(),P s t ,0t >,已知l 是Γ在点P 处的切线,过点P 作直线m 使得m l ⊥,R 是m 与Γ的另一个交点,求出PR 关于s 的表达式,并求PR 的最小值.21.设函数()y f x =定义域为Z .若整数,s t 满足()()0f s f t ≤,则称s 与t “相关”于f .(1)设()12f x x =+-,x ∈Z ,写出所有与2“相关”于f 的整数;(2)设()y f x =满足:任取不同的整数[],1,10s t ∈,s 与t 均“相关”于f .求证:存在整数[]1,8m ∈,使得,1,2m m m ++都与2024“相关”于f ;(3)是否存在实数a ,使得函数()()()1e 11x f x ax a x =+++-,x ∈Z 满足:存在0x ∈Z ,能使所有与0x “相关”于f 的非零整数组成一个非空有限集?若这样的a 存在,指出()0f x 和0的大小关系(无需证明),并求出a 的取值范围;若这样的a 不存在,说明理由.。
江西省九江市2023届高三下学期三模数学(理)试卷及答案

九江市2023年第三次高考模拟统一考试数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.全卷满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名等内容填写在答题卡上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效.第Ⅰ卷(选择题60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1{|}2M x x =>,{|N x y ==,则()M N = R ð()A.1{|0}2x x ≤≤ B.1{|0}2x x << C.1{|}2x x ≤ D.{|0}x x ≤2.已知复数z 满足(2i)4i z z ⋅+=-,则z =()A.1C.2D.3.抛物线212y x =的焦点坐标为()A.1(,0)8 B.1(0,)8C.1(,0)2D.1(0,24.分形的数学之美,是以简单的基本图形,凝聚扩散,重复累加,以迭代的方式而形成的美丽的图案.自然界中存在着许多令人震撼的天然分形图案,如鹦鹉螺的壳、蕨类植物的叶子、孔雀的羽毛、菠萝等.如图所示,为正方形经过多次自相似迭代形成的分形图形,且相邻的两个正方形的对应边所成的角为15︒.若从外往里最大的正方形边长为9,则第5个正方形的边长为()A.814B.8168C.4D.35.为了强化节约意识,更好地开展“光盘行动”,某校组织甲乙两个社会实践小组分别对某块稻田的稻穗进行调研,甲乙两个小组各自随机抽取了20株稻穗,并统计了每株稻穗的粒数,整理得到如下统计表(频率分布直方图中同一组中的数据用该组区间的中点值为代表),则下列结论正确的是()甲158163361711233445688818378199频率/组距每穗粒数1502001901801701600.040.030.020.01乙6.已知0.22a =,0.5log 0.2b =,0.2log 0.4c =,则()A.b a c >>B.b c a>> C.a b c>> D.a c b>>7.已知0π<<<αβ,且1cos 3α=,22cos()3αβ-=,则cos β=()A.89B.79 C.429D.0A.甲组中位数大于乙组中位数,甲组平均数大于乙组平均数B.甲组中位数大于乙组中位数,甲组平均数等于乙组平均数C.甲组中位数小于乙组中位数,甲组平均数等于乙组平均数D.甲组中位数小于乙组中位数,甲组平均数小于乙组平均数8.榫卯是一种中国传统建筑、家具的主要结构方式,它凝聚了中华文明的智慧.它利用材料本身特点自然连接,既符合力学原理,又重视实用和美观,达到了实用性和功能性的完美统一.右图是榫卯结构中的一种,当其合并在一起后,可形成一个正四棱柱.将合并后的榫卯对应拿开(如图1所示),已知榫的俯视图如图2所示,则卯的主视图为()9.已知函数()sin()(0,||)f x x ωϕωϕ=+><π的导函数()y f x '=的图像如图所示,记()()()g x f x f x '=⋅,则下列说法正确的是(A.()g x 的最小正周期为2πB.6ϕ5π=-C.(4g π= D.()g x 在(0,6π10.已知定义在R 上的函数()f x 在[0,1]上单调递增,(1)f x +是奇函数,(1)f x-的图像关于直线1x =对称,则()f x ()A.在[20202022],上单调递减B.在[20212023],上单调递增C.在[20222024],上单调递减D.在[20232025],上单调递增DA C 图2图1榫卯B 11.已知双曲线22221x y a b-=(,0a b >)的左右焦点分别为12,F F ,过2F 的直线交双曲线右支于,A B 两点,若1AB F B ⊥,13sin 5F AB ∠=,则该双曲线的离心率为(C )C.2D.212.如图,棱长为1的正方体1111ABCD A B C D -中,P 为1A BD △内一点(包括边界),且线段1PA 的长度等于点P 到平面ABCD 的距离,则线段1PA 长度的最小值是(D )C.2D.3第Ⅱ卷(非选择题90分)本卷包括必考题和选考题两部分.第13-21题为必考题,每个试题考生都必须作答.第22-23题为选考题,学生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.26(x 展开式中,2x 的系数为.BCDP1C 1B 1A 1D A 14.Rt ABC △中,90A =︒,2AB =,D 为BC 上一点,2BD DC =,则AD AB ⋅=.15.已知数列{}n a 的前n 项和为n S ,且满足11a =,12nn n a a ++=,则9S =.16.已知函数2()e x f x ax =-(a ∈R )有两个极值点12,x x ,且122x x >,则a 的取值范围为,).BA CD三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,圆内接四边形ABCD 中,已知2AB =,BC =2CDB ADB ∠=∠.(1)求ABC ∠;(2)求四边形ABCD 面积的最大值.D ABC。
2023-2024学年河北省唐山市高三三模数学试题+答案解析(附后)

一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求2023-2024学年河北省唐山市高三三模数学试题✽的。
1.已知全集,集合,,则( )A. B. C. D.2.的共轭复数为( )A.B.C.D.3.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学成绩不小于103分的人数至少为( )A. 220 B. 240C. 250D. 3004.函数的单调递减区间为( )A. ,B. ,C. ,D.,5.已知圆,圆,则与的位置关系是( )A. 外切B. 内切C. 相交D. 外离6.从2艘驱逐舰和6艘护卫舰中选出3艘舰艇分别担任防空、反潜、巡逻任务,要求其中至少有一艘驱逐舰,则不同的安排方法种数为( )A. 336 B. 252C. 216D. 1807.椭圆的左、右焦点分别为,,直线l 过与E 交于A ,B 两点,为直角三角形,且,,成等差数列,则E 的离心率为( )A. B. C.D.8.已知函数有三个极值点,则实数a 的取值范围是( )A.B. C.D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.如图,直四棱柱的所有棱长均为2,,则( )A. 与所成角的余弦值为B. 与所成角的余弦值为C.与平面所成角的正弦值为D. 与平面所成角的正弦值为10.如图,是边长为2的等边三角形,连接各边中点得到,再连接的各边中点得到,,如此继续下去,设的边长为,的面积为,则( )A. B.C. D.11.已知向量,,,下列命题成立的是( )A. 若,则B. 若,则C. 若,则D. 设,,当取得最大值时,12.已知函数及其导函数的定义域均为,,当时,,,则( )A. 的图象关于对称B. 为偶函数C.D. 不等式的解集为三、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
县(区) 小学 姓名 性别 家长电 、 考场 座位号
…………………………………………密…………………………………封……………………………………线……………………………
数 学 练 习 卷
(满分:120分 时量:80分钟)
一、判断题:(每题2分,共12分)
1、一个数的约数不一定比它的倍数小。
( )
2、6千米与7千米的比值是76
千米。
( )
3、423x 中含有未知数,所以它是方程。
( )
4、用一个放大10倍的放大镜看一个300的角,放大后看到的角还是300。
( )
5、半圆、长方形、直角三角形、等腰梯形都是轴对称图形。
( )
6、小明看一本240页的书,第一周看了全书的41
,第二周看了余下的31
,第三周看了余下的21
,其实她每周看的书一样多。
( )
二、选择题:(每题4分,共24分) 1、两个质数的乘积一定不是( )。
A. 奇数
B. 质数
C. 合数
D.偶数
2、215加上45与2
3的积,和是( )。
A. 52
B. 31
C. 32
D. 53
3、把一个圆柱体削成一个最大的圆锥体,削去部分的体积是18立方厘米,圆
5、甲乙二人共同完成242个机器零件。
甲做一个零件要6分钟,乙做一个零件要5分钟。
完成这批零件时,甲做了( )个零件。
A.132
B. 120
C. 118 D .110
6、有棱长都是1厘米的24个小正方体,用它们拼成一个长方体,拼成的长方体表面积最小是( )平方厘米。
A.52
B. 50
C. 48
D.44
1、在比例尺是200
的平面图上,量得一间房屋长4厘米,实际长度 米。
2、六年级三个班参加植树活动,一班和二班的人数比是5:4,二班和三班的人数比是3:2,则一班和三班的人数比是 。
3、一个修路队,十月份修路的米数比九月份多25%,九月份修路的米数相当于十月份的 %。
4、把一个棱长之和是60厘米的正方体容器装满水,经蒸发后,容器有水100立方厘米,水位下降 厘米。
5、抽查某品牌电视机的质量情况:甲型号抽查68台,合格的有66台;乙型号抽查132台,合格的有128台。
则这种品牌电视机的抽查合格率是 。
6、数a 除以数b 商12余8,如果数a 加上7,那么数b 就是数a 与7的和的13
1
,
那么数a= 。
7、如图,已知长方形ABCD 中,长DC=20厘米, 宽CB=6厘米,DCE 为扇形,两块阴影部分的 面积之差是 平方厘米。
四、计算题:(每题5分,共20分)
1、45171()()96282÷-⨯-
2、8
3
1)375.09732.0158(÷⨯-÷
3、59
0.5[(0.15)]620
+÷+ 4、解方程 75:2.125:=x
五、解答题(共36分):
1、(6分)在一块长30米,宽12米的地里种西红柿、黄瓜与茄子,其中种西红柿占总面积的9
4
,剩下的地按3∶2种黄瓜和茄子。
西红柿比黄瓜多种多少平方
米?
2、(6分)甲、乙两车分别从A 、B 同时相对开出,经过5小时相遇。
相遇后两车继续按原速度行驶,又经过4小时,甲到达B 地,乙距A 地180千米。
A 、B 两地相距多少千米?
3、(8分)某乡要修一条环山水渠,第一期工程修了全长的31
,第二期工程修了
全长的30%,还剩880米没有修,这条环山水渠长多少米?
4、(8分)有一项工程,甲、乙二人共同做需要6天完成。
现在两人做了2天后,剩下的由乙单独做,结果又做了10天才完成。
甲单独做这项工程需要多少天完成?
5、(8分)某市出租汽车的车费计算方式如下:路程在3公里以内(含3公里)为8.00元;达到3公里后,每增加1公里收1.80元;达到8公里以后,每增加1公里收2.10元,增加不足1公里按一公里计算。
某乘客乘坐该种出租车交了35.9元车费,则此乘客乘该出租车最多行驶的路程为多少公里?
4月16日下午数学考试参考答案
一、判断题:(每题2分,共12分)
二、选择题:
(每题4分,共24分)
三、填空题:(每题4分,共28分)
四、计算题:(每题5分,共20分)
1、2
1 2、1 3、 917
4、
52 x
五、解答题(36分):
1、(6分)40平方米
2、(6分) 900千米
3、(8分)2400米
4、(8分) 10天。
5、(8分)17公里。