典型燃气轮机发电设备的技木特点
先进燃气轮机技术的研究与发展

先进燃气轮机技术的研究与发展随着工业化的迅速发展,能源需求越来越大。
燃气轮机(Gas Turbine)是一种重要的能源转换设备,采用连续燃烧燃料来为发电机提供动力。
它是一种高效、低排放、运行可靠的内燃机型式,广泛应用于航空、能源、交通以及军事等行业。
近年来,随着技术的不断创新,燃气轮机技术也在不断发展,并成为一种更加先进和高效的能源转换方式。
一、先进燃气轮机技术的发展历程燃气轮机的基本原理是利用压缩空气,在燃烧器中燃烧燃料,产生高温高压的气体去推动涡轮,带动机械转动。
燃气轮机的发明可追溯到1903年的法国,但是它的实际应用却是在第二次世界大战之后。
20世纪50年代和60年代是燃气轮机技术发展的黄金时期,大量的燃气轮机被用于航空发动机、电力站、海洋石油勘探平台等领域。
20世纪70年代以后,随着能源危机的到来、环保意识的提高以及新材料科技的出现,燃气轮机技术也开始了新的一轮发展。
为了提高燃气轮机的效率和降低它的排放量,人们开始研究先进的燃气轮机技术,例如陶瓷材料的应用、高温材料的使用以及复合材料的应用。
同时,人们还通过改善设计来提高燃气轮机的可靠性和降低运行成本。
二、先进燃气轮机技术的主要发展方向1. 高效率高效率是先进燃气轮机技术的核心目标。
通过提高压比、降低透平内通气漏失以及利用废气余热等方式,可以提高燃气轮机的效率。
在燃气轮机的研究和生产中,各种技术手段的不断改进使得燃气轮机的效率有了不断提高,这有效地减少了人类对能源资源的开采和消耗,大大提高了能源利用效率。
2. 低排放环保问题一直是燃气轮机技术面临的主要挑战之一。
燃气轮机燃烧时会产生大量的氮氧化物(NOx)、一氧化碳(CO)等有害气体,对环境和人体健康造成影响。
为了降低燃气轮机的排放量,人们开始研究低排放技术,例如超低NOx低排放燃烧系统、降低污染物排放的催化转化技术等,这些技术的应用有效地减少了燃气轮机的污染排放,实现了燃气轮机清洁环保的目标。
燃气轮机技术简介以及9FA重型燃气轮机设备介绍(终版)

润滑油系统
CO2储罐 CO2排放控制盘 CO2分配管道 危险区域封闭空间 手动消防设备 多区域水消防系统
消防系统
温感探测器 烟感探测器
声光报警设备
消防控制系统
谢谢大家!
Q&A?
152为国内首台联合循环供热抽气汽轮 机
汽轮机为三压、再热、抽汽、背压、 SSS离合器,凝汽式 发电机则采用空冷发电机
汽轮机为三压、再热、抽汽、背压、 SSS离合器,凝汽式 发电机则采用空冷发电机
单轴联合循环机组外形图
第三部分 9FA重型燃机主设备介绍
压气机部分
燃烧室部分
透平部分
进气缸
燃气轮机结构示意
负载
空气通过压气机,被压缩成一定的压力,然后在燃烧室中加入燃 料燃烧就产生高温的燃气,再经过透平膨胀做工。由于高温燃气 膨胀所做的功大于压缩空气所需的功,于是就产生了有效功,即 透平的膨胀功扣除带动压气机所消耗的功(透平与压气机同轴), 该净功率输出带动负载或发电机产生电。 由于透平的排气仍然具有较高温度,通常采用回热循环或余热锅 炉进行能量的阶梯利用,从而大幅度提高了联合循环的效率和出 力。
燃机 9FA 9FA 9FA 9FA
9FB
9FA 6FA
汽轮机 D10/158
发电机 390H
159
324
152
QFSN-300-2
324
QFKN-310-2
QFKN-150-2
324LU QF-135-2
备注
158为改进后的D10,提高了产品各项 性能。
漕泾采用进口汽轮机159为单抽凝气轴 向排气机组
性能参数(2003年) 255.6 MW 9,757 kJ/kWh 16.5 641 kg/sec 1327℃ 602℃ 390.8MW 6,350 kJ/kWh
燃气轮机发电机组原理

燃气轮机发电机组原理一、燃气轮机发电机组的概述燃气轮机发电机组是一种高效、可靠、灵活性强的发电设备,它由燃气轮机和发电机两部分组成。
其中,燃气轮机是利用高温高压燃气驱动涡轮转动,进而带动发电机转子旋转产生电能的设备。
该设备具有启动快速、响应迅速、效率高等特点,广泛应用于航空、航天、军事、工业和民用领域。
二、燃气轮机发电机组的工作原理1. 燃气轮机部分(1) 空气进口:空气通过进口管道经过滤清器进入压缩室。
(2) 压缩室:空气在压缩室中被压缩至高温高压状态。
(3) 燃料喷射:燃料通过喷油嘴喷入压缩室中与空气混合并点火,产生高温高压的燃气。
(4) 涡轮驱动:高温高压的燃气通过涡轮驱动涡轮转子旋转,同时也带动了发电机转子的旋转。
(5) 排气:燃气在涡轮旋转后被排出燃气轮机。
2. 发电机部分(1) 旋转磁场:发电机通过交流电源产生旋转磁场,使得发电机内的定子和转子之间产生感应电势。
(2) 感应电势:感应电势使得定子上的线圈中产生了交变的电流,从而产生了交流电能。
(3) 输出电能:输出的交流电能经过变压器调节后输出到外部供电系统中。
三、燃气轮机发电机组的特点1. 高效:燃气轮机具有高效率和高功率密度,可以在较小体积内提供大量的功率输出。
2. 快速启动:相比于其他类型的发电设备,燃气轮机启动快速,响应迅速。
3. 灵活性强:燃气轮机可以根据负载需求进行调整,实现灵活性强的功率输出。
4. 维护成本低:由于其结构简单、零部件少、维护周期长等特点,维护成本较低。
四、燃气轮机发电机组的应用1. 工业领域:燃气轮机发电机组广泛应用于工业生产领域,如钢铁、化工、纺织等行业。
2. 民用领域:燃气轮机发电机组也被应用于民用领域,如商场、医院、学校等场所的备用电源。
3. 航空航天领域:燃气轮机发电机组被广泛应用于航空航天领域,如飞机和火箭的动力系统。
五、燃气轮机发电机组的未来展望随着能源环保意识的不断提高,燃气轮机发电技术也在不断地创新和改进。
燃气轮机发电技术分析

燃气轮机发电技术分析燃气轮机发电是一种高效的发电技术,其原理是利用燃气燃烧产生高温高压气体,通过涡轮转动发电机产生电能。
相比传统的燃煤发电技术,燃气轮机发电具有很多优点。
燃气轮机发电效率高。
燃气轮机的理论燃料效率可以高达60%-70%,而传统的燃煤发电技术只有30%左右。
高效率的发电技术不仅可以提高发电厂的经济效益,还可以减少能源消耗和环境污染。
燃气轮机发电响应速度快。
相比传统的燃煤发电技术,燃气轮机发电的启动时间短,通常只需要几分钟就可以达到额定功率。
这使得燃气轮机发电可以迅速响应电力需求的变化,提供灵活的调度能力。
燃气轮机发电技术适用范围广。
燃气轮机可以利用多种不同的燃料,如天然气、石油气、液化石油气等。
这使得燃气轮机发电技术在全球范围内都可以得到广泛应用,且燃气资源丰富的地区更加适合采用燃气轮机发电。
燃气轮机发电技术对环境影响较小。
与传统的燃煤发电相比,燃气轮机发电不会产生固体废弃物,废气排放中的二氧化硫、氮氧化物等污染物也减少很多。
这有利于改善空气质量,降低环境污染。
燃气轮机发电技术也存在一些局限性。
燃气轮机的设备投资较高。
燃气轮机发电厂的建设成本较高,设备维护也需要较大的经济投入。
燃气轮机的燃料费用通常比燃煤要高,这也增加了发电成本。
燃气轮机发电技术的排放控制相对困难。
燃气轮机发电的废气中含有一定的氮氧化物,这是一种温室气体和大气污染物。
虽然燃气轮机发电的废气排放标准比燃煤发电要低,但对其排放进行控制仍然是一个挑战。
燃气轮机发电技术具有高效、快速响应、适用范围广和环境友好等优点,但也存在设备投资高和排放控制难度较大等局限性。
随着技术的不断发展,相信燃气轮机发电技术将进一步提高效率、降低成本,并逐步解决环境问题,成为未来发电行业的主要技术之一。
电力行业的燃气发电了解燃气发电技术在电力行业中的应用和效益

电力行业的燃气发电了解燃气发电技术在电力行业中的应用和效益电力行业的燃气发电:了解燃气发电技术在电力行业中的应用和效益燃气发电作为一种清洁、高效的发电方式,已经在电力行业中得到广泛应用,并取得了良好的效益。
本文将从燃气发电技术的概念、应用领域、优势以及效益等方面进行介绍和分析。
一、燃气发电技术概述燃气发电技术是指利用天然气或其他燃气作为燃料,通过燃气燃烧产生高温高压气体,推动燃气轮机旋转,进而驱动发电机发电的过程。
相比传统的燃煤发电技术,燃气发电技术具有清洁、高效的特点,被广泛应用于电力行业。
二、燃气发电技术的应用领域1. 发电厂燃气发电技术广泛应用于各类发电厂。
在发电厂中,燃气轮机以及与之配套的发电机成为核心设备。
燃气发电技术的优势在于其高效、低污染的特性,能够满足发电厂对电力的需求,同时减少对环境的影响。
2. 工业领域燃气发电技术也被广泛应用于工业领域,包括钢铁、化工、纺织等行业。
这些行业通常需要大量的电力供应,而燃气发电技术能够为其提供高效稳定的电力支持,同时减少能源消耗,提高生产效率。
3. 城市供热燃气发电技术在城市供热领域也有重要应用。
通过燃气发电技术,可以将发电过程中产生的余热利用起来,供给城市的取暖系统,提高能源利用效率,降低能源消耗。
三、燃气发电技术的优势1. 清洁环保相比传统的燃煤发电技术,燃气发电技术燃烧过程中产生的污染物排放量更少,减少了对大气环境的污染。
同时,燃气发电技术几乎不产生灰尘、烟尘等固体废物,减轻了废物处理的负担。
2. 高能效燃气发电技术的发电效率较高,理论上可达到60%以上。
相比之下,燃煤发电技术的效率通常只有30%左右。
高能效的特点使得燃气发电技术在电力行业中得到更广泛的应用,能够为社会提供更多清洁高效的电力资源。
3. 快速启动时间燃气发电技术的启动时间相对较短,通常只需要几分钟即可实现从启动到满负荷输出电力的过程。
这使得燃气发电技术具有快速响应市场需求的能力,能够应对突发情况,提供稳定可靠的电力供应。
H级燃气轮机介绍

目录GE公司“H”联合循环燃机系列介绍 (2)H型燃气轮机蒸汽冷却技术的开发及技术特点 (4)H级燃气轮机进入南韩 (9)西门子效率超过60%的H级燃气轮机成功推向市场 (9)GE公司“H”联合循环燃机系列介绍21世纪的发电系统—通用电气“H”联合循环燃机系列介绍“H”系列的背景及基本原理使用燃机发电50年来一直在持续稳定地增长,燃机循环自身所固有的性能使其比常规电厂拥用更高的功率密度,更高的热效率以及更低的排放。
燃机的性能是由燃点温度决定的,它和单位功率有直接的关系,反过来又影响发电的燃耗。
这就意味着燃点温度的增高可以提供更高的热效率(降低发电的燃耗),同时提供更高的单位β剩?堪醮┕?钙降目掌?刹嗟牡缌浚??/P> 通过使用飞机发动机材料和冷却技术,可以允许GE工业燃机的燃点温度稳定增高,当然燃烧室的高温同时产生更多地的NOx。
在本文的“概念设计”部分,我们将阐述GE “H”系列如何解决NOx问题,如何能将燃点温度比目前“F”系列燃机提高2000F/1100C而同时将NOx排放量维持在“F”型燃机的水平。
通用电气的业务涵盖不同类型的业务,公司的各项业务得以兴旺发展,部分原因正是借助于改良技术的迅速引入和运用。
公司的一线技术开发部门就是坐落在纽约的GE研发中心。
H系列新产品引进部也坐落在此地,是他们将GE研发中心的研究成果引入到生产中。
另外还有一些正式的技术协会,如热碍喷涂协会,高温材料协会,NOx干燥剂降低协会也在协同推广工作,支持新技术的发展。
GE发电部及GE飞机发动机部在很多方面协同作战,包括NOx干燥剂降低测试手段、压气机元件和汽轮机元件等方面。
GE的制造厂拥有独特的资源,GE飞机发动机部可以派出200名工程师到GE研发中心和GE发电部支持H系列的开发工作,这只有在GE公司才做得到。
这些调入人员都成为H系列设计与系统部的中坚力量,而“H”系列的技术由GE发电部及GE飞机发动机部共享资源,包括实验数据和分析源码。
GT13E2燃气轮机技术特点

㊀收稿日期:2020 ̄01 ̄08㊀㊀㊀㊀㊀㊀作者简介:由㊀岫(1971 ̄)ꎬ女ꎬ硕士ꎬ高级工程师ꎮ从事燃气轮机科研工作ꎮGT13E2燃气轮机技术特点由㊀岫ꎬ王㊀辉ꎬ卜一凡(哈尔滨电气股份有限公司ꎬ哈尔滨150028)摘要:以E级燃机的典型代表GT13E2为研究对象ꎬ详细地介绍了GT13E2的主要性能参数㊁主要部件(转子㊁压气机㊁燃烧室㊁透平)的结构形式与特点㊁GT13E2与其它同级别产品的结构及性能对比ꎮ对比数据可为燃气轮机选型提供依据ꎬ经对比发现:GT13E2机组在E级燃气轮机中处于领先地位ꎮ关键词:GT13E2ꎻ性能参数ꎻ结构特点分类号:TK479㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1001 ̄5884(2020)03 ̄0179 ̄03TheTechnicalFeaturesofGT13E2GasTurbineYOUXiuꎬWANGHuiꎬBUYi ̄fan(HarbinElectricGroupCo.ꎬLTDꎬHarbin150028ꎬChina)Abstract:ThispapertakesGT13E2ꎬatypicalrepresentativeofe ̄classgasturbineꎬastheresearchobjectꎬintroducesindetailthemainperformanceparametersofGT13E2ꎬthestructuralformsandcharacteristicsofmaincomponents(rotorꎬcompressorꎬcombustionchamberꎬturbine)ꎬthecomparisonofGT13E2withotherproductsofthesamegradeinstructureandperformance.ThecomparisondatacanprovidethebasisforgasturbineselectionꎬaftercomparisonꎬwefoundthattheGT13E2unitisintheleadingpositionintheE ̄classgasturbine.Keywords:GT13E2ꎻperformanceparameterꎻstructuralfeatures0㊀前㊀言自从上世纪30年代第一台燃气轮机问世至今ꎬ历经80年的发展ꎬ燃气轮机的技术已经非常成熟ꎬ透平入口温度㊁简单循环效率㊁联合循环效率㊁机组热效率等核心参数不断提高ꎬ已有燃气轮机厂商推出J级燃气轮机ꎮ虽然目前已经有技术更先进的F级㊁G级㊁H级㊁J级燃气轮机ꎬ但由于E级燃气轮机具有技术成熟㊁运行参数低㊁机组可靠性高㊁建造成本低等特点ꎬ仍然有大量的用户采购ꎮ目前ꎬ全球E级燃机市场的主要产品有美国GE公司的9E.03/04机型[1]㊁德国SIEMENS公司的SGT5-2000E(V94.2)[2]㊁日本MITSUBISHI的M701DA机型[3]以及法国ALSTOM公司(2015年被GE公司收购)的GT13E2机型[4](如图1所示)ꎮ1㊀GT13E2的主要性能参数自1993年首台GT13E2在日本运行以来[5]ꎬ该机型共经历了3次重要升级改造ꎬ机组的性能得到了明显地提升[6-7]ꎬ保证了该机型在E级燃机市场的竞争力ꎮ目前ꎬGT13E2在全球运行机组已达到160余台ꎬ已通过大于66000次启动和870万h的运行验证ꎮ该机型与主要竞争对手的性能参数对比见表1㊁表2所示ꎮ图1㊀GT13E2(12)型燃气轮机由表1㊁表2可以看出:㊀㊀(1)05版本GT13E2的整体性能参数已经优于其它竞争对手ꎬ12版本的GT13E2在E级燃机产品中处于绝对领先的地位ꎮ(2)05版本的GT13E2机组出力为185MWꎬ已经接近机组出力最优秀竞争产品SGT5-2000E的187MWꎬ12版本的GT13E2机组出力为203MWꎬ比SGT5-2000E的机组出力高出10%ꎬ同时GT13E2有具有比SGT5-2000E更低的热耗率及更高的热效率ꎮ(3)对于12版的GT13E2来说ꎬ得益于采用F级燃气轮机GT26的压气机ꎬ使压比达到了18.4ꎬ远远优于其它机型ꎮ(4)与同级别的竞争对象相比ꎬGT13E2具有更低的排气温度及排气流量ꎮ(5)在基本负荷(@15%O2)下ꎬ12版本GT13E2的NOx排放达到了15ppmꎬ与9E.04机型相同ꎬ优于其它产品的25ppmꎮ(6)与其它E级燃气轮机相比ꎬGT13E2具有更快速的启动时间ꎬ升负荷速率与其它机型相当ꎮ㊀㊀(7)对于一拖一的联合循环来说ꎬ05版本GT13E2的机第62卷第3期汽㊀轮㊀机㊀技㊀术Vol.62No.32020年6月TURBINETECHNOLOGYJun.2020㊀㊀表1E级燃机简单循环性能对照表厂商型号频率Hz机组出力MW简单循环热耗率kJ/(kW h)ꎬLHV简单循环净效率%ꎬLHV压比GEGT13E2(05)50185952437.816.4GEGT13E2(12)5020394743818.2GE9E.045014597143712.6SIEMENSSGT5-2000E(V94.2)50187994536.212.8MITSUBISHIM701DA50144981034.814厂商排气流量kg/s排气温度ħ基本负荷(@15O2)下NOx排放ꎬppmvd启动时间(常规启动/调峰启动)ꎬmin升负荷率MW/minGE5105052525/1512GE5015011515/1014GE-5421530/1016SIEMENS5585362512(调峰)-MITSUBISHI4535422530(常规)9㊀㊀表2E级燃机联合循环性能对照表厂商型号1拖1机组出力MW1拖1机组效率%ꎬLHV2拖1机组出力MW2拖1机组效率%ꎬLHVGEGT13E2(05)2645553055.2GEGT13E2(12)2895558155.2GE9E.0421254.442854.9SIEMENSSGT5-2000E(V94.2)27553.355153.3MITSUBISHIM701DA212.551.4426.651.6组出力为264MWꎬ与SGT5-2000E的275MW非常接近ꎬ高于9E.04的212MW及M701DA的212.5MWꎬ12版本的GT13E2机组出力为289MWꎬ领先其它竞争对手ꎮ(8)对于二拖一的联合循环机组来说ꎬ05版本GT13E2的机组出力为530MWꎬ稍落后于SGT5-2000E的551MWꎬ高于9E.04的428MW及M701DA的426.6MWꎬ12版本的GT13E2机组出力为581MWꎬ领先其它竞争对手ꎮ(9)对于联合循环来说ꎬGT13E2的效率高于其它的竞争对手ꎮ2㊀GT13E2的结构特点GT13E2采用了整体的焊接转子㊁高效的亚音速压气机㊁具有环保型燃烧器的环形燃烧室㊁高效的透平ꎬ使GT13E2具有开停机操作简单㊁免维护的转子㊁现场组装叶片㊁主要部件维修方便等特点ꎮ下面将从GT13E2的转子㊁压气机㊁燃烧室㊁透平等方面的结构入手ꎬ对比其与主要竞争产品的差异ꎬ分析产品的优劣ꎮGT13E2机组的长㊁宽㊁高分别为11.18m㊁5.4m㊁5.185mꎬ与竞争产品相似ꎮ总重量343Tꎬ在同级别产品中处于中游水平ꎮ机组气缸采用垂直装配ꎬ装配完成后加工骑缝销ꎬ机组总装采用卧式装配ꎬ在总装台上进行找中ꎮ2.1㊀GT13E2转子的结构特点及技术优势GT13E2采用焊接转子ꎬ由6段锻件焊接而成ꎬ转子的结构如图2所示ꎮ焊接运用氩弧焊打底的电弧自动焊ꎬ焊缝经图2㊀GT13E2(05)转子结构过严格处理与检验ꎬ性能与母材相当ꎮ由图2可知ꎬ转子中间存在一定的空腔结构ꎬ但所占比例不大ꎬ强度余量较高ꎬ设计偏向保守ꎮ对于压气机部分的转子来说ꎬ由于所处的环境温度较低ꎬ热应力问题不突出ꎬ材料便于焊接ꎬ使用焊接转子可以使毛坯简化ꎬ降低成本ꎮ对于透平部分的转子来说ꎬ由于温度梯度较大ꎬ热应力的影响较大ꎬ为保证该位置的焊接质量ꎬ每次提升温度等级或更改冷却系统后ꎬ都需要重新验证透平转子的可靠性ꎮGT13E2与其竞争产品的转子结构对比见表3ꎮ㊀㊀表3E级燃机转子结构对比厂商型号转子形式GEGT13E2(12)焊接GE9E.04拉杆SIEMENSSGT5-2000E(V94.2)中心拉杆+hirth齿MITSUBISHIM701DA拉杆081汽㊀轮㊀机㊀技㊀术㊀㊀第62卷2.2㊀GT13E2压气机的结构特点及技术优势GT13E2燃气轮机的压气机采用轴流形式及高效的三维动静叶设计ꎬ使其具有流量大㊁效率高的优点ꎮ05版的GT13E2采用21级的压气机设计ꎬ优化了各级的载荷分配ꎻ具有一级可转导叶ꎬ保证了启动及低负荷情况下机组的性能ꎻ压比为16.4ꎬ保证了空气流量及机组的效率ꎻ叶片的材料采用12Cr钢ꎬ保证了叶片的耐腐蚀能力ꎻ同时ꎬ1-5级叶片具有防腐蚀涂层ꎬ进一步提高了压气机入口的耐腐蚀能力ꎮ相对于05版的GT13E2来说ꎬ12版的GT13E2采用F级燃气轮机GT26压气机前16级作为GT13E2的压气机ꎬ使得机组轴向距离缩短的同时ꎬ压比达到了18.2ꎬ进一步增加了机组的空气流量及效率ꎻ将05版本的一级可转导叶调整为三级可转导叶ꎬ进一步提高了机组在低负荷情况下的性能ꎬ节约燃料成本ꎬ减少污染物排放ꎮGT13E2(12)与其竞争产品的压气机结构对比见表4ꎮ㊀㊀表4E级燃机压气机结构对比厂商型号级数压比可转导叶GEGT13E2(12)16级18.23级GE9E.0417级12.61级SIEMENSSGT5-2000E(V94.2)17级12.81级MITSUBISHIM701DA19级141级㊀㊀由表4可以看出ꎬGT13E2(12)采用了16级压气机ꎬ是所有对比产品中级数最少的ꎬ保证了机组的轴向尺寸在所有对比产品中是最小的ꎬ这样有利于机组在实际应用场景的布置ꎻ级数少的同时ꎬGT13E2的压比达到了18.2ꎬ又是各对比产品中压比最高的ꎬ保证了GT13E2在同级别产品中有最好的空气流量㊁机组效率ꎻGT13E2具有三级可转导叶ꎬ相对于其它同级别来说ꎬ在低负荷工况下具有更好的性能ꎮ2.3㊀GT13E2燃烧室的结构特点及技术优势GT13E2燃气轮机采用环形燃烧室的设计形式[8]ꎬ具有尺寸小㊁结构紧凑㊁空间利用率高等特点ꎮ05版本的GT13E2燃烧室ꎬ采用了72个EV燃烧器ꎻ在燃烧室1区㊁2区使用热障涂层(TBC)及膜式冷却方式ꎬ降低燃烧室的寿命损耗ꎬ保证了火焰的稳定ꎬ降低了NOx排放ꎻ对之前版本的油㊁气双燃料切换系统进行优化ꎬ达到满负荷切换燃料的目的ꎮ在05版本GT13E2燃烧室的基础上ꎬ12版本的GT13E2燃烧室采用了48个AEV燃烧器(如图3所示)ꎮ相对于EV燃烧器来说:AEV燃烧器升级了燃料与空气混合区域的结构ꎬ增加了燃料与空气的混合时间ꎬ使燃料与空气的混合更加均匀ꎬ降低了NOx的排放ꎬ达到15ppmꎻ优化了喷嘴的空气动力学ꎬ使燃烧空气的流量增高ꎬ减少了燃烧器的使用数量ꎻAEV燃烧器可使燃气生成稳定点火源的回流ꎬ减少了火焰的消失和跳动ꎬ提高燃烧的稳定性与均匀性ꎬ可使燃烧器在整个负荷范围内连续运行ꎮGT13E2(12)与其竞争产品的燃烧室结构对比见表5ꎮ图3㊀AEV燃烧器[12]㊀㊀表5E级燃机燃烧室结构对比厂商型号结构形式个数NOx排放ꎬppmGEGT13E2(12)AEV环形燃烧室4815GE9E.04DLN1分管性燃烧室[9ꎬ10]1425SIEMENSSGT5-2000E(V94.2)圆筒型燃烧室[11]1625MITSUBISHIM701DA分管型燃烧室1825㊀㊀由表5可以看出ꎬGT13E2(12)采用环形燃烧室结构ꎬ与其它形式的燃烧室结构相比ꎬ没有过渡段或连焰管ꎬ结构更加简单㊁紧凑ꎬ空间利用率高ꎬ同时减少了冷却空气的用量ꎮ由于采用了先进的AEV燃烧器ꎬ使得温度分布更加合理ꎬNOx排放明显优于同级别的竞争对手ꎮ2.4㊀GT13E2透平的结构特点及技术优势GT13E2采用了传统的反动式5级轴流式透平设计及先进的三维叶型设计ꎬ能承担机组迅速地启动和负载快速地变化所引起的载荷ꎮ05版本GT13E2的第一级透平翼型是在原有翼型的基础上进行优化得到的ꎬ以适应由于压气机优化所引起的质量流量的变化ꎮ12版本GT13E2的透平入口温度相对于05版本的提高了20ħꎬ达到1131ħꎬ因此ꎬ通过采用热障涂层技术㊁多通道对流冷却技术来降低透平内部的结构温度ꎻ将透平叶片的材料全部替换为IN738ꎬ来提高结构抵抗破坏的能力ꎻ通过采用全新的三维设计ꎬ来减少冷却空气的用量ꎬ提高密封效果ꎻ第五级叶片采用三维翼型㊁整体围带设计ꎬ优化了振动特性ꎮ由表6可以看出ꎬGT13E2的透平入口温度与9E机型相当ꎬ在同级别中处于较低的水平ꎬ这样可以提高机组的可靠性ꎬ减少事故发生的概率ꎻGT13E2的排气温度与竞争产品相比是最低的ꎬ这样有利于保证机组的整体循环效率处于较高的水平ꎮ㊀㊀表6E级燃机透平结构对比厂商型号级数入口温度ꎬħ出口温度ꎬħGEGT13E2(12)51131501GE9E.0431124542SIEMENSSGT5-2000E(V94.2)41290536MITSUBISHIM701DA41250542(下转第240页)181第3期由㊀岫等:GT13E2燃气轮机技术特点㊀㊀1.2㊀真空钎焊设备真空钎焊设备采用B.M.I公司制造的B55T真空钎焊炉ꎬ设备最高温度为最高温度1370ħꎬ有效工作区尺寸:900ˑ900ˑ1200(mm)ꎮ1.3㊀工㊀艺将试样放入真空钎焊炉后ꎬ使真空度达到5ˑ10-3Pa后ꎬ以7ħ/min速度由室温加热到550ħꎬ保温20minꎬ继续以7ħ/min速度加热到900ħꎬ保温20minꎬ继续以5ħ/min速度加热到1080ħꎬ保温2min后炉冷到1000ħꎬ之后充氩冷却ꎮ2㊀试验结果出炉后填缝试样如图2所示ꎮ通过测量L值ꎬ计算H值ꎬ得到填缝高度ꎬ图3所示为填缝高度计算简图ꎮ填缝实验结果见表1ꎮH值越大ꎬ钎料流动性能越好ꎻL值越大ꎬ钎料的填隙能力越强ꎮ根据试验结果(图2㊁表1)可以看出:(1)钎料对母材GH3030的流动性最好ꎬ对母材K438的流动性最差ꎮ(2)钎料对同种母材接头(GH3030/GH3030)的填隙能力要比异种母材接头好ꎮ图2㊀出炉后填缝试样图3㊀填缝高度计算简图㊀㊀表1填缝实验结果母材接头(立板/底板)钎料形式LꎬmmHꎬmmGH3030/0Cr19Ni10片状430.67片状440.7GH3030/GH3030粉状530.8片状490.75GH3030/K438片状410.65㊀㊀(3)钎料对不同母材的流动性:GH3030>0Cr19Ni10>K438ꎮ(4)片状钎料与粉状钎料填隙缝能力大体相当ꎮ(5)钎焊工艺相同时ꎬ接头钎焊允许的合适间隙由大到小依次为:GH3030/GH3030>GH3030/0Cr19Ni10>GH3030/K438ꎮ3㊀结㊀论通过实验得知ꎬ钎料BNi73CrSiB-40Ni-S对0Cr19Ni10㊁GH3030㊁K438等3种母材的流动性和填隙能力不同ꎬ为了保证获得优质的钎焊接头强度ꎬ在采用同一钎焊工艺时ꎬ不同母材应该选用不同的钎焊间隙ꎮ(上接第181页)3㊀结㊀论经过对GT13E2结构的介绍及其与同级别竞争机型的对比不难发现:(1)GT13E2机组在E级燃气轮机机组处于领先地位ꎮ(2)GT13E2采用了锻造焊接转子ꎬ减少了拉杆转子的轮盘磨损㊁应力集中和裂纹等问题ꎬ整个寿命期不需要拆装转子ꎬ易于维护ꎮ(3)GT13E2的压气机采用了GT26的前16级ꎬ具有轴向长度短㊁压比高㊁质量流量大等特点ꎮ(4)GT13E2采用了具有AEV燃烧器的环形燃烧室ꎬ具有结构简单紧凑㊁NOx排放低㊁温度场分布合理等特点ꎮ(5)GT13E2采用了传统的反动式5级轴流式透平设计ꎬ出口温度低ꎬ机组的整体循环效率高ꎮ参考文献[1]㊀GE中国发电事业部.9E.03/04[EB/OL].http://pgchina.ge.com.cn/content/9e0304.[2]㊀SIEMENS.SGT5-2000E重型燃气轮机(50Hz)[EB/OL].https://new.siemens.com/cn/zh/products/energy/power-generation/gas-turbines/sgt5-2000e.html.[3]㊀MHPS.GasTurbinesM701DSeries[EB/OL].http://www.mhps.com/products/gasturbines/lineup/m701d/index.html.[4]㊀GE中国发电事业部.GT13E2[EB/OL].http://pgchina.ge.com.cn/content/gt13e2.[5]㊀学㊀牛.GT13E2型燃气轮机[J].热能动力工程ꎬ1994ꎬ(6):378.[6]㊀吉桂明.AlstomPower202MWGT13E2燃气轮机[J].热能动力工程ꎬ2014ꎬ(4):454.[7]㊀阿尔斯通推出升级版本GT13E2燃气轮机技术[J].电气应用ꎬ2012ꎬ(7):85.[8]㊀侯传群.GT13E2燃烧系统结构与分析[J].燃气轮机技术ꎬ2004ꎬ(3):28-32.[9]㊀殷华明.9E燃气轮机DLN1.0与LEC-Ⅲ低氮燃烧系统改造[J].技术与市场ꎬ2017ꎬ24(10):13-16.[10]㊀李永扬ꎬ刘鹏飞ꎬ王毅刚ꎬ等.9E燃气轮机干式低NOx燃烧系统改造[J].燃气轮机技术ꎬ2015ꎬ(2):64-67.[11]㊀张守辉ꎬ王㊀爽ꎬ俞立凡ꎬ等.V94.2燃烧室结构特点[J].发电设备ꎬ2008ꎬ22(6):473-477.[12]㊀BernardTripodꎬKlausDoebbelingꎬMarkStevensꎬetal.为中国提供更高发电效率的阿尔斯通GT13E2和GT26燃气轮机[C].中国电机工程学会燃气轮机发电专业委员会年会ꎬ2012.042汽㊀轮㊀机㊀技㊀术㊀㊀第62卷。
H级及先进工业燃气轮机的技术特征与技术演进

H级及賊工业燃气轮机的技术特征与技术演进Chinese Journal of T urbomachineryH级及先进工业燃气轮机的技术特征*与技术演进韩刚(苏州先机动力科技有限公司)摘要:本文对新一代H级重型工业燃气轮机性能与结构特征做概要介绍,对GE公司HA、SIEMENS公司HL等系列典型H级燃气轮机在提升运行经济性与调峰性能、达标排放与燃料兼容性等性能特征作简要分析,对H级燃气轮机结构与部件的特征做概要介绍与对比。
简要介绍了新型燃气轮机的分阶段测试与技术验证、性能提升和产品线的完善过程,有关规律可供燃气轮机研制、服务与用户单位的技术人员参考。
关键词:燃气轮机;低氮燃烧;可靠性增长中图分类号:TK47;TK05文章编号:1006-8155-(2020)06-0064-11文献标志码:A DOI:10.16492/j.坊s.2020.06.0008Technical Characteristics and Technological Evolution of H-class and Advanced Industrial Gas TurbinesGang Han(Suzhou Advanced Integrated Mechanical Solutions)Abstract:This article provides an overview of the performance and structural characteristics of the new generation of H-class heavy industrial gas turbines,and the performance characteristics of typical H-class gas turbines of GE"s HA and SIEMENS'HL series in improving operating economy,peak load regulation accordance, compliance emissions,and fuel compatibility.Make a brief introduction and comparison of the H-class gas turbine structure and characteristics of components.A brief introduction is made to the phase-divided testing and technical verification,performance improvement and product line improvement process of the new gas turbine.The relevant rules can be used for reference by the technical personnel of gas turbine development,service and end-users.Keywords:Gas Turbine,Low Nitrogen Combustion,Reliability Growth・64・第62卷,2020年第6期Http:^ Vol.62,2020,No.6Chinese Journal of Turtxjmachinery0引言2020年起,全新的H级重型燃气轮机开始在中国发电行业中投入运营,鉴于我国还不具备H级重型燃气轮机相应的完整的自主研制和生产能力,因些,对于运营企业需要及时确立针对性的最佳运行维护策略,对于提供设备维护检修和故障分析诊断的服务单位,以及相关产品的研发制造等企业需要及时掌握新产品的技术特性、结构与部件特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Alstom公司燃气轮机的技术特点
燃烧室的特点 EV燃烧室的设计特点 • 第一级燃烧室为环形燃烧室,有30个干 式低排放的EV燃烧器。 • EV燃烧室的优势在于用气体燃料运行时, 无需喷水或蒸汽便能获得低排放,同时, 它又能燃用液体燃料。
Alstom公司燃气轮机的技术特点
• 燃烧室的冷却技术 所有从压气机来的空气都可在被用来 冷却火焰筒后进入燃烧器,以此用来冷 却EV燃烧室。 • 顺序燃烧系统的排放特性
Mitsubishi公司燃气轮机的技术特点
三、透平 701G型第一级和第二级还采用了定向 凝固铸造的动叶和静叶,以适应更高的 温度和延长使用寿命。第一级和第二级 转子的叶型部分用热障涂层加以保护。 G型机的设计参数为:第一级喷嘴扇形 块的前缘处的燃气温度为1500℃,在第一 级喷嘴后、第一级动叶栅前测得的透平 转子进口温度为1427℃。
Mitsubishi公司燃气轮机的技术特点
一、压气机 G型17级压气机的特征是压气机以高 压比19.2:1工作,而F型的压比为15.0:1。 二、燃烧室 701G型燃气轮机燃烧室装有20个 (50IG型为16个)逆流、环管型、带旁路 阀的预混干式低NOx燃烧室,适于使用气 体或液体燃料。
Mitsubishi公司燃气轮机的技术特点
一、Siemens KWUቤተ መጻሕፍቲ ባይዱ燃气轮机技术
Siemens公司燃气轮机的技术特点
Siemens公司燃气轮机的技术特点
二、Siemens Westinghouse的燃气轮机技术
• • • • • • • • • Westinghouse燃气轮机主要技术特点有: (1)单轴转子由分开的压气机和透平两个部分构成。透平和压气机 的转子分别由轮盘和螺纹拉杆连接而成,通过中间联轴器连接; (2)转子由压气机进口侧和透平出口侧相应处的两个轴承支持,轴 颈轴承为带负荷的双单元可倾瓦式,摩擦损失较小; (3)推力由一个可倾瓦轴承承受,推力轴承采用有定向油槽的强制 润滑方式; (4)透平排气缸内安放后轴颈轴承,且由8个切向支柱支撑,以保持 对中; (5)燃气透平和压气机的动叶片与轮盘之间均采用嵌合结构,便于 拆卸检查; (6)燃气透平采用分段的和隔热的隔板套,这样可以防止静叶环受 热变形,在叶顶部分可以保持最小的间隙; (7)发电机由温度变化较小的压气机端(冷端)驱动,透平排气采 用成熟的轴向排气结构,易于与余热锅炉组合连接; (8)气缸采用水平中分结构,开缸解体比较方便。
典型燃气轮机发电设备的技术特点
大庆燃机电厂
GE公司燃气轮机的技术特点
一、GE公司的燃气轮机技术的发展
GE公司燃气轮机的技术特点
GE公司燃气轮机的技术特点
GE公司燃气轮机的技术特点
二、GE燃气轮机的结构特点 • (一)轴流式压气机的机械结构 • (二)燃烧系统的特点 • (三)透平的结构特点
Siemens公司燃气轮机的技术特点
Alstom公司燃气轮机的技术特点
顺序燃烧系统
GT24/GT26燃气轮机结构特点 燃气轮机结构特点
Alstom公司燃气轮机的技术特点
GT24/GT26机组在结构上与常规燃气轮机十分相似,其特 点为: • (1)单轴双轴承结构; • (2)锻造毛坯焊接的单片低维修叶托轮: • (3)22级亚音速轴流压缩机,具有可调控的扩散翼面 叶片设计; • (4)3级可变角度的导向叶片; • (5)4级低压透平在1到3级有冷却叶片,在2到4级有围 带叶片; • (6)带有水平中分面的气缸和静叶托架; • (7)冷端驱动发电机、轴垂直的进气系统、透平轴向 排气; • (8)环状紧密排列的30个第一级圆锥形EV燃烧器和24 个第二级SEV燃烧器。