初中数学中考模拟试卷及答案
中考数学模拟题《整式及其运算》专项测试卷(附答案)

中考数学模拟题《整式及其运算》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a = D .623a a a ÷= 9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( )A .52αB .56aC .58aD .68a10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定12.(2023·江苏徐州·统考中考真题)下列运算正确的是( )A .236a a a ⋅=B .422a a a ÷=C .()235a a =D .224235a a a +=13.(2023·辽宁·统考中考真题)下列运算正确的是( )A .2323a a a +=B .743a a a ÷=C .()2224a a -=-D .()2236b b = 14.(2023·湖北鄂州·统考中考真题)下列运算正确的是( )A .235a a a +=B .235a a a ⋅=C .235a a a ÷=D .()325a a = 15.(2023·山东·统考中考真题)下列运算正确的是( )A .2242a a a +=B .()32639a a -=-C .23544a a a ⋅=D .623a a a ÷=16.(2023·湖北十堰·统考中考真题)下列计算正确的是( )A =B .33(2)8a a -=-C .842a a a ÷=D .22(1)1a a -=-17.(2023·山东日照·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()32628m m -=-C .222()x y x y +=+D .232235ab a b a b +=18.(2023·江苏无锡·统考中考真题)下列运算正确的是( )A .236a a a ⨯=B .235a a a +=C .22(2)4a a -=-D .642a a a ÷=19.(2023·河北·统考中考真题)代数式7x -的意义可以是( )A .7-与x 的和B .7-与x 的差C .7-与x 的积D .7-与x 的商20.(2023·辽宁营口·统考中考真题)下列计算结果正确的是( )A .3332a a a ⋅=B .222853a a aC .824a a a ÷=D .()32639a a -=- 21.(2023·山东东营·统考中考真题)下列运算结果正确的是( )A .339x x x ⋅=B .336235x x x +=C .()32626x x =D .()()2232349x x x +-=- 22.(2023·四川巴中·统考中考真题)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》 书中记载的图表给出了()n a b +展开式的系数规律.1 0()1a b +=1 1 1()a b a b +=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b当代数式432125410881x x x x -+-+的值为1时,则x 的值为( )A .2B .4-C .2或4D .2或4-23.(2023·四川巴中·统考中考真题)若x 满足2350x x +-=,则代数式2263x x +-的值为( )A .5B .7C .10D .13-24.(2023·河北·统考中考真题)光年是天文学上的一种距离单位 一光年是指光在一年内走过的路程 约等于129.4610km ⨯.下列正确的是( )A .12119.4610109.4610⨯-=⨯B .12129.46100.46910⨯-=⨯C .129.4610⨯是一个12位数D .129.4610⨯是一个13位数25.(2023·湖北宜昌·统考中考真题)在日历上 某些数满足一定的规律.如图是某年8月份的日历 任意选择其中所示的含4个数字的方框部分 设右上角的数字为a ,则下列叙述中正确的是( ).A .左上角的数字为1a +B .左下角的数字为7a +C .右下角的数字为8a +D .方框中4个位置的数相加 结果是4的倍数26.(2023·湖北恩施·统考中考真题)下列运算正确的是( )A .()2211m m -=-B .()3326m m =C .734m m m ÷=D .257m m m += 27.(2023·黑龙江牡丹江·统考中考真题)下列计算正确的是( )A .248a a a ⋅=B .3332a a a -=C .()3236ab a b =D .()222a b a b +=+ 28.(2023·黑龙江牡丹江·统考中考真题)观察下面两行数:15111929⋯,,,,,1361015⋯,,,,,取每行数的第7个数 计算这两个数的和是( )A .92B .87C .83D .78二 填空题29.(2023·四川雅安·统考中考真题)若2a b += 1a b -=,则22a b -的值为 .30.(2023·四川德阳·统考中考真题)在初中数学文化节游园活动中 被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛 活动规则是:在九宫格中 除了已经填写的三个数之外的每一个方格中 填入一个数 使每一横行 每一竖列以及两条对角线上的3个数之和分别相等 且均为m .王小明抽取到的题目如图所示 他运用初中所学的数学知识 很快就完成了这个游戏,则m = .167 4 31.(2023·四川广安·统考中考真题)定义一种新运算:对于两个非零实数a b 、 x y a b a b=+※.若()221-=※,则()33-※的值是 . 32.(2023·四川凉山·统考中考真题)已知2210x x --=,则3231052027x x x -++的值等于 .三 解答题33.(2023·甘肃兰州·统考中考真题)计算:()()()2234x y x y y y +---.34.(2023·河北·统考中考真题)现有甲 乙 丙三种矩形卡片各若干张 卡片的边长如图1所示(1)a .某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙) 如图2和图3 其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S 当2a =时 求12S S +的值(2)比较1S 与2S 的大小 并说明理由.35.(2023·浙江金华·统考中考真题)已知13x = 求()()()212134x x x x +-+-的值.36.(2023·湖南·统考中考真题)先化简 再求值:()()()222233a a a a a -+-++ 其中13a =-.37.(2023·浙江嘉兴·统考中考真题)观察下面的等式:222222223181,5382,7583,9784,-=⨯-=⨯-=⨯-=⨯(1)写出221917-的结果.(2)按上面的规律归纳出一个一般的结论(用含n 的等式表示 n 为正整数)(3)请运用有关知识 推理说明这个结论是正确的.参考答案一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 【答案】D【分析】根据合并同类项 同底数幂的除法 完全平方公式 积的乘方 逐一计算判断即可.【详解】解:A 532a a a -= 故选项A 错误B 633a a a ÷= 故选项B 错误C ()2222a b a ab b -=-+ 故选项C 错误D ()3263a b a b = 故选项D 正确故选D .【点睛】本题考查整式的运算.熟练掌握合并同类项 同底数幂的除法 完全平方公式 积的乘方法则 是解题的关键.2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y 【答案】D【分析】利用同底数幂的乘法的逆运算可得1333x x +=⨯ 再代入计算即可.【详解】解:∵3x y =∵13333x x y +=⨯=故选D【点睛】本题考查的是同底数幂的乘法运算的逆运算 熟记“m n m n a a a +=”是解本题的关键.3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n 【答案】C【分析】先逐步分析前面5次操作 可得整式串每四次一循环 再求解第四次操作后所有的整式之和为:0m n n m m n n m ++----+= 结合202345053÷=⋅⋅⋅ 从而可得答案.【详解】解:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后得到整式串m n n m - m - n -第4次操作后得到整式串m n n m - m - n -n m -+ 第5次操作后得到整式串m n n m - m - n - n m -+ m⋅⋅⋅⋅⋅⋅归纳可得:以上整式串每四次一循环第四次操作后所有的整式之和为:0m n n m m n n m ++----+=∵202345053÷=⋅⋅⋅∵第2023次操作后得到的整式中各项之和与第3次操作后得到整式串之和相等∵这个和为m n n m m n n m ++---=-故选C【点睛】本题考查的是整式的加减运算 代数式的规律探究 掌握探究的方法 并总结概括规律并灵活运用是解本题的关键.4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-【答案】A【分析】把所求代数式2243m m +-变形为22(2)3m m +- 然后把条件整体代入求值即可.【详解】解:∵2210m m +-=∵221m m +=∵2243m m +-22(2)3m m =+- 213=⨯-1=-.故选:A .【点睛】此题主要考查了代数式求值以及“整体代入”思想 解题的关键是把代数式2243m m +-变形为22(2)3m m +-.5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=【答案】D【分析】根据整式的加减 幂的乘方 同底数幂的乘除法逐项判断即可.【详解】A 2a 与3b 不是同类项 不可合并 此项运算错误B ()23236a a a ⨯== 此项运算错误 C 24246a a a a +⋅== 此项运算错误D 31312a a a a -÷== 此项运算正确故选:D .【点睛】本题考查了整式的加减 幂的乘方 同底数幂的乘除法 熟记各运算法则是解题关键. 6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 【答案】A【分析】根据同底数幂的乘法与幂的乘方 完全平方公式 整式的乘法对每个式子一一判断即可.【详解】解:A 235x x x 本选项符合题意B ()339x x = 本选项不符合题意 C ()21x x x x +=+ 本选项不符合题意D ()2221441a a a -=-+ 本选项不符合题意故选:A .【点睛】此题主要考查了整式的混合运算 正确掌握相关运算法则是解题关键.7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-【答案】D【分析】A 不能合并 本选项错误 B 利用完全平方公式展开得到结果 即可作出判断 C 和D 利用积的乘方及幂的乘方运算法则计算得到结果 即可作出判断.【详解】解:2a 和3b 不是同类项 不能合并 故A 选项错误 不符合题意222()2a b a ab b -=-+ 故B 选项错误 不符合题意()3236ab a b = 故C 选项错误 不符合题意 ()3253412a a a ⋅-=- 故D 选项正确 符合题意故选:D .【点睛】此题考查了完全平方公式 合并同类项 同底数幂的除法 积的乘方与幂的乘方 熟练掌握完全平方公式是解本题的关键.8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a =D .623a a a ÷=【答案】B【分析】根据同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 逐项分析判断即可求解.【详解】A. 3a 与2a 不能合并 故该选项不正确 不符合题意B. 23a a a ⋅= 故该选项正确 符合题意C. ()326a a = 故该选项不正确 不符合题意D. 624a a a ÷= 故该选项不正确 不符合题意故选:B .【点睛】本题考查了同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 熟练掌握以上运算法则是解题的关键.9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( ) A .52αB .56aC .58aD .68a【答案】D 【分析】根据积的乘方与幂的乘方法则计算即可.【详解】解:()()332326228a a a == 故选:D .【点睛】本题考查积的乘方与幂的乘方 熟练掌握积的乘方与幂的乘方运算法则是解题的关键. 10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 【答案】D【分析】根据积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 进行计算即可求解.【详解】解:A. 333()pq p q =-- 故该选项不正确 不符合题意B. 43222x x x x x ⋅+⋅= 故该选项不正确 不符合题意C. 5= 故该选项不正确 不符合题意D. ()326a a = 故该选项正确 符合题意故选:D .【点睛】本题考查了积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 熟练掌握以上运算法则是解题的关键.11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定 【答案】C【分析】根据题意 由勾股定理可得222+=a b c 易得222c a b -= 然后用,,a b c 分别表示1S 和2S 即可获得答案.【详解】解:如下图∵,,a b c 为直角三角形的三边 且c a b >>。
数学中考全真模拟试题(附答案)

A. 0≤m<2B. 0≤m≤5C.m>5D. 2≤m≤5
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式:m2-6m+9=_______ .
14.在一个不透明 袋子中装有4个白球,a个红球,这些球除颜色外都相同.若从袋子中随机摸出1个球是红球的概率为 ,则a=___.
【详解】解:从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D.
综上所述,只有A选项符合条件,这个几何体是圆柱.
故选:A.
【点睛】本题考查由三视图判定几何体,掌握几何体的特征是正确选择的关键.
3.2020年7月23日,中国首次火星探测任务“天问一号”探测器顺利升空.在天问一号飞抵距离地球1200000公里的时候,还专门对地球和月球进行了合影“拍照”,具有里程碑式的意义.数字1200000用科学记数法表示为()
数学中考综合模拟检测试题
学校________班级________姓名________成绩________
(考试时间:120分钟 满分:120分)
一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.2021的倒数是()
A.2021B.-2021C. D.
A.5000(1+2x)=7500
B.5000(1+x)=7500
C.5000(1+x)2=7500
D.5000+5000(1+x)+5000(1+x)2=7500
2024年湖南省常德市初中学校教学教研共同体中考数学模拟试卷(3月份)+答案解析

2024年湖南省常德市初中学校教学教研共同体中考数学模拟试卷(3月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各数中,最小的数是()A. B. C.1 D.02.在以下几幅古代纹样图案中,利用中心对称进行整体构图的是()A. B. C. D.3.下列运算不正确的是()A. B. C. D.4.如图,平面镜MN放置在水平地面CD上,墙面于点D,一束光线AO照射到镜面MN上,反射光线为OB,点B在PD上.若,则的度数为()A.B.C.D.5.下列调查中,调查方式选择合理的是()A.为了解全国青少年儿童的睡眠时间,统计人员采用普查的方式B.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式C.为了解乘客是否携带危险物品,高铁站工作人员对部分乘客进行抽查D.为保证神舟十七号载人飞船顺利发射,对所有零件进行了全面检查6.我们在学习许多代数公式时,可以用几何图形来推理验证,观察下列图形,可以推出公式的是图()A. B.C. D.7.某次射击训练中,甲、乙、丙、丁四名运动员10次射击成绩的平均数单位:环与方差如表所示.根据表中数据,这四人中成绩好且发挥稳定的是()甲乙丙丁9899A.甲B.乙C.丙D.丁8.如图①,A ,B 表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O 是圆心,半径,点A ,B 是圆上的两点,,则的长为()A. B. C. D.9.若关于x 的一元二次方程的一个实数根为2024,则方程一定有实数根()A.2024B.C.D.10.如图,O 是坐标原点,点B 位于第一象限,轴于点D ,,,C 为OB 的中点,连接CD ,过点B 作交x 轴于点若反比例函数的图象经过OB的中点C,与线段AB交于点E,则AE的长为()A.B.C.D.二、填空题:本题共8小题,每小题3分,共24分。
11.人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为将用科学记数法表示为______.12.当时,代数式______.13.如图是我国清代康熙年间的八角青花碗,其轮廓是一个正八边形,正八边形的每一个内角是______.14.在如图所示的方格纸上建立适当的平面直角坐标系,若点B的坐标为,点C的坐标为,则点A的坐标为______.15.如图,在中,弦半径OA于点D,连接若,,则BC的长是______16.将9枚黑棋子和6枚白棋子装入一个不透明的空盒子里,这些棋子除了颜色外无其他差别.从盒子中随机取出一枚棋子,则取出的棋子是黑子的概率是______.17.如图,湖中有一个小岛A,一艘轮船由西向东航行,它在B处测得小岛A在北偏东方向上,航行20海里到达C处,这时测得小岛A在北偏东方向上,则小岛A到航线BC的距离为______海里.18.如图,在▱ABCD中,BD为对角线,分别以点A,B为圆心,以大于的长为半径画弧,两弧相交于点M,N,作直线MN交AD于点E,交AB于点若,,,则BD的长为______.三、解答题:本题共8小题,共66分。
2024年贵州省贵阳市白云区中考数学模拟试卷及答案解析

2024年贵州省贵阳市白云区中考数学模拟试卷一、选择题(以下每题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每题3分,共36分)1.(3分)下列四个数中,属于负整数的是()A .﹣2.5B .﹣3C .0D .62.(3分)下列图案是轴对称图形的是()A .B .C .D .3.(3分)2024年贵州省政府工作报告重点民生事业取得突破.新增高等教育学位63500个,省属高校“一校一址”布局调整基本完成,民生福祉持续提升.数63500用科学记数法表示为()A .6.35×103B .6.35×104C .6.35×105D .0.635×1054.(3分)若一个几何体的表面展开图如图所示,则这个几何体是()A .三棱柱B .四棱柱C .三棱锥D .四棱锥5.(3分)若二次根式有意义,则实数x 的值可能是()A .﹣2B .0C .1D .36.(3分)下列图形中,∠2大于∠1的是()A .B .C .D .7.(3分)甲、乙、丙、丁四位男同学在中考体育前进行10次立定跳远测试,平均成绩都是2.3米,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则成绩最稳定的是()A .甲B .乙C .丙D .丁8.(3分)若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为()A.﹣1B.0C.1或﹣1D.2或09.(3分)如图,AB∥DE,AE与BD相交于点C,若AB=2,,则CE:AC等于()A.1:1B.1:2C.D.10.(3分)若分式的值为0,则a的值为()A.﹣3B.0C.2D.511.(3分)如图,尺规作∠HFG=∠ABC,作图痕迹中弧MN是()A.以点F为圆心,以BE长为半径的弧B.以点F为圆心,以DE长为半径的弧C.以点G为圆心,以BE长为半径的弧D.以点G为圆心,以DE长为半径的弧12.(3分)已知二次函数y=﹣x2﹣2x+3,当时,函数值y的最小值为1,则a的值为()A.B.C.或D.或二、填空题(每题4分,共16分)13.(4分)一次函数y=kx+3的图象经过点M(2,5),则k的值是.14.(4分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a =6,弦c=10,则小正方形ABCD的面积是.15.(4分)某数学兴趣小组编制了一道游戏试题:将“知必言,言必尽”6个字写在六张完全相同的卡片上,卡片的背面完全相同,将卡片洗匀后,背面朝上,甲随机抽出一张(不放回),乙再随机抽出一张,若甲、乙两人抽出的字相同,便称为“好朋友”.则一次试验中,甲、乙被称为“好朋友”的概率是.16.(4分)如图,△ABC是边长为2的等边三角形,将△ABC沿直线AC翻折,得到△ACD,再将△ACD 在直线AC上平移,得到△A′C′D′.连接A′B,D′B,则△A′D′B的周长的最小值是.三、解答题(本大题共9题,共计98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:tan45°+|﹣5+2|﹣(π﹣3)0;(2)化简:(a+1)2﹣a(a+2).18.(10分)为了解中学生的视力情况,某市卫健局决定随机抽取本市部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.【整理数据】初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%1.1及以上46n合计200100%【分析数据】(1)在初中学生视力情况统计表中,m=,n=;(2)根据表格信息,初中学生视力的中位数为,根据统计图信息,高中学生视力的众数为;【作出决策】(3)小红说:“初中学生的视力水平比高中学生的好.”请你选择统计知识说明理由;(4)保护眼睛,明天更美好,请对视力保护提出一条合理化建议.19.(10分)如图,在矩形纸片ABCD中,AB=3cm,BC=4cm,连接对角线AC,直线MN垂直平分AC,分别交AD,BC于点E,F,垂足为点G.(1)求证:△AGE≌△CGF;(2)求线段EF的长.实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.乙同学所列的方程为=1.5×(1)甲同学所列方程中的x表示.乙同学所列方程中的y表示.(2)任选甲、乙两同学的其中一个方法解答这个题目.21.(10分)如图,为推进市中心城区污水系统综合治理项目,需要从A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°方向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,参考数据)22.(10分)如图,直线y=﹣2x+4与x轴、y轴分别相交于点A、点B,以线段AB为边在第一象限作正方形ABCD.反比例函数y=(k>0)在第一象限内的图象经过点D.(1)求反比例函数的解析式;(2)将正方形ABCD沿y轴向上平移几个单位能使点A落在(1)中所得的双曲线上?23.(12分)如图,△ABC内接于⊙O,过点B作⊙O的切线,交直径DA的延长线于点E.(1)若∠ACB=26°,则∠BAD=°;(2)求证:∠ABE=∠ACB;(3)若AE=2cm,BE=4cm,求⊙O的半径.24.(12分)“樱花红陌上,邂逅在咸安”,为迎接我区首届樱花文化旅游节,某工厂接到一批纪念品生产订单,要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(0<x≤15)每件产品的成本价是y元,y与x之间关系为:y=0.5x+7,任务完成后,统计发现工人小王第x天生产产品P(件)与x(天)之间的关系如图所示,设小王第x天创造的产品利润为W元.(1)直接写出P与x之间的函数关系;(2)求W与x之间的函数关系式,并求小王第几天创造的利润最大?最大利润是多少?(3)最后,统计还发现,平均每个工人每天创造的利润为288元,于是,工厂制定如下奖励方案:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金,请计算,在生产该批纪念过程中,小王能获得多少元的奖金?25.(12分)在Rt△ABC中,∠ACB=90°,AB=10,AC=8,将△ABC绕点B逆时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.【教材呈现】(1)如图①,将△ABC绕点B旋转180°得到△A′BC′,则线段CC'的长为;【问题解决】(2)如图②,在△ABC旋转过程中,连接CC′,交AB于点D,当CC′∥A′B时,求证:CD=AB;【拓展延伸】(3)如图③,连接AA′,延长CC′交AA′于点F,点E为AC边的中点,连接EF.在△ABC旋转过程中,EF是否存在最大值?若存在,求出EF的最大值;若不存在,请说明理由.2024年贵州省贵阳市白云区中考数学模拟试卷参考答案与试题解析一、选择题(以下每题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分)1.【分析】根据负整数的定义进行判断即可.【解答】解:﹣2.5是负分数,﹣3是负整数,0既不是正数也不是负数,6是正整数,故选:B.【点评】本题考查有理数,熟练掌握相关定义是解题的关键.2.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此作答.【解答】解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形,要熟练掌握.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:63500=6.35×104.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:三个长方形和两个三角形折叠后可以围成三棱柱.故选:A.【点评】考查了几何体的展开图,熟记常见几何体的表面展开图特征,是解决此类问题的关键.5.【分析】根据二次根式的被开方数是非负数求出x的取值范围即可得出答案.【解答】解:∵x﹣2≥0,∴x≥2,∴x的取值可能是3.故选:D.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.6.【分析】利用垂直的定义,对顶角的定义,等弧对等角,三角形的外角的性质对各选项进行分析即可.【解答】解:A、由垂直可知:∠1=∠2=90°,故A不符合题意;B、由∠1与∠2属于对顶角,则∠1=∠2,故B不符合题意;C、由等弧对等角可得∠1=∠2,故C不符合题意;D、由三角形的外角性质可得∠2>∠1,故D符合题意.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是明确三角形的外角等于与其不相邻的两个内角之和.7.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵平均成绩都是2.3米,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S甲2>S乙2>S丙2>S丁2,∴射击成绩最稳定的是丁.故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【分析】把x=﹣1代入方程计算即可求出k的值.【解答】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【分析】利用相似三角形的判定与性质解答即可.【解答】解:∵AB∥DE,∴∠A=∠E,∠B=∠D,∴△CDE∽△CBA,∴.∵AB=2,,∴CE:AC=:2.故选:C.【点评】本题主要考查了相似三角形的判定与性质,平行线的性质,熟练掌握适时进行的判定与性质定理是解题的关键.10.【分析】根据分母不为零且分子为零的条件进行解题即可.【解答】解:由题可知,a﹣2=0且a+3≠0,解答a=2.故选:C.【点评】本题考查分式的值为零的条件,熟练掌握分母不为零且分子为零的条件是解题的关键.11.【分析】根据作一个角等于已知角的作图方法判断即可.【解答】解:由作图可知,弧MN是以点G为圆心,以DE长为半径的弧.故选:D.【点评】本题考查作图﹣基本作图,尺规作图,熟知作一个角等于已知角的基本作图步骤是解答本题的关键.12.【分析】根据二次函数的解析式求出顶点坐标,再根据二次函数的性质求出a的值即可.【解答】解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴二次函数的顶点坐标为(﹣1,4),且二次函数的图象开口向下,∵当x=时,y=>1,∴a<﹣1,当y=1时,﹣a2﹣2a+3=1,解得a=﹣1﹣或﹣1(舍去),故选:A.【点评】本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.二、填空题(每题4分,共16分)13.【分析】根据一次函数图象上点的坐标特征解答即可.【解答】解:∵一次函数y=kx+3的图象经过点M(2,5),∴2k+3=5,解得k=1,故答案为:1.【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足函数解析式是关键.14.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案为:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.15.【分析】列表可得出所有等可能的结果数以及甲、乙两人抽出的字相同的结果数,再利用概率公式可得出答案.【解答】解:列表如下:知必言言必尽知(知,必)(知,言)(知,言)(知,必)(知,尽)必(必,知)(必,言)(必,言)(必,必)(必,尽)言(言,知)(言,必)(言,言)(言,必)(言,尽)言(言,知)(言,必)(言,言)(言,必)(言,尽)必(必,知)(必,必)(必,言)(必,言)(必,尽)尽(尽,知)(尽,必)(尽,言)(尽,言)(尽,必)共有30种等可能的结果,其中甲、乙两人抽出的字相同的结果有4种,∴甲、乙被称为“好朋友”的概率是=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.16.【分析】连接CD'.证明四边形A'BCD'是平行四边形,推出CD'=BA′,推出A′D′B的周长=BA'+BD'+A'D'=CD'+BD'+2,可知CD'+BD'最小时,△A′D′B的周长最小,作点C关于直线DD'的对称点E,连接BE,CD'+BD'最小值为BE,求出BE的长即可解决问题.【解答】解:连接CD',由平移的性质,可知A'B=D'C,A'B∥D'C,∴四边形A'BCD'是平行四边形,∴A'B=D'C,∴△A′D′B的周长=BA'+BD'+A'D'=CD'+BD'+2,∴CD'+BD'最小时,△A′D′B的周长最小,作点C关于直线DD'的对称点E,CE交DD'于点P,D'E,BE,过点E作EF⊥BC交BC的延长线于点F,则∠A'CE=∠DPE=90°,∠ECF=180°﹣60°﹣90°=30°,∵CD'+BD'=ED'+BD'≥BE,∴CD'+BD'最小值为BE,∴△A′D′B的周长的最小值=BE+2,∵CE=2CP=2,∴CF=CE•cos30°=3,EF=CE=,∴BF=BC+CF=2+3=5,∴△A′D′B的周长的最小值为2+2,故答案为:2+2.【点评】本题主要考查等边三角形的性质,折叠性质,平移的性质,关键是求出CD'+BD'的最小值三、解答题(本大题共9题,共计98分.解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】(1)先算特殊角的三角函数值,绝对值,零指数幂,再算加减即可;(2)先算完全平方,单项式乘多项式,再合并同类项即可.【解答】解:(1)tan45°+|﹣5+2|﹣(π﹣3)0=1+3﹣1=3;(2)(a+1)2﹣a(a+2)=a2+2a+1﹣a2﹣2a=1.【点评】本题主要考查完全平方公式,实数的运算,解答的关键是对相应的运算法则的掌握.18.【分析】(1)根据初中各视力的总人数=人数÷百分比求解可得m、n的值;(2)根据中位数和众数的定义解答即可;(3)选择合适的统计量,比较即可得出答案;(4)根据保护眼睛的方法提出即可.【解答】解:(1)m=200×34%=68,n=46÷200×100%=23%,故答案为:68,23%;(2)被调查的初中学生视力情况的样本容量为200,∵第100个和第101个数据为1.0和1.0,∴中位数为=1.0,∵被调查的高中学生视力情况中,0.9出现的次数最多,∴众数为0.9.故答案为:1.0,0.9;(3)初中学生的视力水平比高中学生的好,被调查的高中学生视力情况的样本容量为14+44+60+82+65+55=320,∵第160个和第161个数据为0.9和0.9,∴中位数为0.9,∵初中视力水平的中位数为1.0,高中视力水平的中位数为0.9,所以初中学生的视力水平比高中学生的好;(4)建议该区中学生坚持每天做眼保健操,养成良好的用眼习惯.【点评】本题考查频数(率)分布表、条形图统计图,从统计图表中得出解题所需数据是解答本题的关键.19.【分析】(1)利用AAS即可证得△AGE≌△CGF;(2)先根据勾股定理求出AC的长,继而求出AG的长,再证得△AGE∽△ADC,即可求出EG的长,再由(1)中的结论即可求出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEG=∠CFG,∵直线MN垂直平分AC,∴∠AGE=∠CGF=90°,AG=CG,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS);(2)解:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,∵AB=3cm,BC=4cm,∴由勾股定理得cm,∵直线MN垂直平分AC,∴∠AGE=90°,AG=CG cm,∴∠AGE=∠D,又∵∠GAE=∠DAC,∴△AGE∽△ADC,∴,∴,∴EG=,由(1)知△AGE≌△CGF,∴FG=EG=,∴EF=.【点评】本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握这些知识点是解题的关键.20.【分析】(1)根据题意和题目中的式子,可知x和y表示的实际意义;(2)根据题意,选择甲同学的方法进行解答,注意分式方程要检验,也可选择乙同学的作法,注意乙中求得y的值后,还要继续计算,知道计算出原计划平均每月的绿化面积结束.【解答】解:(1)由题意可得,甲同学所列方程中的x表示原计划平均每月的绿化面积,乙同学所列方程中的y表示实际完成这项工程需要的月数,故答案为:原计划平均每月的绿化面积;实际完成这项工程需要的月数;(2)按甲同学的作法解答,﹣=2,方程两边同乘以1.5x,得90﹣60=3x,解得,x=10,经检验,x=10是原分式方程的解,答:原计划平均每月的绿化面积是10km2.【点评】本题考查由实际问题抽象出分式方程,解分式方程,解答本题的关键是明确题意,会解答分式方程,注意分式方程要检验.21.【分析】作CD⊥AB于点D,然后根据锐角三角函数,即可求得AC+BC的长,本题得以解决.【解答】解:作CD⊥AB于点D,由题意可得,∠CAD=45°,∠CBD=90°﹣68°=22°,设CD=x,则AD=CD=x,BD=AB﹣AD=7﹣x,∵,tan22°≈0.40,∴,解得x=2,∵,,∴,答:新建管道的总长度是8.2km.【点评】本题考查解直角三角形的应用﹣方向角问题,解答本题的关键是明确题意,利用数形结合的思想解答.22.【分析】(1)先由y=﹣2x+4得出A,B坐标,作DF⊥x轴证明Rt△ABO≌Rt△DAF,求出点D坐标即可求解.(2)把点A横坐标代入函数解析式求解.【解答】解:(1)作DF垂直x轴于点F,把x=0代入y=﹣2x+4得y=4,把y=0代入y=﹣2x+4得x=2,∴点B,A坐标分别为(0,4),(2,0),∴OB=4,OA=2.∵∠BAD=90°,∠AOB=90°,∴∠ABO+∠BAO=∠DAF+∠BAO=90°,∴∠ABO=∠DAF,在Rt△ABO和Rt△DAF中,,∴Rt△ABO≌Rt△DAF,∴AF=OB=4,DF=AO=2,∴OF=OA+AF=6,∴点D坐标为(6,2),∵反比例函数y=图象经过点D,∴k=6×2=12,∴y=.(2)把x=2代入y=得y=6,∴向上平移6个单位能使点A落在双曲线上.【点评】本题考查反比例函数的综合应用,解题关键是熟练掌握正方形的性质与一线三垂直的全等三角形模型.23.【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠ACB=26°,∠ABD=90°,再利用直角三角形的性质即可解决问题;(2)连接OB,证明∠ABE=90°﹣∠OBA=90°﹣∠OAB=∠ADB,进而可以解决问题;(3)根据切线的性质和勾股定理即可解决问题.【解答】(1)解:如图,连接BD,∴∠ADB=∠ACB=26°,∵AD是⊙O的直径,∴∠ABD=90°,∴∠BAD=90°﹣26°=64°,故答案为:64;(2)证明:如图,连接OB,∴OA=OB,∴∠OAB=∠OBA,∵EB是⊙O的切线,∴∠OBE=90°,∴∠ABD=∠OBE=90°,∴∠ABE=90°﹣∠OBA=90°﹣∠OAB=∠ADB,∵∠ADB=∠ACB,∴∠ABE=∠ACB;(3)解:∵EB是⊙O的切线,∴∠OBE=90°,在Rt△OBE中,AE=2cm,BE=4cm,根据勾股定理得:OE2=OB2+BE2,∴(OA+2)2=OA2+42,∴OA=3,∴⊙O的半径为3cm.【点评】本题考查了切线的性质,圆周角定理,三角形外接圆与外心,解决本题的关键是掌握切线的性质.24.【分析】(1)结合图象,分段计算,当10≤x≤15时,P=40,当0<x≤10时,利用待定系数法即可求解;(2)根据题意有:W=P×(20﹣y),结合(1)的结果和y=0.5x+7,即可求解,再分别求出当0<x ≤10时和当10≤x≤15时,W的最大值,二者比较即可作答;(3)根据题意可知:当W>288时,即可获得奖励,当0<x≤10时,令W=288,即有﹣x2+16x+260=288,解得x=2或者x=14,可得当2<x≤10时可以获得奖励;当10≤x≤15时,W>288,即有:W=﹣20x+520>288,解得:10≤x<11.6,去除第10天重复计算的奖励,问题得解.【解答】解:(1)结合图象,分段计算,当10≤x≤15时,P=40,当0<x≤10时,设P与x之间的函数关系为:P=kx+b,∵(10,40),(0,20),∴,解得,即此时P=2x+20,综上:;(2)根据题意有:W=P×(20﹣y),∵,y=0.5x+7,∴,整理得:,当0<x≤10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,即当x=8时,W有最大值,最大值为W=324,当10≤x≤15时,W=﹣20x+520,即W随着x的增大而减小,∴当x=10时,W有最大值,最大值为W=320,∵320<324,∴当x=8时,W有最大值,最大值为W=324,∴小王第8天创造的利润最大,最大利润是324元;(3)根据题意可知:当W>288时,即可获得奖励,当0<x≤10时,令W=288,即有﹣x2+16x+260=288,解得x=2或者x=14,∵0<x≤10,函数W=﹣x2+16x+260开口朝下,∴当W>288时,有2<x≤10,即此时可以获得奖励为:20×(10﹣2)=160(元),当10≤x≤15时,W>288,即有:W=﹣20x+520>288,解得:10≤x<11.6,即此时可以获得奖励为:20×2=40(元),∵第10天重复计算,∴总计获得的奖励为:160+40﹣20=180(元).【点评】本题考查了二次函数的应用,一次函数的应用,二次函数的图象与性质,利用待定系数法求解一次函数解析式等知识,明确题意,正确得出函数关系,是解答本题的关键.25.【分析】(1)先利用勾股定理求出BC=8,再利用旋转对称得到C′B=BC=6,进而可得CC'=12;(2)根据旋转的性质得出∠A′=∠A,∠A′C′B=∠ACB=90°,BC=BC′,则∠BCC′=∠BC′C,根据平行线的性质求出∠A′+∠BC′C=90°,则∠A+∠BCC′=90°,结合直角三角形的性质推出∠A=∠ACD,∠ABC=∠BCC′,根据等腰三角形的判定从而得解;(3)过A作AP∥A'C'交CC′的延长线于点P,连接A'C,证明△APF≌△A'C'F(AAS),由全等三角形的性质得出AF=A'F,由三角形中位线定理可得出EF=A'C.要使EF最大,只需A'C最大,此时C,B,A'三点共线,A′C的最大值为A′B+BC=AB+BC,进一步解答则可求出答案.【解答】(1)解:∵∠ACB=90°,AB=10,AC=8,∴BC===6,∵将△ABC绕点B逆时针旋转得到△A′BC′,∴C′B=BC=6,C′、B、C在一条直线上,∴CC′=BC+C′B=12,故答案为:12;(2)证明:∵将△ABC绕点B逆时针旋转得到△A′BC′,∴∠A′=∠A,∠A′C′B=∠ACB=90°,BC=BC′,∴∠BCC′=∠BC′C,∵CC′∥A′B,∴∠A′+∠A′C′C=∠A′+∠BC′C+∠A′C′B=180°,∴∠A′+∠BC′C=90°,∴∠A+∠BC′C=90°,∴∠A+∠BCC′=90°,∵∠ACB=∠BCC′+∠ACD=90°,∴∠A=∠ACD,∴AD=CD,∵∠ACB=90°,∴∠A+∠ABC=90°,∴∠ABC=∠BCC′,∴CD=BD,∵BD+AD=AB,∴CD=AB;(3)解:EF的最大值为8,理由如下:过A作AP∥A'C'交CC′的延长线于点P,连接A'C,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',∴∠BCC'=∠BC'C,∠BC′C+∠A′C′P=90°,∴∠BCC′+∠A′C′P=90°,∵∠ACB=∠BCC′+∠ACP=90°,∴∠ACP=∠A′C′P,∵AP∥A'C',∴∠APC=∠A′C′P,∴∠APC=∠ACP,∴AP=AC,∴AP=A'C',在△APF和△A'C'F中,,∴△APF≌△A'C'F(AAS),∴AF=A'F,即F是AA'中点,∵点E为AC的中点,∴EF是△AA'C的中位线,∴EF=A'C.当A'C的值最大时,EF的值最大,∵A'C≤BC+BA'=6+10=16,∴当C,B,A'三点共线时,EF存在最大值.∴EF=8,即EF的最大值为8.【点评】本题考查直角三角形的旋转变换,涉及旋转的性质、勾股定理、等腰三角形判定、全等三角形判定与性质、三角形中位线的判定与性质等知识,综合性较强,解题的关键是作辅助线,构造全等三角形。
广西中考数学模拟考试试卷-含答案

广西中考数学模拟考试试卷-含答案学校:___________班级:___________姓名:___________考号:___________一.选择题(共12小题,满分36分,每小题3分)1.(3分)实数﹣2023的相反数是()A.2023B.﹣2023C.D.﹣2.(3分)如图,下列图案是我国几家水产品机构的标志,其中轴对称图形有()A.B.C.D.3.(3分)下列计算正确的是()A.(a3)4=a7B.a8÷a2=a4C.a2+a2=a4D.a2•a4=a64.(3分)要使代数式的值为非负数,则x的取值范围是()A.x≥0B.x≤0C.x>﹣7D.x≥75.(3分)下列函数中,表示y是x的反比例函数的是()A.x(y+1)=1B.C.D.6.(3分)为估计池塘两岸A、B间的距离,如图,小明在池塘一侧选取了一点O,测得OA=16m,OB=12m,那么AB的距离不可能是()A.5m B.15m C.20m D.30m7.(3分)下列各组二次根式中,属于同类二次根式的是()A.和B.和C.和D.和8.(3分)小军旅行箱的密码是一个五位数,若他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是()A.B.C.D.9.(3分)已知△ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将△ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标分别为()A.(5,0),(4,2),(6,﹣1)B.(﹣1,0),(﹣2,2),(0,﹣1)C.(﹣1,2),(﹣2,4),(0,1)D.(5,2),(4,4),(6,1)10.(3分)在Rt△ABC中,∠ACB=90°,分别以A点,B点为圆心以大于AB为半径画弧,两弧交于E,F,连接EF交AB于点D,连接CD,以C为圆心,CD长为半径作弧,交AC于G点,则CG:AB =()A.1:B.1:2C.1:D.1:11.(3分)如图,在△ABC中,BC=10,点O为AB上一点,以5为半径作⊙O分别与BC,AC相切于D,E两点,OB与⊙O交于点M,连接OC交⊙O于点F,连接ME,FE,若点D为BC的中点,给出下列结论:①CO平分∠ACB;②点E为AC的中点;③∠AME=22.5°;④的长度为π;其中正确结论的个数是()A.1B.2C.3D.412.(3分)星期天,王军去朋友家借书,如图是他离家的距离(千米)与时间(分钟)的图象,根据图象信息,下列说法不正确的是()A.王军去时的速度小于回家的速度B.王军去时所花的时间多于回家所花的时间C.王军在朋友家停留了10分钟D.王军去时走上坡路,回家时走下坡路二.填空题(共6小题,满分12分,每小题2分)13.(2分)“随手翻开华师大版初中数学课本,翻到的页码恰好是3的倍数”,这个事件是事件(填“随机”、“必然”或“不可能”).14.(2分)若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解,则m=.15.(2分)如图,E为▱ABCD内任一点,且▱ABCD的面积为10,则图中阴影部分的面积为.16.(2分)如图,AB∥CD,∠E=30°,∠ABE=130°,则∠DCE的度数为.17.(2分)某高铁路段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D处(A、C、D共线)同时施工.测得∠CAB=30°,AB=4km,∠ABD =105°,则BD的长为.(结果保留根号)18.(2分)如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k >0,x>0)的图象上,若△OAB的面积为,则k的值为.三.解答题(共8小题,满分72分)19.(6分)计算:.20.(6分)解分式方程:.21.(10分)如图,已知∠AOB和线段MN,点M,N在射线OA,OB上.(1)尺规作图:作∠AOB的角平分线和线段MN的垂直平分线,交于点P,保留作图痕迹,不写作图步骤;(2)连接MP、NP,过P作PC⊥OA,PD⊥OB,垂足分别为点C和点D,求证:MC=ND,请补全下列证明.证明:∵P在线段MN的垂直平分线上∴MP=NP,()∵P在∠AOB的角平分线上,PC⊥OA,PD⊥OB∴PC=PD,()请补全后续证明.22.(10分)某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数1912166 b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为;(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分,乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由:(3)请对该校学生“航空航天知识”的掌握情况给出一条合理的评价.23.(10分)如图,已知四边形ABCD内接于⊙O,∠DAB=90°.(Ⅰ)若AB=AD,求∠ACB的度数;(Ⅱ)连接AC,若AD=8,AB=6,对角线AC平分∠DAB,求AC的长.24.(10分)如图,A,B两地由公路和铁路相连,在这条路上有一家食品厂,它到B地的距离是到A地距离的2倍,现该食品厂从A地购买原料,全部制成食品(制作过程中有损耗)卖到B地,两次运输(第一次:A地→食品厂,第二次:食品厂→B地)共支出公路运费15600元,铁路运费20600元.已知公路运费为1.5元/(千米•吨),铁路运费为1元/(千米•吨).(1)求该食品厂到A地,B地的铁路距离分别是多少千米?(2)求该食品厂买进原料及卖出食品各多少吨?(3)若该食品厂此次买进的原料每吨花费5000元,要想该批食品销售完后工厂共获利863800元,求卖出的食品每吨售价是多少元?(利润=总售价﹣总成本﹣总运费)25.(10分)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6m的点E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部点O离水面的距离;(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,设其中一条彩带与支柱OH的水平距离为dm,当这条彩带的长度小于m时,求d的取值范围.26.(10分)(1)(教材呈现)如图,在△ABC中,点D、E分别是AB与AC的中点,结论:DE∥BC.DE =BC.(2)(结论应用)如图1,四边形ABCD中,AD=BC,E、F、G分别是AB、DC、AC的中点,若∠ACB =80°,∠DAC=20°,求∠EFG的度数.(3)如图2,在△ABC外分别作正方形ACEF和BCGH.D是AB的中点,M,N分别是正方形的中心,AC=3,BC=2,则△DMN的面积最大值为多少?参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:实数﹣2023的相反数是2023.故选:A.2.解:观察四个选项可知,只有A选项中的图形沿着一条直线对折后,直线两侧的部分能够完全重合因此A选项中的图形是轴对称图形,B,C,D选项均不合题意.故选:A.3.解:(a3)4=a12,则A不符合题意;a8÷a2=a6,则B不符合题意;a2+a2=2a2,则C不符合题意;a2•a4=a6,则D符合题意;故选:D.4.解:由题意可知﹣1≥0解得:x≥7.故选:D.5.解:根据反比例函数的定义,可判断出只有表示y是x的反比例函数.故选:D.6.解:根据三角形的三边关系可得:16﹣12<AB<16+12即4<AB<2830m不可能.故选:D.7.解:A.=3,即和不是同类二次根式,故本选项不符合题意;B.=3,即和不是同类二次根式,故本选项不符合题意;C.=,即和不是同类二次根式,故本选项不符合题意;D.=,﹣=3,即和﹣是同类二次根式,故本选项符合题意;故选:D.8.解:末位数字可能是0到9,共10种等可能结果,其中正确的只有1种所以小军能一次打开旅行箱的概率是故选:A.9.解:∵A(2,1),B(1,3),C(3,0)∴平移后的坐标分别为(﹣1,0),(﹣2,2),(0,﹣1).故选:B.10.解:由作图可知:EF是AB的垂直平分线,D为AB的中点,CD=CG∵∠ACB=90°∴CG=CD=AB∴CG:AB=1:2故选:B.11.解:如图,连接OD,OE∵以5为半径作⊙O分别与BC,AC相切于D,E两点∴OE⊥AC,OD⊥BC∴圆心O在∠ACB的平分线上∴CO平分∠ACB,故①正确;∵点D为BC的中点∴DC=OD=5∴∠OCD=45°∵∠ACB=90°∴OD∥AC∴点O为AB中点∴OE∥BC故点E为AC的中点,故②正确;由①知,∠OCE=∠COE=45°∴∠AOE=45°∴∠AOE=22.5°,故③正确;由③可知∠BOC=90°∴的长度为π,故④正确.故选D.12.解:王军去时的速度为:2÷20=0.1千米/分回家的速度为:2÷(40﹣30)=0.2千米/分,所以A正确,不符合题意;去时时间为(20分),回家时间为10分故去时所花的时间多于回家所花的时间,所以B正确,不符合题意;而去时速度小但不一定走上坡路,回家时速度大但不一定走下坡路,所以D错误,符合题意;王军在朋友家呆的时间为:30﹣20=(10分),所以C正确,不符合题意;故选:D.二.填空题(共6小题,满分12分,每小题2分)13.解:“随手翻开华师大版初中数学课本,翻到的页码恰好是3的倍数”,这个事件是随机事件故答案为:随机.14.解:依题意,得(m+1)x=±2×4x解得:m=﹣9或7.故答案为:7或﹣9.15.解:设两个阴影部分三角形的底为AB,CD,高分别为h1,h2,则h1+h2等于平行四边形AB边上的高∴故答案为:5.16.解:延长AB交CE于点F,如图∵∠E=30°,∠ABE=130°,∠ABE是△BEF的外角∴∠AFE=∠ABE﹣∠E=100°∵AB∥CD∴∠DCE=∠AFE=100°.故答案为:100°.17.解:过B作BE⊥AD于点E∵∠CAB=30°,AB=4km∴∠ABE=60°,BE=2km∵∠ABD=105°∴∠EBD=45°∴∠EDB=45°∴BE=DE=2km∴BD===2(km)即BD的长是2km.18.解:如图,连接OC∵BC是直径∴AC=AB∴S△ABO=S△ACO=∴S△BCO=5∵⊙A与x轴相切于点B∴CB⊥x轴∴S△CBO=∴k=10故答案为10.三.解答题(共8小题,满分72分)19.解:=81÷(2+7)+6×(﹣)=81÷9+(﹣3)=9+(﹣3)=6.20.解:去分母得:2x=3﹣(x﹣2)去括号得:2x=3﹣x+2移项得:2x+x=3+2合并同类项得:3x=5解得:x=检验:把x=代入得:2(x﹣2)≠0∴分式方程的解为x=.21.解:(1)∠AOB的角平分线和线段MN的垂直平分线,如图所示.(2)证明:∵P在线段MN的垂直平分线上∴MP=NP,(线段垂直平分线上的点到线段两个端点的距离相等)∵P在∠AOB的角平分线上,PC⊥OA,PD⊥OB∴PC=PD,(角平分线上的点到角的两边距离相等)∵△PCM和△PDN为直角三角形∴Rt△PCM≌Rt△PDN(HL)∴MC=ND.故答案为:线段垂直平分线上的点到线段两个端点的距离相等;角平分线上的点到角的两边距离相等.22.解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据的平均数为=78.5(分)所以这组数据的中位数是78.5分成绩不低于80分的人数占测试人数的百分比为×100%=44%故答案为:78.5;44%;(2)不正确因为甲的成绩77分低于中位数78.5分所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).23.解:(Ⅰ)连接BD∵∠DAB=90°∴BD为直径∵AD=AB∴△ABD为等腰直角三角形∴∠ACB=∠ADB=45°;(Ⅱ)作BH⊥AC于H∵∠DAB=90°∴BD为直径,BD===10∴∠BCD=90°∵AC平分∠DAB∴∠BAC=∠DAC=45°∴∠CBD=∠BDC=45°∴△CDB为等腰直角三角形∴BC=BD=×10=5在Rt△ABH中,AH=BH=AB=3在Rt△BCH中,CH===4∴AC=AH+CH=7.24.解:(1)设这家食品厂到A地的距离是x公里,到B地的距离是y公里根据题意,得:解得:∴50﹣20=30,100﹣30=70答:这家食品厂到A地的铁路距离是30千米,到B地的铁路距离是70千米.(2)设该食品厂买进原料m吨,卖出食品n吨由题意得:解得:答:该食品厂买进原料220吨,卖出食品200吨(3)设卖出的食品每吨售价为a元由题意得:200a﹣5000×220﹣15600﹣20600=863800解得:a=10000答:卖出的食品每吨售价是10000元.25.解:(1)根据题意可知点F的坐标为(6,﹣1.5)可设拱桥侧面所在二次函数表达式为:y1=a1x2将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1解得a1=﹣∴y1=﹣x2当x=12时,y1=﹣×122=﹣6∴桥拱顶部离水面高度为6m;(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1 将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=∴右边钢缆所在抛物线表达式为:y2=(x﹣6)2+1同理可得左边钢缆所在抛物线表达式为:y3=(x+6)2+1②设彩带的长度为L m则L=y2﹣y1=(x﹣6)2+1﹣(﹣x2)=x2﹣x+4=(x﹣4)2+2∵这条彩带的长度小于m∴(x﹣4)2+2<解得<x<.∴d的取值范围<d<.26.(1)证明:∵D,E分别是AB,AC的中点∴==∵∠A=∠A∴△DAE∽△BAC∴∠ADE=∠B,==∴DE∥BC且DE=BC;(2)解:∵E、F、G分别是AB、DC、AC的中点∴GF=AD,GF∥AD,GE∥BC,GE=BC∴∠DAC=∠FGC=20°,∠AGE=∠ACB=80°∴∠CGE=180°﹣80°=100°∴∠EGF=∠FGC+∠CGE=20°+100°=120°∵AD=BC∴GF=GE∴∠EFG=∠FEG=(180°﹣∠EGF)=×(180°﹣120°)=30°;(3)解:如图2,连接BE,AG交于点P,BE与AC与点O,连接AE,GB在正方形ACEF和正方形BCGH中,AC=EC,BC=CG,∠ACE=∠BCG=90°∴∠BCG+∠ACB=∠ACE+∠ACB即∠ACG=∠ECB∴△ACG≌△ECB(SAS)∴BE=AG,∠CEB=∠CAG∵∠APO+∠CAG=∠OCE+∠CEB(八字模型)∴∠APO=∠OCE=90°∴BE⊥AG∵M,N分别是正方形的中心∴点M在AE上,点N在BG上∴AM=EM,BN=NG又∵AD=BD∴MD=BE,DN=AG,MD∥BE,DN∥AG∴MD=DN,MD⊥DN∴△MDN是等腰直角三角形∴△DMN的面积=DM2∴当DM有最大值时,△DMN的面积有最大值∵MD=BE∴当BE有最大值时,MD有最大值∵BE≤BC+CE∴BE≤5∴MD≤∴△DMN的面积的最大值为××=.。
2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)

2024年山东省东营市东营区胜利一中中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各组数中,互为相反数的是( )A. ―(―2)和2B. 1和―2 C. ―(+3)和+(―3) D. ―(―5)和―|+5|22.如图所示的几何体,若每个小正方体的棱长为2,则左视图的面积为( )A. 24B. 20C. 10D. 163.下列计算正确的是( )A. (x+2y)(x―2y)=x2―2y2B. (―x+y)(x―y)=x2―y2C. (2x―y)(x+2y)=2x2―2y2D. (―x―2y)(―x+2y)=x2―4y24.如图,已知直线a、b、c相交于A、B、C三点,则下列结论:①∠1与∠2是同位角;②内错角只有∠2与∠5;③若∠5=130°,则∠4=130°;④∠2<∠5;正确的个数是( )A. 1B. 2C. 3D. 45.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是( )A. 6cmB. 7cmC. 8cmD. 9cm6.周日早晨,妈妈送张浩到离家1000m的少年宫,用时20分钟.妈妈到了少年宫后直接返回家里,还是用了20分钟.张浩在少年宫玩了20分钟的乒乓球,然后张浩跑步回家,用了15分钟.如图中,正确描述张浩离家时间和离家距离关系的是( )A. B.C. D.7.某列车提速前行驶400km与提速后行驶500km所用时间相同,若列车平均提速20km/ℎ,设提速后平均速度为x km/ℎ,所列方程正确的是( )A. 400x =500x+20B. 400x=500x―20C. 400x―20=500xD. 400x+20=500x8.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A. 15B. 25C. 35D. 459.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是AC的中点,连接BD交AC于点E,连接OE,且∠OEB=45°,若OB=10,则OE的长为( )A. 6B. 33C. 25D. 21010.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( )A. 12B. 24C. 36D. 48第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。
2023年吉林省长春市新解放学校初中部中考数学模拟试卷及答案解析

(1)在图①中作△ABC,使 tan∠A=1.
(2)在图②中作△ABD,使
.
(3)在图⑧中作△ABE,使 tan∠A=2.
试卷第 3页,总 5 页
19.(8 分)如图,在矩形 ABCD 中,AB=3,BC=10,点 E 在 BC 边上,DF⊥AE,垂足为
请根据图象解答下列问题:
(1)轿车的速度是
千米/小时.
(2)求轿车出发后,轿车离甲地距离 y(千米)与时间 x
(小时)之间的函数关系式.
(3)在整个过程中(0≤x≤5),当轿车与货车之间的距
为 30 千米时,直接写出 x 的值.
试卷第 4页,总 5页
22.(8 分)在菱形 ABCD 中,
,∠ABC=60°,点 E 是对角线 BD 上的一动点,
连接 BD,若∠P=40°,则∠ADB 的度数是( )
A.65°
B.60°
C.55°
试卷第 1页,总 5 页
D.50°
7.(3 分)如图,在△ABC 中,AB<AC,将△ABC 以点 A 为中心逆时针旋转得到△ADE, 点 D 在 BC 边上,DE 交 AC 于点 F.下列结论:①△AFE∽△DFC;②DA 平分∠BDE; ③∠CDF=∠BAD,其中正确结论的个数是( )
C.x>3
D.x>7
5.(3 分)小华将一张纸对折后做成的纸飞机如图 1,纸飞机机尾的横截是一个轴对称图形,
其示意图如图 2,若 CD=CE=5,∠DCE=40°,则 DE 的长为( )
A.5sin20°
B.10sin20°
2024山东省济南市中考一模押题预测卷数学试卷及答案

2024年中考第一次模拟考试(山东济南卷)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B .C .D ..三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张上部图片放入一个布袋,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是(16B .C 19D 15.若点()(()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上,则23y y 、、的大小关系为()123y y y <<B .31y y <<C 213y y y <<D 312y y y <<中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(21)(32)++-=-的计算过程,则图2.(13)(23)10-++=B .(31)(32)1-++=.(13)(23)36+++=D .(13)(23)10++-=-C.3+(a,b是常数,且abx.下列结论:第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)()2213032-⎛⎫︒--+- ⎪⎝⎭.)10521x x -+><-在数轴上表示出它的解集,并求出它的正整数解.ABCD 中,BCD ∠的平分线交AD ,3EF =,求BC 的长.如图2,求遮阳棚前端B 到墙面AD 的距离;如图3,某一时刻,太阳光线与地面夹角60CFG ∠=︒,求遮阳棚在地面上的遮挡宽度的长(结果精确到1cm ).(参考数据:sin 720.951,cos 720.309,tan 72 3.078,3 1.732︒≈︒≈︒≈≈)分)近年来,网约车给人们的出行带来了便利,林林和数学兴趣小组的同学对“美团网约车司机收入频数分布表:月收入4千元5千元9千元10千元人数(个)3421根据以上信息,分析数据如表:思考问题:1,a a ⎫⎪⎭,1,R b b⎛⎫⎪⎝⎭,求直线OM 的函数解析式(用含a ,b 的代数式表示),并说明OM 上;证明:13MOB AOB ∠=∠.求c 的值及顶点M 的坐标,如图2,将矩形ABCD 沿x 轴正方向平移t 个单位()03t <<得到对应的矩形A B C ''知边C D '',A B ''分别与函数24y x x c =-+的图象交于点P ,Q ,连接PQ ,过点P 作PG 于点G .①当2t =时,求QG 的长;PGQ △1,调整菱形ABCD ,使90A ∠=︒,当点M 在菱形ABCD 外时,在射线BP 上取一点BN DM =,连接CN ,则BMC ∠=,MCMN=操作探究二2024年中考第一次模拟考试(山东济南卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .【答案】A【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【详解】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯【答案】C【分析】本题考查了科学记数法:把一个绝对值大于等于10的数表示成10n a ⨯的形式(a 大于或等于1且小于10,n 是正整数);n 的值为小数点向左移动的位数.根据科学记数法的定义,即可求解.【详解】解:972亿10972000000009.7210⨯=,故选:C .3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B.C..【答案】B【分析】本题考查了轴对称图形和中心对称图形的识别.根据轴对称图形和中心对称图形的定义判断即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、是轴对称图形,不是中心对称图形,本选项不符合题意;、是轴对称图形,也是中心对称图形,本选项符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;.三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)【答案】2或3/3或2【分析】过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点,过点M 作MD x ⊥轴于点D ,设直线l 的解析式为y x b =-+,由直线l 与直线y x =-平行可得45OPA ∠=︒,即可证明MDE 与OEF 均为等腰直角三角形,进而可求出点E 、F 的坐标,根据中点坐标公式可求出MF 和ME 的中点坐标,代入y x b =-+可求出b 值,即可得点P 坐标,即可求解.【详解】如图,过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点.直线l 与直线y x =-平行,∴设直线l 解析式为y x b =-+,过点M 作MD x ⊥轴于点D ,则3OD =,2MD =,直线l 的解析式为y x b =-+,45OPD ∴∠=︒,45OFE OEF ∴∠=∠=︒,MDE ∴ 与OEF 均为等腰直角三角形,2DE MD ∴==,1OE OF ==,三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),“滴滴”网约车司机收入频数分布表:月收入4千元5千元9千元人数(个)342根据以上信息,分析数据如表:,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.2024年中考第一次模拟考试(山东济南卷)数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678910A C C CB BC A C B第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.(12分)【详解】(1)解: 四边形ABCD 是正方形,CD ,90BCD ∠=︒,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中考模拟试卷说明:本试卷共8页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上) 1.|3|-的相反数是( )A .3B .13C .13-D . 3-2.下列运算正确的是( )A .624a a a =⋅B .23522=-b a b aC .()523a a =-D .()633293b a ab = 3.估算224+的值( )A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间 4. 如图,桌面上有一个一次性纸杯,它的俯视图应是A. B. C. D.5. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行6.观察泰州市统计局公布的“十五”时期我市农村居民人均收入A CB A ' B 'C ' (第5题) 图2图1每年比上一年增长率的统计图,下列说法正确的是( ) A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加 7.已知四边形ABCD 是平行四边形,下列结论中不正确的有( ) ○1当AB=BC 时,它是菱形 ○2当AC ⊥BD 时,它是菱形 ○3当∠ABC=900时,它是矩形 ○4当AC=BD 时,它是正方形 A .1组 B .2组 C .3组 D .4组 8.今年是祖国母亲60岁生日,小明、小敏、小新商量要在国庆前夕给祖国母亲献礼,决定画5幅国画表达大伙的爱国之情。
小明说:“我来出一道数学题:把剪5幅国画的任务分配给3个人,每人至少1幅,有多少种分配方法?”小敏想了想说:“设各人的任务为x 、y 、z ,可以列出方程x+y+z=4。
”小新接着说:“那么问题就成了问这个方程有几个正整数解。
”现在请你说说看:这个方程正整数解的个数是( )A .7个B .6个C .5个D .3个 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 如图,是一个简单的数值运算程序.当输入x 的值为-4,则输出的数值为_________.10.在函数中,自变量x 的取值范围是___________.11.国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000m 2,将260 000用科学计数法表示为_________ .12.2009年全国教育经费计划支出1980亿元,比2008年增加380亿元,则2009年全国教育经费的增长率为5 2 + =x xy 输入x×(-3) -2 输出第9题图___________.13.如图,P 是∠α的边OA 上一点,且点P 的坐标为()3,4,则sin α的值为_________.14.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知250度近视眼镜镜片的焦距为0.4米,则眼镜度数y 与镜片焦距x 之间的函数关系式为_________.15.已知M(a ,b)是平面直角坐标系xOy 中的点,其中a 是从l ,2,3三个数中任取的一个数,b 是从l ,2,3,4四个数中任取的一个数.定义“点M(a ,b)在直线x+y=n 上”为事件Q n (2≤n≤7,n 为整数),则当Q n 的概率最大时为______.16.如图,两个同心圆,大圆半径为5cm ,小圆的半径为3cm ,若大圆的弦AB 与小圆相交,则弦AB 的取值范围是_________.17.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是1,则六边形的周长是_________.18.如图,正方形OABC 的面积是4,点B 在反比例函数(00)ky k x x =><,的图象上.若点R 是该反比例函数图象上异于点B的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S=m(m 为常数,且0<m<4)时,点R 的坐标是________(用含m 的代数式表示)三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:A B 第16题图·第17题图(1)102006)21()23(1-+--- ; (2)232(1)121x x x x x ---÷--+.20.(本题满分8分)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务. 王刚同学在本学期开学初对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:时间分组 0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5频 数2025301510(1)样本中暑假做家务的时间在20.5~40.5的频率为_________.(2)根据表中数据补全图中的频数分布直方图.(3)样本的中位数所在时间段的范围是 _____.(4)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间? 21.(本题满分8分)如图,(1),A 、B 两个转盘分别被分成三个、四个相同的扇形,分别转动A 盘、B 盘各一次(若指针恰好指在分割线上,则重转一次,直到指针指向一个数字为止)。
(1) 两个指针所指的区域内的数字之和大A 图1 B6547654332211A 图2 B(第21题图)于7的概率为_________. (2) 如果将图(1)中的转盘改为图(2),其余不变,用列表(或画树状图)的方法,求两个指针所知区域的数字之和大于7 的概率。
22.(本题满分8分)甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?23.(本题满分10分)(1) 填空:如图1,在正方形PQRS 中,已知点M 、N 分别在边QR 、RS 上,且QM=RN ,连结PN 、SM 相交于点O ,则∠POM=_____度 . (2) 如图2,在等腰梯形ABCD 中,已知AB ∥CD ,BC=CD ,∠ABC=60°. 以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.24.(本题满分10分)如图,在以O 为原点的直角坐标系中,点A 、图2 图1 OC 分别在x 轴、y 轴的正半轴上,点B (a ,b )在第一象限,四边形OABC 是矩形,若反比例函数x ky(k >0,x>0)的图象与AB 相交于点D ,与BC 相交于点E ,且BE=CE.(1)求证:BD=AD ;(2)若四边形ODBE 的面积是9,求k 的值(第24题)25.(本题满分10分)如图,已知某小区的两幢10层住宅楼间的距离为AC=30 m ,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m .假设某一时刻甲楼在乙楼侧面的影长EC=h ,太阳光线与水平线的夹角为α .(1) 用含α的式子表示h(不必指出α的取值范围);(2) 当α=30°时,甲楼楼顶B 点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光 ?ED yxCABO26.(本题满分10分)如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P 、Q 分别从点F 、A 出发向右移动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点E 时,两个点都停止运动。
(1)请在6×8的网格纸中画出运动时间t 为2秒时的线段PQ ; (2)如图2,动点P 、Q 在运动的过程中,PQ 能否垂直于BF ?请说明理由。
(3)在动点P 、Q 运动的过程中,△PQB 能否成为等腰三角形?若能,请求出相应的运动时间t ;若不能,请说明理由.27.(本题满分12分)兴化金三角华扬经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会A (Q )AQBBE EF F (P ) P增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)据(2)中的函数关系式说明,该经销店要获得最大月利润,售价应定为每吨多少元;(4)小明说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.28.(本题满分12分)如图,在等腰梯形ABCD中,AB‖CD,已知6=AB ,22=BC ,︒=∠45DAB ,以AB 所在直线为x 轴,A 为坐标原点,建立直角坐标系,将等腰梯形ABCD 绕A 点按顺时针方向旋转︒90得到等腰梯形OEFG (O 、E 、F 、G 分别是A 、B 、C 、D 旋转后的对应点)(如图).⑴在直线DC 上是否存在一点P ,使EFP ∆为等腰三角形,若存在,写出出P 点的坐标,若不存在,请说明理由.⑵将等腰梯形ABCD 沿x 轴的正半轴平行移动,设移动后的x OA =(0<x ≤6),等腰梯形ABCD 与等腰梯形OEFG 重叠部分的面积为y ,求y 与x 之间的函数关系式.并求出重叠部分的面积的最大值。
第28题图参考答案及评分标准二、填空题(每题3分,共30分)9.10 10.X >-5 11.2.6×105 12.23.75%13.54 14.y= x 100(x >0) 15.4116.8<AB ≤10 17.30 18.(24-m ,48-m )或(48-m ,24-m )三.解答题(本大题有10题,共96分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分8分) (1)原式=-1-1+2 ………………………………………………………(3分)=0 ……………………………………………… (4分)(2)原22)1(2)1113(--÷----=x x x x x ………………………………1分2)1(1)2)(2(2--⋅--+-=x x x x x …………………………………………3分22+--=x x …………………………………………4分20.(本题满分8分)(1)0.25…………………………………………………………………………2分(2)如图(略)…………………………………………………………………4分(3)40.5~60.5……………………………………………………………………6分(4)3015101001260++⨯×1260=693………………………………………………………7分答:大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.…8分21.(本题满分8分)(1)21……………………………………………………………………………3分(2)将标有“6”的半圆等分成两个扇形,相当于将(1)中树状图的“7”处改为“6”,则两个指针所指的区域内的数字之和大于7的概率为125………………………………8分22.(本题满分8分)解:设每天加工x 个玩具,那么乙每天加工(x -35)个玩具,……………1分由题意得:x x -=3512090,……………… 4分 解得:15=x , ………………6分 经检验:15=x 是原方程的根,2035=-x 。