4.3 通用集成运放 模电课件ppt
合集下载
集成运算放大器电路-模拟电子电路-PPT精选全文完整版

第4章 集成运算放大器电路
4―3―2差动放大器的工作原理及性能分析 基本差动放大器如图4―12所示。它由两个性能参
数完全相同的共射放大电路组成,通过两管射极连接 并经公共电阻RE将它们耦合在一起,所以也称为射极 耦合差动放大器。
I UE (UEE ) UEE 0.7
RE
RE
第4章 集成运算放大器电路
IC2
R1 R2
Ir
(4―7) (4―8)
第4章 集成运算放大器电路
可见,IC2与Ir成比例关系,其比值由R1和R2确定。 参考电流Ir现在应按下式计算:
UCC
Ir
UCC U BE1 Rr R1
UCC Rr R1
(4―9)
Ir
Rr
IC2
IB1
V1
+
UBE1 -
IE1
R1
IB2 +
UBE2 - R2
(4―11)
Ir
IC1
IB3
IC1
IC3
IC1 IC2,
IC3
3 1 3
IE3
IE3
IC2
IC1
1
IC2
2
若三管特性相同,则β1=β2=β3=β,求解以上各
式可得
IC3
(1 2ຫໍສະໝຸດ 222)Ir
(4―12)
第4章 集成运算放大器电路
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为
Ro 2 rce
4―2 电流源电路
电流源对提高集成运放的性能起着极为重要的作 用。一方面它为各级电路提供稳定的直流偏置电流, 另一方面可作为有源负载,提高单级放大器的增益。 下面我们从晶体管实现恒流的原理入手,介绍集成运 放中常用的电流源电路。
模电第三部分 集成运算放大电路PPT课件

1、具有恒流源的差分放大电路 2、高输入阻抗的差分放大电路 3、带有负反馈的差分放大电路
# 阅读资料明确改 进的原因和电路的 分析方法。
第三讲 集成运算放大电路
集成运放是一种高增益的直接耦合放大器;是模拟集成电路中发 展最早应用最广泛电路。经常用于模拟信号的处理和产生电路之中, 因其性能高价格低,基本上取代了分立元件放大电路。
VCC
- R
VBE
只要参考电流IR恒定,IO就恒定
2、比例电流源
由电路可得 UBE1 +IE1Re1= UBE2+IE2Re2
由PN结电流方程可得 UUBBEE1≈-UUTIBnE2=IIEUS TInIIEE12
IE2Re2=
IE1Re1
+UTIn
IE1 IE2
IC2=
Re1 Re2
IR
+
UT In Re2
一、集成运放电路概述 1、电路特点
① 采用直接耦合方式。
② 利用对称结构改善电路性能。
③ 常用有源器件代替无源器件。
2、电路结构及功能
集成运放种类很多,电路也不尽相同,但从电路的组成结 构看,任何一个运放都由输入级、中间级、输出级和偏置电路 四部分组成。
输入级
中间级 偏置电路
输出级
二、集成运放电路读图
第三部分 集成运算放大电路
一、集成运放中的电流源 二、差分放大电路 三、集成运算放大电路
第一讲 集成运放中的电流源
能够输出恒定电流的电路称为电流源电路。电流源电路在集成 电路中作为偏置电路和有源负载为各级放大电路提供所需的偏流和提 高放大倍数。
一、基本电流源电路
1、镜像电流源 图中T1和R构成T2的偏置电路, 为T2提供偏流IR,T2的集电极 电流为输出电流IO
# 阅读资料明确改 进的原因和电路的 分析方法。
第三讲 集成运算放大电路
集成运放是一种高增益的直接耦合放大器;是模拟集成电路中发 展最早应用最广泛电路。经常用于模拟信号的处理和产生电路之中, 因其性能高价格低,基本上取代了分立元件放大电路。
VCC
- R
VBE
只要参考电流IR恒定,IO就恒定
2、比例电流源
由电路可得 UBE1 +IE1Re1= UBE2+IE2Re2
由PN结电流方程可得 UUBBEE1≈-UUTIBnE2=IIEUS TInIIEE12
IE2Re2=
IE1Re1
+UTIn
IE1 IE2
IC2=
Re1 Re2
IR
+
UT In Re2
一、集成运放电路概述 1、电路特点
① 采用直接耦合方式。
② 利用对称结构改善电路性能。
③ 常用有源器件代替无源器件。
2、电路结构及功能
集成运放种类很多,电路也不尽相同,但从电路的组成结 构看,任何一个运放都由输入级、中间级、输出级和偏置电路 四部分组成。
输入级
中间级 偏置电路
输出级
二、集成运放电路读图
第三部分 集成运算放大电路
一、集成运放中的电流源 二、差分放大电路 三、集成运算放大电路
第一讲 集成运放中的电流源
能够输出恒定电流的电路称为电流源电路。电流源电路在集成 电路中作为偏置电路和有源负载为各级放大电路提供所需的偏流和提 高放大倍数。
一、基本电流源电路
1、镜像电流源 图中T1和R构成T2的偏置电路, 为T2提供偏流IR,T2的集电极 电流为输出电流IO
4.3 集成运算放大电路简介

模拟电子技术多媒体课件
4.3 集成运放电路简介
典型的集成运放 双极型集成运放 F007、F324 单极型集成运放 C14573
4.3.1 双极型集成运放 F007
一、引脚
8 7 6 5
1
2
3
4
(a)引脚图
(b)连接示意图
模拟电子技术多媒体课件
二、电路原理图
图4.3.1 F007电路原理图
模拟电子技术多媒体课件
R7
30pF
IC13
+VCC
R8
T15
T16 T17
-VEE
图 4.3.1-3 中间级示意图
模拟电子技术多媒体课件
4. 输出级
T14、 T18 、T19准互补 对称电路; D1、 D2 、R9、R10为 过流保护电路; T15 、R7、R8为输出级 设置合适的静态工作点。
U CE15 R7 R8 R8 U B E15 (1 R7 R8
二、按可控性分类
1.可变增益运放:VCA610 、 AD526 2.选通控制运放:OPA676
模拟电子技术多媒体课件
三、按性能指标分类 分为通用型和特殊型两类。 1. 高精度型
性能特点: 漂移和噪声很低,开环差模增益和共 模抑制比很高,误差小。(F5037)
2. 低功耗型
性能特点: 静态功耗一般比通用型低 1 ~ 2 个数量 级(不超过毫瓦级),工作电源电压很低, 有较高的开环差模增益和共模抑制比。 (TLC2552)
1. 偏置电路
基准电流:
I REF V CC V EE - | U BE 12 | - U BE 11 R5
+VCC
T8
T9 T12
4.3 集成运放电路简介
典型的集成运放 双极型集成运放 F007、F324 单极型集成运放 C14573
4.3.1 双极型集成运放 F007
一、引脚
8 7 6 5
1
2
3
4
(a)引脚图
(b)连接示意图
模拟电子技术多媒体课件
二、电路原理图
图4.3.1 F007电路原理图
模拟电子技术多媒体课件
R7
30pF
IC13
+VCC
R8
T15
T16 T17
-VEE
图 4.3.1-3 中间级示意图
模拟电子技术多媒体课件
4. 输出级
T14、 T18 、T19准互补 对称电路; D1、 D2 、R9、R10为 过流保护电路; T15 、R7、R8为输出级 设置合适的静态工作点。
U CE15 R7 R8 R8 U B E15 (1 R7 R8
二、按可控性分类
1.可变增益运放:VCA610 、 AD526 2.选通控制运放:OPA676
模拟电子技术多媒体课件
三、按性能指标分类 分为通用型和特殊型两类。 1. 高精度型
性能特点: 漂移和噪声很低,开环差模增益和共 模抑制比很高,误差小。(F5037)
2. 低功耗型
性能特点: 静态功耗一般比通用型低 1 ~ 2 个数量 级(不超过毫瓦级),工作电源电压很低, 有较高的开环差模增益和共模抑制比。 (TLC2552)
1. 偏置电路
基准电流:
I REF V CC V EE - | U BE 12 | - U BE 11 R5
+VCC
T8
T9 T12
高中通用技术-电子技术模块课件:集成运算放大器应用(共85张PPT)

此电路对高频噪声敏感
噪声为高频谐波,设为vs=sint
voRd C d vts R C co t, s
vo正比于,频率越高,噪声越大, 严重时输出噪声会淹没有用信号
例5 由运放组成的晶体管测量电路如下图,假设
运放具有理想特性,晶体管的VBE=0.7V. (1) 求出晶体管c、b、e各极的电位;
(2) 若电压表读数为200mV,求被测量晶体
线性应用电路 Zf
组成:集成运放外加深度负反馈。
因负反馈作用,使运放小信号 vs1 Z1 i -
vo
工作,故运放处于线性状态。
vs2
A +
Z1或Zf采用线性器件(R、C),则可构成加、减、积分、微 分等运算电路。
Z1或Zf采用非线性器件(如三极管),则可构成对数、反 对数、乘法、除法等运算电路。
理想运放在线性区
i4 i2i3 uoi2R 2i4R 4
uoR2R 1 R4(1R2R 3R4)ui
例2 下图中A 为理想运放,求 vi=0.3V时v0的值。
解: v+ = v– =0.2V
10K R1
R5
vi
0.3V
10k
R6
iR2
– +
20k
10k M 20k iR4
R2
R4
R3 10k
vo
vM(1R R1 2)v0.4V v o R 3 v M iR i 2 R 4 0 .4 1 0 .2 0 0 2 .4 0 0 .0 0 2 .0 0 2 .04
R2
iI = 0 v+ = 0
vo
v+ =v– v– = 0
又 iI = 0 i1 = if
vs R1
《集成运放电路》PPT课件

KCMR越大,说明差放分辨 差模信号的能力越强,而抑制
共模信号的能力越强。
若电路完全对称,理想情况下共模放大倍数 Ac = 0 输出电压 uo = Ad (ui1 - ui2 ) = Ad uid
若电路不完全对称,则 Ac 0, 实际输出电压 uo = Ac uic + Ad uid 即共模信号对输出有影响 。
IC1=2.3温度的升高 IC1增加 1%,试计算输出电压
Uo变化了多少?
IC1 = 2.31.01 mA = 2.323 mA
UC1= UZ + UBE2 = 4 + 0.6 V = 4.6 V
12 4.6 IB2 IRC1 IC1 3 2.32mA 0.147mA
这种输入常作为比较放大来应用,在自动控制 系统中是常见的。
3. 共模抑制比(Common Mode Rejection Ratio)
全面衡量差动放大电路放大差模信号和抑制共模 信号的能力。
共模抑制比 差模放大倍数
KCMR
Ad AC
KCMR (dB) 20lg
Ad AC
( 分贝
)
共模放大倍数
Uo= 6.325-7.75V = 0.575V 提高了7.42%
可见,当输入信号为零时,由于温度的变化,输
出电压发生了变化即有零点漂移现象。
零点漂移的危害:
直接影响对输入信号测量的准确程度和分辨能力。
严重时,可能淹没有效信号电压,无法分辨是有效
信号电压还是漂移电压。
一般用输出漂移电压折合到输入端的等效漂移电
T1截止,T2基极电位 进一步降低,进入良
好的导通状态。
R1
D1
+ D2 uI - R2
《集成运放》课件

集成运放的电路实现
集成运放的内部电路图包括差动放大器、级联放大器和输出放大器等部分。 集成运放的引脚及功能有正输入端、负输入端、输出端、电源引脚和参考电压引脚等。 在电路设计中,通过合理设计反馈电路,可以控制集成运放的放大倍数、频率响应和稳定性。
集成运放应用实例
比较器电路设计:使用集成运放实现信号的比较和判断,常用于开关控制和传感器应用。 运算放大器电路设计:集成运放作为核心部件,实现了模拟电路中的加法、减法、乘法和除法等基本运算。 滤波器电路设计:通过集成运放结合电容和电感等元件,实现对信号频率的选择性放大或抑制。
《集成运放》PPT课件
什么是集成运放
集成运放是一种高度集成的电子器件,集成了运算放大器功能的集成电路。 它在电子系统设计中起着重要的作用。
集成运放广泛应用于模拟电路、信号处理和测量领域,能够实现信号放大、 滤波、比较和运算等多种功能。
根据应用需求的不同,集成运放可以分为不同的类型,如低功耗运放、高速 运放和精密运放。
不同类型集成运放的区别:根据应用需求选择适合的类型,如低功耗、高速 或精密运放。
集成运放的性能等。
集成运放的应用注意事项:在设计中要注意信号电平、电源电压和负载特性 等因素的合理选取和匹配。
总结
集成运放具有优点和局限性。它提供了高度集成的运算放大器功能,简化了电路设计和制造工艺。 未来,集成运放的发展趋势是向更高性能、更低功耗和更小尺寸方向发展。 以上是本PPT课件的大纲,包含集成运放的基本概念、电路实现、应用实例、常见问题与解决方法以及选型及 应用注意事项。欢迎大家观看学习!
集成运放常见问题与解决方法
集成运放的电压偏移问题:通过调整电源电压、使用补偿电路或选择零漂较 小的运放来解决。
集成运算放大器(模拟电子)技术基础知识教育学习课件PPT65页

中间级 — 多采用有源负载的共射、 共源放大器 。 要求: 高增益
输出级 — 由源极或射极跟随器组成, 提供一定的电压和电流变化。 要求: 零输入时零输出、低输出抗阻、高效 率 偏置电路、有源负载 — 由恒流源组成 另外还有:
电平位移电路 — 使输入端对地电压为零时 输出对地电压也为零
§1.2 电流源电路
§1.2 电流源电路
上述电路可推广得到多路电流源
IC2
IC3
IC4
1(1
1(1
5)
5)
4
I
r
参考电流 Ir = (Ucc-2Ube) / Rr
§1.2 电流源电路
三.比例电流源
——若要IO≠IR,但与 IR成一定比例时 可采用此电路
IC2
R1 R2
Ir
其中
Ir
UCC U BE1 Rr R1
§1.3 输入级 -差动放大电路
此时流过T1管的电流:iC1=IC1+IC 流过T2管的电流:iC2=IC2-IC
则 流过REE的电流不变,仍为静态电流IEE, 静态电压为REEIEE而不产生差模信号电压。
所以,对差模信号而言,REE可视为短路 又: 在差模输入时,两管输出端电位一端升
另一端降。且,升的量等于降的量 所以,双端输出时, RL的中点电位为
① 作为偏置 为各级提供稳定的直流偏置 ② 作为有源负载 用于提高放大器的增益
一.晶体管电流源电路
从晶体管的输出特性看,当IB一定,VCE有较 大变化时,IC几乎不变,但晶体管须工作在放大区
1.静态工作点的求法
§1.2 电流源电路
2.T的等效输出电阻
Ro rce(1
R3 )
rbe RB R3
输出级 — 由源极或射极跟随器组成, 提供一定的电压和电流变化。 要求: 零输入时零输出、低输出抗阻、高效 率 偏置电路、有源负载 — 由恒流源组成 另外还有:
电平位移电路 — 使输入端对地电压为零时 输出对地电压也为零
§1.2 电流源电路
§1.2 电流源电路
上述电路可推广得到多路电流源
IC2
IC3
IC4
1(1
1(1
5)
5)
4
I
r
参考电流 Ir = (Ucc-2Ube) / Rr
§1.2 电流源电路
三.比例电流源
——若要IO≠IR,但与 IR成一定比例时 可采用此电路
IC2
R1 R2
Ir
其中
Ir
UCC U BE1 Rr R1
§1.3 输入级 -差动放大电路
此时流过T1管的电流:iC1=IC1+IC 流过T2管的电流:iC2=IC2-IC
则 流过REE的电流不变,仍为静态电流IEE, 静态电压为REEIEE而不产生差模信号电压。
所以,对差模信号而言,REE可视为短路 又: 在差模输入时,两管输出端电位一端升
另一端降。且,升的量等于降的量 所以,双端输出时, RL的中点电位为
① 作为偏置 为各级提供稳定的直流偏置 ② 作为有源负载 用于提高放大器的增益
一.晶体管电流源电路
从晶体管的输出特性看,当IB一定,VCE有较 大变化时,IC几乎不变,但晶体管须工作在放大区
1.静态工作点的求法
§1.2 电流源电路
2.T的等效输出电阻
Ro rce(1
R3 )
rbe RB R3
集成运算放大器电路PPT

3. 集成运放的符号和电压传输特性 uO=f(uP-uN)
在线性区:
uO=Aod(uP-uN) Aod是开环差模放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。
(uP-uN)的数值大于一定值时,集成运放的输出不是 +UOM , 就是-UOM,即集成运放工作在非线性区。
一、概述
集成运算放大电路,简称集成运放,是一个高性能的直接 耦合多级放大电路。因首先用于信号的运算,故而得名。
1. 集成运放的特点
(1)直接耦合方式,充分利用管子性能良好的一致性采 用差分放大电路和电流源电路。 (2)用复杂电路实现高性能的放大电路,因为电路复杂 并不增加制作工序。 (3)用有源元件替代无源元件,如用晶体管取代难于制 作的大电阻。 (4)采用复合管。
(2)多集电极管构成的多路电流源
设三个集电区的面积分别为S0、S1、S2,则
IC1 S1 ,IC2 S2 IC0 S0 IC0 S0
根据所需静态电流,来确定集电结面积。
(3)MOS管多路电流源
基准电流
MOS管的漏极 电流正比于沟道 的宽长比。
设宽长比W/L=S,且T1~T4的宽长比分别为S0、S1、
+
uo = ui
+
ui负半周,电流通路为
地→ RL → T2 → -VCC,
uo = ui
两只管子交替工作,两路电源交替供电, 双向跟随。
4. 交越失真
+ +
信号在零附近两 只管子均截止
开启
消除失真的方法:
电压
设置合适的静态工作点。
三、消除交越失真的互补输出级
• 对偏置电路的要求:有合适的Q点,且动态电 阻尽可能小,即动态信号的损失尽可能小。