安培力磁介质中的磁场
高二物理《磁场》知识点

高二物理《磁场》知识点在现实学习生活中,不管我们学什么,都需要掌握一些知识点,知识点在教育实践中,是指对某一个知识的泛称。
还在苦恼没有知识点总结吗?下面是店铺整理的高二物理《磁场》知识点汇总,希望能够帮助到大家。
高二物理《磁场》知识点11、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m2、安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3、洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4、在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负。
(2)磁感线的特点及其常见磁场的磁感线分布要掌握。
(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料。
高二物理《磁场》知识点21、首先发现电流的磁效应的科学家:丹麦的奥斯特2、磁场(磁感应强度B)方向:与小磁针北极受力方向相同,也是磁感线的切线方向。
3、安培定则(右手螺旋定则):判定电流产生的磁场方向4、安培力:通电导体(电流)在磁场中所受的力通常叫安培力(1)方向:用左手定则判定(2)大小:F=BIL(B⊥I),F=0(B‖I)通电直导线所受安培力的方向和磁场方向、电流方向之间的关系,可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都和手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向。
高中物理磁场和电场的知识点

高中物理磁场和电场的知识点磁场是一种看不见、摸不着的特殊物质,在高中的物理学习中,学生会学习到磁场的知识点,下面店铺的小编将为大家带来高中物理关于磁场的知识点的介绍,希望能够帮助到大家。
高中物理磁场知识点1.磁场(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.(2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用.(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.2.磁感线(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.(3)几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A?m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近.(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5.安培力(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.(2)安培力的方向由左手定则判定.(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.洛伦兹力(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.(4)在磁场中静止的电荷不受洛伦兹力作用.7.带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB8.带电粒子在复合场中运动(1)带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.(2)带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.高中物理电场知识点1.两种电荷(1)自然界中存在两种电荷:正电荷与负电荷.(2)电荷守恒定律2.库仑定律(1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.(2)适用条件:真空中的点电荷.点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.3.电场强度、电场线(1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.(2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:E=F/q方向:正电荷在该点受力方向.(3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.(4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.(5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.(1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.(2)沿着电场线的方向,电势越来越低.6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU7.等势面:电场中电势相等的点构成的面叫做等势面.(1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.(2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.(3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.8.电场中的功能关系(1)电场力做功与路径无关,只与初、末位置有关.计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.(2)只有电场力做功,电势能和电荷的动能之和保持不变.(3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.10.带电粒子在电场中的运动(1)带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.(2)带电粒子在电场中的偏转带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动(3)是否考虑带电粒子的重力要根据具体情况而定.一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但不能忽略质量).②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.(4)带电粒子在匀强电场与重力场的复合场中运动由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:①正交分解法;②等效“重力”法.11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.12.电容定义:电容器的带电荷量跟它的两板间的电势差的比值[注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。
大学物理知识点(磁学与电磁感应)

y
Idl B
B
dF
dF
I
Idl
x L 任意闭合平面载流导线在均匀磁场中所受的力为零 。 F3 P 注:载流线圈在均匀磁 F2 M 场中所受力矩不一定为 零 B I O F 1 M Npm B en N F4
在均匀磁场中
F BIL
o
P
**应用介质中安培环路定理解题方法**
I 0 Bo
2R
2 IR 0 pm B 0 3 3
2x
2πx
注意:在一定的x处,磁场强弱随载流环的半径变 化,故可用求极值的方法讨论轴线某一定点处磁 场随载流环半径变化的趋势。
无限长柱面电流的磁场
无限长柱体电流的磁场
L1
r
R
I
L2
r
B
0 I
2π R
o R
r
二、磁场的基本性质
1、 感生电动势
S定
B dS i s t
方向由楞次定律判断
o
B变
2、 感生电场
B Ei dl s t dS
感生电场是涡旋场,其电场线与磁感 应强度增大的方向成左手螺旋关系。
3、 感生电场与感生电动势的计算 感生电场 : 当变化的磁场的分布具有特殊对称性时: 1 dB Ei r (r R) 2 dt
五、磁场的能量
1、通电线圈的自感磁能 2、磁场的磁能
1 2 Wm LI 2
目前范畴内:
1 1 2 1 2 w m H B BH 2 2 2
W m V w m dV
电磁学基本物理图象
运动
电荷
激 发
电流
激 发
磁场强度与磁感应强度的关系

磁场强度与磁感应强度的关系磁场是一个十分神秘而又普遍存在于我们生活中的物理现象。
无论是地球上的自然磁场,还是人造磁场如电磁铁产生的磁场,都对我们的生活产生了重要的影响。
而磁场强度与磁感应强度是研究磁场的重要指标,它们之间有着紧密的关系。
首先,磁场强度是磁场的物理量。
在空间某一点处,磁场强度的大小表示受试验样品所受的磁力的大小。
磁场强度的单位是特斯拉(T)。
磁感应强度则是磁场对单位面积垂直于磁场方向的物体所产生的力的大小。
磁感应强度的单位是特斯拉(T)。
可以看出,磁场强度和磁感应强度在单位上是相同的。
那么磁场强度和磁感应强度之间究竟是什么关系呢?事实上,磁场强度与磁感应强度之间存在一个重要的关系,即B = μH。
其中,B代表磁感应强度,μ代表介质的磁导率,H表示磁场强度。
这个关系表明,磁感应强度等于磁场强度与磁导率的乘积。
磁导率是一个常数,具体取决于介质。
不同介质的磁导率有所不同,如真空的磁导率为μ0=4π×10^-7 特斯拉·米/安的二次方,气体、液体、固体等不同介质的磁导率会有一定的差异。
由此可见,磁感应强度与磁场强度之间的关系是通过介质的磁导率来联系起来的。
此外,在磁场中根据安培力的作用原理可以得到磁场强度的另一个表达式:H=NI/L。
其中,N代表线圈的匝数,I为线圈中的电流,L是线圈的长度。
这个表达式说明,磁场强度与电流和线圈的绕组参数有关,更深层次地揭示了磁场强度与磁感应强度的关系。
通过上述观察可知,磁场强度与磁感应强度之间的关系是复杂而丰富的。
磁感应强度是磁场的一个具体应用,它直接体现了磁场对物体的影响。
而磁场强度则是描述磁场本身特性的重要物理量。
磁感应强度与磁场强度之间的关系通过磁导率和电流来联系,是一个基本的物理规律。
进一步地,磁感应强度可以作为磁场强度的一种具体表现形式。
通过改变电流、线圈的参数、介质等因素,我们可以改变磁场强度,进而改变磁感应强度。
这对于很多实际应用来说具有重要意义。
真空中恒定磁场的基本规律

P dS
S
PdV
V
P P
14
( 2 ) 极化电荷面密度
紧贴电介质表面取如图所示的闭曲面,则穿过面积元 的dS极
化电荷为
dqP qnldS cos PdS cos P dS
故得到电介质表面的极化电荷面密度为
SP P en
S P
dS en
15
4. 电位移矢量 介质中的高斯定理
• 载流圆环轴线上的磁感应强度:
B(0, 0,
z)
ez
0 Ia 2
2(a2 z2 )3
2
4
z
2
I M 1
载流直线段
z
M
ao
y
x
I
载流圆环
5
例 2.3.1 计算线电流圆环轴线上任一点的磁感应强度。 解:设圆环的半径为a,流过的电流为I。为计算方便取线电
流圆环位于xy平面上,则所求场点为P(0,0,z),如图 所示。采用圆柱
其中 0(1 e ) r0 称为介质的介电常数,r 1 e 称为介
质的相对介电常数(无量纲)。
* 介质有多种不同的分类方法,如: • 均匀和非均匀介质 • 各向同性和各向异性介质 • 时变和时不变介质
• 线性和非线性介质 • 确定性和随机介质
恒定场的散度(微分形式) 磁通连续性原理(积分形式)
B(r ) 0
S B(r ) dS 0
磁通连续性原理表明:恒定磁场是无源场,磁场线是无起点和
终点的闭合曲线。
2. 恒定磁场的旋度与安培环路定理
恒定磁场的旋度(微分形式)
B(r ) 0J (r )
安培环路定理(积分形式)
B(r)dl
I2dl2 (I1dl1 R12 )
关于安培力的经典微观解释

关于安培力的经典微观解释安培力(Amp-Lorentz)是物体磁学性质的定量描述,它是磁场和电流密度之间的关系。
安培力的概念是通过安培的名字来源于法国物理学家安德鲁安培,并由挪威物理学家安得列洛伦兹最先发现的。
它在有磁性物质的介质中研究磁学现象的过程中发挥的重要作用。
安培力是由电流密度和磁场强度的乘积所确定的。
在静电环境中,它也可以称为“罗伦茨力”,因为它可以用来描述电荷之间的相互作用。
它由电荷之间的力,以及它们所受到的力的综合结果表示出来。
将磁场和电流密度耦合在一起,使它们在物理过程中受到作用,而不是相互独立,这就是安培力的基本概念。
安培力的微观解释可以从两个不同的角度来理解。
首先,它是由“内在偶合效应”决定的,即磁场的不同分量的不同方向可能会影响到电荷的运动。
其次,它也可以由“外部偶合效应”来说明:由电荷引起的磁场,以及由磁场引起的电荷之间,存在着相互作用的效应。
安培力在物理学中的作用非常重要。
它是磁电学、磁力学两个主要领域的基本概念。
例如,它可以用来解释为什么磁力线的方向会绕着电流的方向旋转,以及电场的变化是如何影响磁场的。
它还可以用来解释电动势的原理,即为什么当电流在一个磁场中流动时,将产生动能的原因。
安培力在实际应用中也有重要作用。
例如,它被应用于电机理论、电磁学、磁性材料研究以及电缆理论等领域。
此外,它还能帮助我们更好地理解磁铁、电磁辐射以及永磁体等磁学现象。
综上所述,安培力是物体磁学性质的一个重要参数,它由磁场和电流密度的乘积确定。
它的物理含义可以从内部偶合效应和外部偶合效应这两个不同的角度得以解释。
它的重要性不言而喻,在物理学和工程学的实际应用中都发挥了重要作用。
机械工业出版社大学物理 第08章 稳恒磁场02-安培力、磁力矩

§8.6 磁介质对磁场的影响
能够对磁场有影响的物质称为磁介质。
一、磁导率
vv v B B0 B'
磁介质中的 总磁感强度
真空中的 磁感强度
介质磁化后的 附加磁感强度
实验表明: B r B0
相对磁导率
r
B B0
磁导率 r0
——表示磁介质磁化对磁场的影响
25
磁介质的分类
顺磁质 抗磁质 铁磁质
BIdl sin
因 dl rd
π
F BIr0 sin d
BI 2r
r
y
dF
rC
Idl
r
d
Bo
r
r
r
F BI 2r j BI AB j
B
I
Ax
17
例2 求如图不规则的平面载流导线
在均匀磁场中所受的力。
已知
r B
和
I。
y
dF
r B
r
解:
取一r 段电流r元
r
Idrl
dF Idl B
解 M NBISsin
得
π,
2
M Mmax
M NBIS 50 0.05 2 (0.2)2 N m
M 0.2N m
23
第八章 稳恒磁场
8.1 电流与电动势 8.2 磁场 磁感应强度 8.3 毕奥-萨伐尔定律 8.4 安培环路定理 8.5 磁场载流导体的作用 8.6 磁介质对磁场的影响 8.7 铁磁质
b
B
d vd+
+ +Fm +
+q
- - - - -
霍耳电压 UH
+
I UH
第五章 磁场知识概括

第五章《磁场与磁路》知识要点概括一、磁场的产生1、磁场:是一种特殊的物质,它看不见、摸不着,但是又真实存在、具有一般物质所固有的一些属性(如力和能的特性)。
2、磁感线:是用来形象描述磁场强弱和方向的一系列曲线,这些曲线叫磁感线。
磁感线是一系列互不交叉的闭合曲线,在磁体外部由N 极指向S 极,在磁体内部由S 极指向N 极。
磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向就表示该点磁场的方向。
3、磁体的周围有磁场:磁铁、地球等磁体的周围存在磁场。
任何磁体都有两个磁极,一个叫北极(N),另一个叫南极(S)。
4、电流的周围有磁场。
一根导体通电后周围会产生磁场,这种现象称为电流的磁效应。
电流产生的磁场方向判断:用右手螺旋定则(安培定则)来判断。
5、磁极间的相互作用:同名磁极相斥,异名磁极相吸。
二、描述磁场的物理量1、磁感应强度B:描述了磁场强弱和方向。
定义:IL F B =。
单位:特斯拉(T)。
2、磁通φ:描述了穿过某个面磁感线条数的多少。
φ=B S 。
单位:韦伯(Wb)。
3、磁导率μ:用来表示介质导磁性能的好坏。
不同介质磁导率一般不同,单位:亨/米(H /m)。
真空的磁导率μ0=4π×10-7H/m,且为一常数。
相对磁导率——某介质的磁导率与真空磁导率的比值,用μr 表示,即:0μμμ=r 4、磁场强度H:磁场强度是把电与磁联系起来的一个辅助量。
μB H =。
单位:安/米(A/m)。
三、物质的磁化:1、磁化:使原来没有磁性的物质具有磁性的过程称为磁化。
磁化的本质:铁磁材料内部存在大量的“小磁畴”,每个小磁畴就是一个小磁体。
磁化前,这些小磁畴排列杂乱无章,它N SI地理北极地理南极们产生的磁场互相抵消,对外不呈现磁场。
但当有外磁场作用时,小磁畴会发生翻转,取向排列变得一致,它们的磁场互相加强,对外呈现出磁场。
2、磁化曲线与磁滞回线如图,横坐标H——表示外磁场的磁场强度。
纵坐标B——表示物质磁化后的磁感应强度。