大学物理第五版ch13.1-13.3

合集下载

大学物理第五版课后答案上完整版(供参考)

大学物理第五版课后答案上完整版(供参考)

1-1 。

分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1-2。

分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1-3 。

分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 。

分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5 。

《大学物理学》习题解答(第13章 稳恒磁场)(1)

《大学物理学》习题解答(第13章 稳恒磁场)(1)
第 13 章 稳恒磁场
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R

(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,

大学物理(第五版)课后习题答案

大学物理(第五版)课后习题答案

面向21 世纪课程教材学习辅导书习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答。

与上一版相比本书增加了选择题更换了约25的习题。

所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际。

此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学、电磁学、波动过程和光学热物理、相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力。

物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路。

只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力。

有鉴于此重分析、简解答的模式成为编写本书的指导思想。

全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生―即物穷理‖的精神通过解题过程体验物理科学的魅力和价值尝试―做学问‖的乐趣。

因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助。

本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100 3102 -93 中规定的法定计量单位。

本书由马文蔚教授主编由殷实、沈才康、包刚、韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢。

由于编者的水平有限敬请读者批评指正。

编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础但仅仅记住一些公式是远远不够的求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等根据模型、条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用1正确选择物理模型和认识运动过程力学中常有质点、质点系、刚体等模型每种模型都有特定的含义适用范围和物理规律采用何种模型既要考虑问题本身的限制又要注意解决问题的需要例如用动能定理来处理物体的运动时可把物体抽象为质点模型而用功能原理来处理时就必须把物体与地球组成一个系统来处理再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具2.叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化―复杂‖为―简单‖此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等叠加原理在诸如电磁学振动、波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟3.类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如txddv 与tθωdd taddv 与tωαdd 其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式这种类比不仅运动学有动力学也有如maF 与JαM0dvvmmtF 与0dLωJωtM 2022121dvvmmxF 与2022121dωJωJθM 可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩此外还有许多可以类比的实例如万有引力与库仑力、静电场与稳恒磁场电介质的极化与磁介质的磁化等等只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通4微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的一般来说它们是时空坐标的函数运用微积分可求得质点的运动方程和运动状态这是大学物理和中学物理最显著的区别例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数另外对物理量数学表达式进行合理变形就可得出新的物理含义如由tddav借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由tddvr也可求得质点的运动方程以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件在力学学习中我们会发现ta0vv和2021ttarv等描述质点运动规律的公式只是式tt0ddavvv0和式tttrdd000arv在加速度a为恒矢量条件下积分后的结果此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具2 如何对矢量函数进行微积分运算我们知道很多物理量都是矢量如力学中的r、v、a、p 等物理量矢量既有大小又有方向从数学角度看它们都是―二元函数‖在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对x、y 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量a 、v、s 等进行微积分运算3 积分运算中的分离变量和变量代换问题以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F m a 求得a的表达式再由式dv adt 通过积分运算求得v其中如果力为时间t 的显函数则a at此时可两边直接积分即ttta0ddvvv0但如果力是速率v 的显函数则a av此时应先作分离变量后再两边积分即tta0dd1vvvv0又如力是位置x 的显函数则aax此时可利用txddv得vxtdd并取代原式中的dt再分离变量后两边积分即xxtxa0ddvvvv0 用变量代换的方法可求得vx表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量5.求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选运用牛顿定律、转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大因而只要问题不涉及加速度则应首先考虑以下路径2 角动量方法如问题不涉及加速度但涉及时间此法可首选3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题当然对复杂问题几种方法应同时考虑此外三个守恒定律动量守恒、能量守恒、角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题总之应学会从不同角度分析与探讨问题以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠―悟性‖但这种―悟性‖产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至t Δt时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ r 平均速度为v平均速率为v 1 根据上述情况则必有 A Δr Δs Δr B Δr ≠ Δs ≠ Δr当Δt→0 时有 dr ds ≠ dr C Δr ≠ Δr ≠ Δs当Δt→0 时有 dr dr ≠ ds D Δr ≠ Δs ≠ Δr当Δt→0 时有 dr dr ds 2 根据上述情况则必有 A v v v v B v ≠v v ≠ v C v v v ≠ v D v ≠v v v分析与解1 质点在t 至t Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs PP′ 位移大小Δr PP′而Δr r - r 表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能但当Δt→0 时点P′无限趋近P 点则有 dr ds但却不等于dr故选B 2 由于 Δr ≠Δs故tstΔΔΔΔr即 v ≠v 但由于 dr ds故tstddddr即 v v由此可见应选C 1 -2 一运动质点在某瞬时位于位矢rxy的端点处对其速度的大小有四种意见即1trdd 2tddr 3tsdd 422ddddtytx 下述判断正确的是 A 只有12正确B 只有2正确 C 只有23正确 D 只有34正确分析与解trdd表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率通常用符号vr表示这是速度矢量在位矢方向上的一个分量tddr表示速度矢量在自然坐标系中速度大小可用公式tsddv计算在直角坐标系中则可由公式22ddddtytxv求解故选D 1 -3 质点作曲线运动r 表示位置矢量v表示速度a表示加速度s 表示路程a 表示切向加速度对下列表达式即1d v /dt a2dr/dt v3ds/dt v4d v /dt a 下述判断正确的是A 只有1、4是对的B 只有2、4是对的C 只有2是对的D 只有3是对的分析与解tddv表示邢蚣铀俣萢 它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用trdd在极坐标系中表示径向速率vr如题1 -2 所述tsdd在自然坐标系中表示质点的速率v而tddv表示加速度的大小而不是切向加速度a 因此只有3 式表达是正确的故选D 1 -4 一个质点在做圆周运动时则有 A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量a 起改变速度大小的作用而法向分量an起改变速度方向的作用质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的至于a 是否改变则要视质点的速率情况而定质点作匀速率圆周运动时a 恒为零质点作匀变速率圆周运动时a 为一不为零的恒量当a 改变时质点则作一般的变速率圆周运动由此可见应选B 1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作 A 匀加速运动θcos0vv B 匀减速运动θcos0vv C 变加速运动θcos0vv D 变减速运动θcos0vv E 匀速直线运动0vv 分析与解本题关键是先求得小船速度表达式进而判断运动性质为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为22hlx其中绳长l 随时间t 而变化小船速度22ddddhltlltxv式中tldd表示绳长l随时间的变化率其大小即为v0代入整理后为θlhlcos/0220vvv方向沿x 轴合蛴伤俣缺泶锸娇膳卸闲〈 鞅浼铀僭硕 恃 讨论有人会将绳子速率v0按x、y 两个方向分解则小船速度θcos0vv这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为32262ttx式中x 的单位为mt 的单位为s求1 质点在运动开始后4.0 s内的位移的大小 2 质点在该时间内所通过的路程3 t4 s时质点的速度和加速度分析位移和路程是两个完全不同的概念只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等质点在t 时间内的位移Δx 的大小可直接由运动方程得到0Δxxxt而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了为此需根据0ddtx来确定其运动方向改变的时刻tp 求出0 tp 和tp t 内的位移大小Δx1 、Δx2 则t 时间内的路程21xxs如图所示至于t 4.0 s 时质点速度和加速度可用txdd和22ddtx两式计算解 1 质点在4.0 s内位移的大小m32Δ04xxx 2 由0ddtx 得知质点的换向时刻为s2pt t0不合题意则m0.8Δ021xxx m40Δ242xxx 所以质点在4.0 s时间间隔内的路程为m48ΔΔ21xxs 3 t4.0 s时1s0.4sm48ddttxv2s0.422m.s36ddttxa 1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图a所示设t0 时x0试根据已知的v-t 图画出a-t 图以及x -t 图分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中AB、CD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线又由速度的定义可知x-t 曲线的斜率为速度的大小因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线根据各段时间内的运动方程xxt求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图解将曲线分为AB、BC、CD 三个过程它们对应的加速度值分别为2sm20ABABABttavv 匀加速直线运动0BCa 匀速直线运动2sm10CDCDCDttavv 匀减速直线运动根据上述结果即可作出质点的a-t 图图B 在匀变速直线运动中有2021ttxxv 由此可计算在0 2 和4 6 时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0 2 和4 6 时间内的x -t 图在2 4 时间内质点是作1sm20v的匀速直线运动其x -t 图是斜率k20的一段直线图c 1 -8 已知质点的运动方程为jir222tt式中r 的单位为mt 的单位为 求 1 质点的运动轨迹2 t 0 及t 2 时质点的位矢3 由t 0 到t 2 内质点的位移Δr 和径向增量Δr 4 2 内质点所走过的路程s 分析质点的轨迹方程为y fx可由运动方程的两个分量式xt和yt中消去t 即可得到对于r、Δr、Δr、Δs 来说物理含义不同可根据其定义计算其中对s的求解用到积分方法先在轨迹上任取一段微元ds则22dddyxs最后用ssd积分求 解1 由xt和yt中消去t 后得质点轨迹方程为2412xy 这是一个抛物线方程轨迹如图a所示2 将t 0 和t 2 分别代入运动方程可得相应位矢分别为jr20 jir242 图a中的P、Q 两点即为t 0 和t 2 时质点所在位置3 由位移表达式得jijirrr24Δ020212yyxx 其中位移大小m66.5ΔΔΔ22yxr 而径向增量m47.2ΔΔ2020222202yxyxrrrr 4 如图B所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds则22dddyxs由轨道方程可得xxyd21d代入ds则2 内路程为m91.5d4d402xxssQP 1 -9 质点的运动方程为23010ttx 22015tty 式中xy 的单位为mt 的单位为 试求1 初速度的大小和方向2 加速度的大小和方向分析由运动方程的分量式可分别求出速度、加速度的分量再由运动合成算出速度和加速度的大小和方向解 1 速度的分量式为ttxx6010ddv ttyy4015ddv 当t 0 时vox -10 m· -1voy 15 m· -1 则初速度大小为120200sm0.18yxvvv 设vo与x 轴的夹角为α则23tan00xyαvv α123°41′ 2 加速度的分量式为2sm60ddtaxxv 2sm40ddtayyv 则加速度的大小为222sm1.72yxaaa 设a 与x 轴的夹角为β则32tanxyaaβ β-33°41′或326°19′ 1 -10 一升降机以加速度1.22 m· -2上升当上升速度为2.44 m· -1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距2.74 m计算1螺丝从天花板落到底面所需要的时间2螺丝相对升降机外固定柱子的下降距离分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 y1t和y2 y2t并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度升降机厢的高度就是螺丝或升降机运动的路程解1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为20121attyv 20221gtthyv 当螺丝落至底面时有y1 y2 即20202121gtthattvv s705.02aght 2 螺丝相对升降机外固定柱子下降的距离为m716.021202gttyhdv 解2 1以升降机为参考系此时螺丝相对它的加速度大小a′g a螺丝落至底面时有2210tagh s705.02aght 2 由于升降机在t 时间内上升的高度为2021atthv 则m716.0.。

大学物理教学设计:光栅衍射

大学物理教学设计:光栅衍射
了单缝衍射,学生感觉单缝衍射比较好理解。在教学过程中,通过教材在两个实验的基 础上进行延伸,拓展,引导学生对比分析发现:光通过不同形状的障碍物发生衍射时, 其衍射图样不一样。分析为什么光学显微镜放大倍数受到限制,以及对光在介质中沿直 线传播规律进一步再认识,使学生对光的衍射现象的认识得到升华光通过不同形状的障 碍物发生衍射时,其衍射图样不一样。还有光栅衍射的内容,给出了更特别的衍射,栓 释了无数条单缝衍射光发生干涉看到的结果。 (二)学生学习基础分析
一、圆孔衍射
中心:84%的能量
三、光栅方程
dsin m
二、瑞利判据 提高数值孔径 增大入射光波长
四、光栅方程的应用
六、教学评价
评价 项目
评价标准
等级(权重)分

自评 师
优秀 良好 一般 较差

知识 理解 掌握
1、圆孔衍射 2、瑞利判据 3、光栅方程 4、光栅方程的应用
10
8
5
3
10
8
5
3
10
8
5
3
用,关键着眼点的把握。
板书回顾。
圆孔衍射、瑞利判据、分辨率、光 总 结 加 强 概 念 和 基 本 公
栅方程及应用。
式及其运算。
6 练习 题
口述题目。
课本 315 页习题 13.8。
要求学生运用光栅方程 自主解题。
(二)教学板书设计
山西农业大学信息学院
13.3 圆孔衍射 光学仪器的分辨本领 13.4 光栅衍射
生活中遇到的问题。
三、教学内容设计
(一)内容纲要 1、圆孔衍射的艾里斑,; 2、瑞利判据及提高分辨率的方法; 3、光栅衍射的光栅方程。
(二)教学重点 1、了解圆孔衍射和瑞利判据; 2、掌握光栅方程。

大学物理13.3波函数薛定谔方程

大学物理13.3波函数薛定谔方程

2 y2
2 z 2
( x,
y, z)
2m 2
(
E
V
)
(
x,
y,
z)
0
若粒子在一维空间运动,则
d2 dx2
(
x)
2m 2
(
E
V
)
(
x)
0
1993年克罗米等人,用扫描隧道显微镜发 现了量子围栏中的驻波,再次直观地证实了电 子的波动性,支持了薛定谔波动力学.
13.3.3 一维无限深方势阱中运动的粒子
假设粒子只能沿x 轴作一维运动,且势能 函数具有如下形式
V ( x) 0 V ( x)
0 xa x 0和x a
V ( x)
o
a
x
由于 V与( x时) 间无关,因此在势阱中运动的 粒子处于定态,可以用一维定态薛定谔方程 求解.
在区域内 x 0和,x a ,V具( x有) 有限能量 的粒子不可能出现.
因此 (x) 0
在区域内 0 x , a V (因x)此 有0.
薛定谔的波动方程成功地解决了氢原子光 谱等一系列重大问题.
波动力学与矩阵力学是完全等价的,是 同一种力学规律的两种不同表述,而且它们 都属于非相对论性的量子力学.
下面用一类比较简单的问题即粒子在恒定 力场中的运动,由于这种问题中势能函数V 和粒子能量E 与时间无关,这时粒子处于定 态,则粒子的定态波函数可以写成
则 4B3 2xe2Bx 2Bx2e2Bx 0
所以 x, 0 x, 1 B时x,概率密度 有 极值 .( x) 2
而只有二阶导数
d2 dx 2
(x)2
x 1 B
0
所以在 x 处1,B概率密度有最大值,即粒 子在该位置处出现的概率最大.

大学物理讲义(第13章波动光学)第一节

大学物理讲义(第13章波动光学)第一节

第13章波动光学光是能激起视觉的一类电磁波.人们主要通过光来接受自然界的信息.研究光现象、光的本性和光与物质相互作用等规律的学科称为光学.它是物理学的又一个重要分支.光学通常分为几何光学、波动光学和量子光学三部分.当光的波长可以忽略,其波动效应不明显时,把光的能量看成是沿着一根根光线传播的,光遵从直进、反射、折射等定律,这便是几何光学.波动光学研究的是光在传播过程中显示出的干涉、衍射和偏振等波动现象和特点.通常人们把建立在光的量子性基础上,深入到微观领域研究光与物质相互作用规律的分支学科,称为量子光学.从20世纪60年代以来,由于激光和光信息技术的出现,光学又有了新的发展,并且派生出许多属于现代光学范畴的一些新分支.本章讨论光的波动理论.§13.1 光干涉的一般理论光是一定波长范围内的电磁波.可见光是能够被人的眼睛直接看到的电磁波,它的波长范围在400~760nm之间.一、光的叠加原理在通常的情况下,光和其他波动一样,在空间传播时,遵从波的叠加原理.当几列光波在空间传播时,它们都将保持原有的特性,此即光波的独立传播原理.由此,在它们交叠的区域内各点的光振动是各列光波单独存在时在该点所引起的光振动的矢量和,这就是光的叠加原理.但应指出,光并不是在任何情况下都遵从这一原理的.当光通过非线性介质(例如变色玻璃),或者光强很强(如激光,同步辐射)时,该原理不成立.通常当强光通过介质时将出现许多非线性效应,研究这类光现象的理论称为非线性光学.这是现代光学中很活跃的研究领域之一.不过,在本章所涉及的范围内,光波叠加原理仍然是一个基本的原理.二、光的相干叠加1. 光波的相干条件在讨论机械波时,我们已给出了波干涉的定义,即当两列波同时在空间传播时,在两波交叠的区域内某些地方振动始终加强,而另一些地方振动始终减弱的现象.光的干涉定义与之完全相同.能产生干涉现象的光叫相干光.干涉并不违背叠加原理,且正是后者的结果.但并不是任何两列波在空间相遇时都能发生干涉,产生干涉是有条件的,即干涉是特殊条件下的叠加.波的相干条件是:1) 频率相同;2) 振动方向相同(或存在相互平行的振动分量);3) 具有恒定的相位差.这三个条件,对机械波来说比较容易实现,因此观察机械波的干涉现象比较方便.但对光波来说就不那么容易做到了.这与普通光源的发光机制有关.光是光源中大量分子或原子等微观粒子的能量状态发生变化而引起的电磁辐射.近代物理学已完全肯定分子或原子的能量是量子化的,即能量具有分立值,当分子或原子由较高能态跃迁到较低能态时就发出一个波列,一个波列的长度是有限的,持续的时间约为10-8s.发出一个波列后,它还可以从外界吸收能量,由低能态跃迁到高能态,当它再次由高能态向低能态跃迁时它就再发出一个波列.这是一个随机的过程,每一个原子或分子先后发射的不同波列以及不同原子或分子同时发射的各个波列,彼此之间在初相上没有联系,振动方向也各不相同,频率也可以不同.我们所观察到的光看起来是连续的光波,实际上是由大量原子或分子发射的许许多多彼此完全独立的有限长波列组成的,如图13.1所示.2. 相干光的获得由前面的讨论可知,普通光源发出的光是由光源中各个分子或原子发出的波列组成的,而这些波列之间没有固定的相位关系.因此,来自两个独立光源的光波,即使频率相同,振动方向相同,它们的相位差也不可能保持恒定,因而不是相干光;同一光源的两个不同部分发出的光,也不满足相干条件.因此也不是相干光.只有从同一光源的同一部分发出的光通过某些装置进行分束后,才能获得符合相干条件的相干光.因此获得相干光的方法的基本原理是把由光源上同一点发出的光设法“一分为二”,然后再使这两部分叠加起来,由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,即每一个光波列都分成两个频率相同、振动方向相同、相位差恒定的波列,因而这两部分是满足相干条件的相干光.把同一光源发出的光分成两部分的方法有两种:一种叫分波振面法,由于同一波振面上各点的振动具有相同相位,所以从同一波振面上取出的两部分可以作为相干光源.如杨氏双缝实验等就用了这种方法;另一种叫分振幅法,其原理是利用反射、折射把波面上某处的振幅分成两部分,再使它们相遇从而产生干涉现象.例如薄膜干涉和迈克耳孙干涉仪等就采用了这种方法.上面讨论的是普通光源,对激光光源,所有发光的原子或分子都是步调一致的动作,所发出的光具有高度的相干稳定性.从激光束中任意两点引出的光都是相干的,可以方便的观察到干涉现象,因而不必采用上述获得相干光束的方法.3. 相干光的干涉光波是电磁波,在光波中,产生感光作用与生理作用的主要是电场强度E ,因此,一般我们将E 称为光矢量.如图13.2所示,光振幅为21E E ,的两束相干光,在空间叠加,按照光的干涉理论知,叠加后任一点P 的合振幅为 )cos( 12102021222122r r E E E E E 在波动光学中,主要讨论的是光波所到之处的相对光强.由于光强(平均能流密度)2E I ,因此可直接把光强表示为2E I ,所以由上式得)cos(121020212122r r I I I I I (13.1) 21I I 、分别为两束相干光的强度,I 为叠加后的强度.可见,两束相干光叠加后,空间各点的光强取决于两束光波在该点的相位差:1210202r r (13.2) 2121212*********I I I I I P k I I I I I P k k min max ,)(,),,,(点的光强最小点的光强最大当 (13.3) 其他位置的光强介于两者之间,即max min I I IP 点的光强分布曲线如图13.3所示.如果两束相干光的光强相等,则干涉后040 min max ,I I I必须指出,对于两束相干光,只有在I 1=I 2或I 1~I 2的情况下,才能观察到清楚的明暗相间的干涉图样;当 I 1、I 2相差甚大时, I max 与I min 相差不大,干涉图样模糊不清.对于两束相干光,在很多情况下初相相同,这时r r r 2212 在这种情况下,干涉明暗点的位置决定于两束光到观察点的波程差 :暗点亮点212210/)(),,,(k k k r (13.5) 三、光程 光程差上面讨论了两束相干光在真空中传播时的干涉情况,现在讨论两束相干光在介质中传播时的干涉情况.我们知道,光在真空中传播的速度为c,在介质中传播的速度为n c / ;因此,光在介质中的波长为nn c /' λ为光在真空中的波长.如上所述,两束初相相同的相干光,在真空中传播时,到空间某观察点的波程差为r ,则这两束光到该点的相位差为r 2 如果两束光在折射率为n 的介质中传播,它们到观察点的相位差为r n r 22' 由此可见,两束光在真空中传播时,它们到某点的相位差决定于波程差r ;而两束光在介质中传播时,它们到某点的相位差决定于波程差r 与介质折射率n 的乘积,这里n r 称为这两束光的光程差;一般把折射率n 与波程r 的乘积称为光程,21I I 212I I21I I a )(21I I b )(图13.3 两相干光在相遇点的光强随相位差的分布曲线用L 表示,即L=nr .普遍情况下,两束光的光程差δ表示两束光光程之差.如图13.4所示.112212r n r n L L (13.6)两相干光的干涉效果决定于相位差,而相位差决定于光程差;因此,光的干涉规律决定于光程差δ.可见,光程差是讨论光的干涉现象的非常重要的概念.许多干涉装置都满足两束相干光初相相等的条件,因此相位差与光程差的关系及干涉明、暗点的位置决定于光程差δ2 干涉明暗点位置 暗点明点212210/)(),,,(k k k (13.7) 注意:式(13.5 )与(13.7 )实际上是一致的,前者适用于真空情况(r ),而后者则适用一般情况,它是光的干涉中最基本的公式.由它可知,要确定干涉图样的规律,就必须计算两束光的光程差δ.。

大学物理(13.3.1)--绝热过程

大学物理(13.3.1)--绝热过程

一、绝热过程(Adiabatic Process )1.特点:系统与外界没有热量交换的过程,Q =0。

2.内能、功和热量的变化系统经过绝热过程,从状态()111T V P ,,变成()222T V P ,,内能增量 ()12,12T T C Mm E E E m V -=-=∆热量 Q =0由热力学第一定律 0=+∆=W E Q ,得功 ()12,T T C Mm W m V -=-用状态参量P ,V 表示,根据状态方程RPV T M m =,可知 ()122112211,-=γV P V P V P V P R C W m V --=证明:由定义可知,mV m V m V m V m P C R C R C C C ,,,,,1+=+==γ因而 1,-=γmV C R 故 11,-=γR C m V 因而功 1 2211-γV P V P W -=3.特征:在绝热过程中,系统对外界所作的功是由系统内能的减少来完成的。

4.绝热方程:对于绝热过程,由热力学第一定律 0=+=dW dE dQ 即 PdV dT C Mm m V +=,0 (1)由于在绝热过程中理想气体状态方程RT Mm PV =中三个状态参量都在变化,所以取微分 RdT Mm VdP PdV =+ R M m VdP PdV dT += 将dT 代入(1)式得RPdV Vdp C PdV C m V m V -=+,, VdPC RPdV PdV C m V m V ,,-=+即 VdPC PdV C m V m P ,,-=两边同除以PV C m V ,并利用m V m P C C ,,=γ,得 PdP V dV -=γ积分 const V P =+ln ln γ所以 const PV =γ ——泊松方程将上式与理想气体的状态方程结合即可得另外的两个式子。

const T V =-1γ const V P =--γγ15.绝热线:等温线 const PV = 两边求导得:A 点的斜率VP dV dP -= 绝热线 const PV =γ两边求导得:A 点的斜率 VP dV dP γ-= 所以在PV 图上,绝热线比等温线要陡。

第13章 量子物理基础《大学物理(下册)》教学课件

第13章  量子物理基础《大学物理(下册)》教学课件

13.1 热辐射 普朗克的能量子假说
图13-2
13.1 热辐射 普朗克的能量子假说
1. 斯特藩-玻尔兹曼定律
在图13-2中,每一条曲线都反映了一定温度下,黑体的单色
辐出度MBλ(T)随波长λ的分布情况.每一条单色辐出度曲线与横坐 标轴所夹部分的面积都等于该温度下黑体的总辐出度,即
W(T)=∫∞0MBλ(T)dλ
13.1 热辐射 普朗克的能量子假说
在1870年开始的普法战争中,普鲁士(后来的德国) 打败了法国,得到了50亿法郎的巨额战争赔款,并接收了 法国割让的两个富含铁矿的大省——阿尔萨斯和洛林.普 鲁士为了更好地利用这笔巨款和这两省的钢铁资源,使自 己成为工业强国,大力发展高温炼钢技术与热辐射测温技 术,从而促进了对黑体辐射问题的研究,也打开了通往量 子理论的大门,使物理学进入了一个新的革命时期.
13.1 热辐射 普朗克的能量子假说
单色辐出度的单位为瓦/米3,符号W/m3.物 体的单色辐出度是温度T及所选定的波长λ的函数. 在一定的温度下,Mλ(T)随辐射波长λ的变化而 变化,当物体的温度升高时,Mλ(T 大.另外,当物体的材料和表面情况(如粗糙程度) 不同时,Mλ(T)的大小也不相同.单色辐出度反 映了在不同温度下的辐射能按波长分布的情况.
13.1 热辐射 普朗克的能量子假说
13.1.2 黑体热辐射的实验定律和经典理论的困难
对黑体热辐射的研究是热辐射中最重要的课题.实 验表明,黑体的单色辐出度MBλ(T)仅与温度T和波长 λ有关,与黑体的材料和表面的情况无关.图13-2是在 不同温度下实测的黑体单色辐出度MBλ(T)随波长λ和 温度T变化的曲线图.根据这些实验曲线,可以得出下述 有关黑体辐射的两条普遍定律.
13.1 热辐射 普朗克的能量子假说
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10 8
10 4
4
10 0
10 4
10 8
10 12
10 16
无线电波 红外线 可见光
3 10 m ~ 0.1cm 6 105 nm ~ 760nm 760nm ~ 400nm
紫外线
x 射线
射线 0.04nm
400 nm ~ 5nm 5nm ~ 0.04nm
红外夜视仪
小结 一、光波是横波、光波是电磁波 E H // u E H 1 1 8 1 c 2.9979 10 m s 波速 u 0 0
电偶极子振荡产生的电磁波
c
B
+
c

-
E
E
B
c
见图片
c
2. 电磁波是电场强度 E 与磁场强度H 的矢量波
13.1
光是电磁波
r E E 0 cos ( t ) u r H H 0 cos (t ) u 平面简谐电磁波的性质:
极轴
E

E E1 E2
1
E E 0 cos( t )
2 0
在观测时间τ内,P点的平均强度为:
IE
· r · 2
r1
· P
2
[ E E 2 E10 E 20 cos( 2 1 )]d t 0 1 t 2 2 E10 E 20 2 E10 E 20 cos( 2 1 )d t t 0
I 0
13.2
光源
光波的叠加
小结 一、相干条件
1. 频率相同; 2. 光矢量振动方向平行; 3. 相位差恒定。 二、明纹和暗纹条件 1. 明纹条件: 2kπ , k 0,1,2,3,
I Imax I1 I2 2 I1I2
2. 暗纹条件: ( 2k 1)π , k 0 ,1, 2 ,3,
第13章 波动光学基础
本章内容: 13.1 光是电磁波 13.2 光源 光波的叠加 13.3 获得相干光的方法 杨氏实验 13.4 光程与光程差 13.5 薄膜等厚干涉 13.6 惠更斯-菲涅耳原理 13.7 单缝的夫琅禾费衍射 13.8 衍射光栅及光栅光谱 13.9 线偏振光 自然光 13.10 偏振片的起偏和检偏 马吕斯定律 13.11 反射和折射产生的偏振 布儒斯特定律
S
(3) 电场的环路定理
dΦ B LE dl dt S t dS
(4) 全电流安培环路定理
传导电流和变化电场 D LH dl S( j t ) dS 可以激发磁场
13.1
光是电磁波
1.电磁波的波源 凡做加速运动 的电荷都是电 磁波的波源。 例如:天线中的 振荡电流。 电偶极子振荡。 分子或原子中电 荷的振动。
540 480
460 430
13.1
光是电磁波
电 磁 波 谱
10 10 10 10 10 10 10 10 10 10 10 10 10
频率Hz 长波 无线电波
0 2 4 6 8 10 12 14 16 18 20 22 24
红外线 760nm
短波无线电波
紫外线
400nm
可见光

射线
x 射线
波长 m
绿 青
蓝 紫
577~492 492~470
470~455 455~400
说明: E 称为光矢量,引起视觉效应。
5.0 1014 ~ 5.4 1014 14 14 5.4 10 ~ 6.1 10 6.1 1014 ~ 6.4 1014 14 14 6.4 10 ~ 6.6 10 6.6 1014 ~ 7.5 1014
2
结论:I 正比于 E02 或 H02, 通常 用其相对强度 I 1 E 02 表示。 2
13.1.2 光是电磁波 13.1
光是电磁波
传播速度、反射与折射 、波动特有的干涉和 衍射、横波才有的偏振以及其他实验和理论 均证明:光是电磁波。
可见光七彩颜色的波长和频率范围
光色 波长(nm) 频率(Hz) 红 760~622 3.9 1014 ~ 4.8 1014 橙 622~597 4.8 1014 ~ 5.0 1014 黄 597~577 中心波长 (nm) 660 610 570
1 1 1 2 2 ( E H ) 2 2
E H
u
EH 坡印亭矢量 S E H
1 T
1 波的强度 I : I S T
S
dA
u
Sdt
E 02

t T
t

t T
t
r 1 1 E 0 H 0 cos (t )d t E 0 H 0 2 2 u
如果 I1 I2 I0
I 4 I0
13.2
光源
光波的叠加
干涉减弱(暗纹)
( 2k 1)π , k 0 ,1, 2,3, I Imin I1 I2 2 I1I2
如果 I1 I2 I0 3. 相干条件、相干光源
相干条件: (1) 频率相同; (2)光矢量振动方向平行; (3) 相位差恒定。 相干光源:同一原子的同一次发光。
1 1 2 2 w E H 二、电磁波的能量密度: 2 2
三、电磁波的强度(能流密度) 坡印亭矢量: S E H
1 1 波的强度 :I S E 0 H 0 2 2
c 折射率 n u
r
E 02
13.2 光源 光波的叠加 13.2.1 光源 按发光基本单元激发方式不同,发光过程可分为: (1) 热辐射 自 受 (5) 同步辐射光源 (2) 电致发光 激 发 (6) 激光光源 辐 (3) 光致发光 辐 射 (4) 化学发光 射
位相同或相位差恒定的两束光的叠加。
E E E 2 E10 E20cos( 2 1 )
2 0 2 10 2 20
I I 1 I 2 2 I1I 2 cos(2 1 )
干涉加强 ( 明纹 )
干涉项
2kπ , k 0,1,2,3,
I Imax I1 I2 2 I1I2
I Imin I1 I2 2 I1I2
13.2
光源
光波的叠加
不同时刻振荡电偶 极子附近的电场线
振荡电偶极子附近的电磁场线
p p 0 cos t
B
c
c

+
+ + + + +
-
E
E
B
c
c
(5) 电磁波具有波的共性 ——在介质分界面处 有反射和折射。
c 折射率 n r r 00 u
3.电磁波的能量密度
r
1 1 2 2 w E H 电磁波的能量密度: 2 2
13.1
光是电磁波
能流密度 S 【波的强度 (坡印亭矢量)】
dA u w S uw dA
自发辐射 能级跃迁
E2
波列
. .
E1
E2 E1 / h
波列长 L = t c
非相干(不同原子发的光) 非相干(同一原子先后发的光)
13.2
光源
光波的叠加
13.2.2 光波的叠加 E1 E10 cos(t 1 ) E 2 E 20 cos( t 2 )
传播方向
H
p0 r
(1) E 和 H 传播速度相同、 y 相位相同。
(2) 电磁波是横波。 E H // u
O
z
E H
u
x
(3) 量值关系:
E
H
13.1
光是电磁波
(4) Байду номын сангаас速:
u
1

真空中:c
1
00
2.9979108 m s1
13.1 光是电磁波 13.1.1 电磁波 (电磁场)麦克斯韦方程组的积分形式 (1) 电场的高斯定理 静电场是有源场、感应
D dS q
S
i
电场是涡旋场 传导电流、位移电流产 生的磁场都是无源场 静电场是保守场,变化 磁场可以激发电场
(2) 磁场的高斯定理
B dS 0
2 10 2 20
t
1
t
对于两个普通光源或普通光源的不同部分 t cos( 2 1 )d t 0
0
非相干光
2 2 E 02 E10 E 20
13.2
2 0
光源
2 10
光波的叠加
2 20
E E E 讨论 1. 非相干叠加 I P I1 I2 2. 相干叠加 对于频率相同、光矢量振动方向相同、相
相关文档
最新文档