总复习——三角形的练习卷

合集下载

中考数学总复习《三角形的综合题》专项测试卷-附参考答案

中考数学总复习《三角形的综合题》专项测试卷-附参考答案

中考数学总复习《三角形的综合题》专项测试卷-附参考答案学校:___________姓名:___________班级:___________考号:___________一、单选题(共12题;共24分)1.如图,OA⊥OB,OB=4,P是射线OA上一动点,连接BP,以B为直角顶点向上作等腰直角三角形,在OA上取一点D,使⊥CDO=45°,当P在射线OA上自O向A运动时,PD的长度的变化()A.一直增大B.一直减小C.先增大后减小D.保持不变2.如图,△ABC中BF、CF分别平分∠ABC和∠ACB,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①∠DFB=∠DBF;②△EFC为等腰三角形;③△ADE的周长等于△BFC的周长;④∠BFC= 90∘+12∠A.其中正确的是()A.①②B.①③C.①②④D.①②③④3.如图,在⊥ABC中,已知⊥1=⊥2,BE=CD,AB=5,AE=2,则CE=()A.3B.4C.5D.64.如图,在5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),那么与△ABC有一条公共边且全等的所有格点三角形的个数是().A.2B.3C.4D.55.有一张矩形纸片ABCD,已知AB=2√2,AD=4,上面有一个以AD为直径的半圆(如图1),E 为边AB上一点,将纸片沿DE折叠,A点恰好落在BC上,此时半圆还露在外面的部分(如图2,阴影部分)的面积是()A.π−2B.2−π2C.43π−√3D.23π−16.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25B.12,412,512C.3,4,5D.4,712,8127.给出下列说法:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2则⊥C=90°;③⊥ABC中,若⊥A:⊥B:⊥C=1:5:6则⊥ABC是直角三角形;④⊥ABC中,若a:b:c=1:2:√3则这个三角形是直角三角形.其中,错误的说法的个数为()A.1个B.2个C.3个D.4个8.如图,已知菱形ABCD的面积为20,边长为5,点P、Q分别是边BC、CD上的动点,且PC=CQ.连接PD、AQ则PD+AQ的最小值为()A.4√5B.√89C.2√5+5D.7√29.如图,点D是⊥ABC外的一点,BD,CD分别平分外角∠CBE,∠BCF连接AD交BC于点O.下列结论一定成立的是()A.DB=DC B.OA=ODC.⊥BDA=⊥CDA D.⊥BAD=⊥CAD10.如图,点P是正方形ABCD的对角线BD上一点PE⊥BC,PF⊥CD垂足分别为E,F连接AP,EF下列结论:①AP=EF;②AP⊥EF;③△APD与四边形PEFD的面积相等.其中正确的结论是()A.①②B.①③C.②③D.①②③11.如图,在矩形ABCD中AB=2,∠AOB=60°则BD的长为()A.1B.2C.3D.412.如图,点D是⊥ABC内一点AD=CD,∠ADB=∠CDB则以下结论①∠DAC=∠DCA;②AB= AC;③BD平分⊥ABC;④BD与AC的位置关系是互相垂直,其中正确的有()A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.如图,△ABC是直角三角形∠ACB=90°,分别以AC、CB为边向两侧作正方形.若图中两个正方形的面积和S1+S2=36,则AB=.14.如图,DE是⊥ABC的中位线,AF是BC边上的中线,DE,AF交于点O.现有以下结论:①DE⊥BC;②OD=14BC;③AO=FO;④S⊥AOD=14S⊥ABC,其中正确结论的序号为。

人教版 八年级数学上册 第11章 三角形 复习题

人教版 八年级数学上册 第11章 三角形 复习题

人教版八年级数学第11章三角形复习题一、选择题1. 下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2. 如图,小方做了一个长方形框架,发现它很容易变形,请你帮小方选择一个最好的加固方案()3. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.64. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°5. 如图,足球图片正中的黑色正五边形的内角和是A .180°B .360°C .540°D .720°6. 下列哪一个度数可以作为某一个多边形的内角和 ( ) A .240° B .600° C .540°D .2180°7. 把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( ) A .六边形 B .五边形C .四边形D .三角形8. 如图,在△ABC 中,BC 边不动,点A 竖直向上运动,∠A 越来越小,∠B ,∠C 越来越大.若∠A 减小x °,∠B 增加y °,∠C 增加z °,则x ,y ,z 之间的关系是 ( )A .x=y+zB .x=y-zC .x=z-yD .x+y+z=180二、填空题9. (2019•江西)如图,在ABC △中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △,则CDE ∠=__________°.10. 若正多边形的一个外角是60°,则这个正多边形的内角和是________.11. 如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2=________.12. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.13. 如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为cm.14. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.15. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.16. 如图,在△ABC中,三角形的外角∠DAC和∠ACF的平分线交于点E.(1)若∠B=50°,则∠DAC+∠ACF=________°,∠E=________°;(2)若∠B=α,则∠DAC+∠ACF=______,∠E=________.三、解答题17. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.18. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.19. 如图①所示,在△ABC中,∠1=∠2,∠C>∠B,E为AD上一点,且EF⊥BC 于点F.(1)试探索∠DEF与∠B,∠C之间的数量关系;(2)如图②所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索得到的结论是否还成立?人教版八年级数学第11章三角形复习题-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】B4. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC 可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.5. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180°=540°, 故选C .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A[解析] 剪去一个角的方法有三种:经过两个顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.所以一个n 边形剪去一个角后,剩下的形状可能是n 边形或(n +1)边形或(n -1)边形.8. 【答案】A[解析] 根据题意,得∠A+∠ABC+∠ACB=180°①,变化后的三角形的三个角的度数分别是∠A-x °,∠ABC+y °,∠ACB+z °,∴∠A-x °+∠ABC+y °+∠ACB+z °=180°②,①②联立整理可得x=y+z.二、填空题9. 【答案】20【解析】∵40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △, ∴404080ADC ∠=︒+︒=︒,1804040100ADE ADB ∠=∠=︒-︒-︒=︒, ∴1008020CDE ∠=︒-︒=︒,故答案为:20.10. 【答案】720°[解析] 该正多边形的边数为360°÷60°=6.该正多边形的内角和为(6-2)×180°=720°.11. 【答案】54°【解析】如解图,过点C作直线CE∥a,则a∥b∥CE,则∠1=∠ACE,∠2=∠BCE,∵∠ACE+∠BCE=90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.12. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.13. 【答案】19[解析] ∵AD是BC边上的中线,∴BD=CD.∴△ABD的周长-△ACD的周长=(AB+BD+AD)-(AC+CD+AD)=AB-AC.∵△ABD的周长为25 cm,AB比AC长6 cm,∴△ACD的周长为25-6=19(cm).14. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120. 15. 【答案】114[解析] 因为AB∥CD,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC=12∠BAB′=22°.在△ABC中,∠B=180°-(∠BAC+∠2)=114°.16. 【答案】(1)23065(2)180°+α90°-1 2α三、解答题17. 【答案】解:∵∠NBC=60°,∠NBA=∠BAS=45°,∴∠ABC=∠NBC-∠NBA=60°-45°=15°.又∵∠BAC=∠BAS+∠SAC=45°+30°=75°,∴在△ABC中,∠C=180°-(75°+15°)=90°.18. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP 1,CP 2交于点M. 由(2)知,BM +CM <AB +AC. 又∵P 1P 2<P 1M +P 2M ,∴BP 1+P 1P 2+P 2C <BM +CM <AB +AC. ∴四边形BP 1P 2C 的周长<△ABC 的周长.19. 【答案】解:(1)∵∠1=∠2,∴∠1=12∠BAC. 又∵∠BAC =180°-(∠B +∠C),∴∠1=12[180°-(∠B +∠C)]=90°-12(∠B +∠C).∴∠EDF =∠B +∠1=∠B +90°-12(∠B +∠C)=90°+12(∠B -∠C). ∵EF ⊥BC ,∴∠EFD =90°.∴∠DEF =90°-∠EDF =90°-[90°+12(∠B -∠C)]=12(∠C -∠B).(2)当点E 在AD 的延长线上时,其余条件都不变,在(1)中探索得到的结论仍成立.。

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。

【期末复习提升卷】浙教版2022-2023学年八上数学第1章 三角形的初步知识 测试卷1

【期末复习提升卷】浙教版2022-2023学年八上数学第1章 三角形的初步知识 测试卷1

【期末复习提升卷】浙教版2022-2023学年八上数学第1章三角形的初步知识测试卷1考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是()A.10.5B.15C.12D.18(第1题)(第3题)(第4题)(第5题)(第6题)2.如图,M,A,N是直线l上的三点,AM=3 ,AN=5,P是直线l外一点,且∠PAN=60°,AP=1,若动点Q从点M出发,向点N移动,移动到点N停止,在△APQ形状的变化过程中,依次出现的特殊三角形是()A.直角三角形—等边三角形—直角三角形—等腰三角形B.直角三角形—等腰三角形—直角三角形—等边三角形C.等腰三角形—直角三角形—等腰三角形—直角三角形D.等腰三角形—直角三角形—等边三角形—直角三角形3.如图所示,一个60o角的三角形纸片,剪去这个60°角后,得到一个四边形,那么∠1+∠2的度数为()A.120O B.180O.C.240O D.30004.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE的度数为()A.75°B.70°C.65°D.60°5.如图是正五边形ABCDE,DG平分正五边形的外角∠EDF,连接AD,则∠ADG= ()A.54°B.60°C.72°D.88°6.如图,在△ABC中,AB=6,AC=8,AD是边BC上的中线,则AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤77.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30∘,∠C=100∘,如图2.则下列说法正确的是()A.点在上B.点在的中点处C.点在上,且距点较近,距点较远D.点在上,且距点较近,距点较远(第7题)(第8题)8.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25B.5.5C.7.5D.12.59.如图,在长方形纸片ABCD中,△EDC沿着折痕EC对折,点D的落点为F,再将△AGE沿着折痕GE对折,得到△GHE,H、F、E在同一直线上;作PH⊥AD于P,若ED=AG=3,CD=4,则PH 的长为()A.52B.5C.7225D.962510.如图,AD是ΔABC的中线,E是AD上一点,连接BE并延长交AC于点F,若EF=AF,BE=7.5,CF=6,则EF=().A.2.5B.2C.1.5D.1二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,已知△ABD≌△ACE,且∠1=45°,∠ADB=95°,则∠AEC= ,∠C=. 12.如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是.13.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于点D.若B(m,3),C(n,−5),A(4,0),则AD⋅BC=.(第13题)(第14题)(第15题)(第16题)14.如图△ABC中,AD⊥BC于点D,AE平分∠CAD交BC于E,若∠C=60°,则∠DEA=.15.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为16.如图,D、E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE 的面积为S2,若S△ABC=24,则S1﹣S2的值为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图所示,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE.(1)求证:△BCE≌△AHE.(2)求证:AH=2CD.18.在ΔABC中,AC<AB<BC,∠B=36°.(1)如图1,已知线段AB的垂直平分线与BC边交于点P,连接AP,求∠APC的度数.(2)如图2,若点Q是BC上一点,且BA=BQ,连接AQ.求证:∠AQC=3∠B.19.如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC 于点G.(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.20.如图,一次函数y=(m+1)x+ 32的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB的面积为3 4.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的解析式.21.如图,在ΔABC中,∠ABC=45°,D为BC上一点,CD=2BD,∠ADC=600,AE⊥BC 于点E,CF⊥AD于点F,AE,CF相交于点G.(1)求证:ΔAFG≅ΔCFD;(2)若BC=3,AF=√3,求EG的长.22.如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.23.如图,在△ABC中,AE,CD分别是∠BAC,∠ACB的平分线,且AE,CD相交于点F.(1)若∠BAC=80°,∠ACB=40°,求∠AFC的度数;(2)若∠B=80°,求∠AFC的度数;(3)若∠B=x°,用含x的代数式表示∠AFC的度数.24.如图1,张老师在黑板上画出了一个ΔABC,其中AB=AC,让同学们进行探究.(1)探究一:如图2,小明以BC为边在ΔABC内部作等边ΔBDC,连接AD,请直接写出∠ADB的度数;(2)探究二:如图3,小彬在(1)的条件下,又以AB为边作等边ΔABE,连接CE.判断CE与AD的数量关系;并说明理由;(3)探究三:如图3,小聪在(2)的条件下,连接DE,若∠DEC=60∘,DE=2,求AE的长.。

中考数学专卷2020届中考数学总复习(20)三角形-精练精析(1)及答案解析

中考数学专卷2020届中考数学总复习(20)三角形-精练精析(1)及答案解析

图形的——三角形1一.选择题(共9小题)1.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.﹣4 B.10π﹣4 C.10π﹣8 D.﹣83.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC6.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C 的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为何?()A.110 B.125 C.130 D.1558.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70° B.80° C.40° D.30°二.填空题(共8小题)10.若一个三角形三边长分别为2,3,x,则x的值可以为_________ (只需填一个整数)11.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________ 度.12.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= _________ 度.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是_________ °.14.如图是一副三角板叠放的示意图,则∠α= _________ .15.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为_________ .16.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件_________ ,使△ABC≌△DEF.17.如图,已知△ABC中, AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是_________ .(只填一个即可)三.解答题(共7小题)18.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.21.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.22.如图,在△ABC和△AB D中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.23.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.图形的——三角形参考答案与试题解析一.选择题(共9小题)1.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B. C.D.考点:三角形三边关系.分析:根据勾股定理可知x的平方取值范围在2与3的平方和与平方差之间.解答:解:因为32﹣22=5,32+22=13,所以5<x2<13,即.故选B.点评:本题考查了锐角三角形的三边关系定理,有一定的难度.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.﹣4 B.10π﹣4 C.10π﹣8 D.﹣8考点:三角形的面积.分析:图中阴影部分的面积为两个半圆的面积﹣三角形的面积,然后利用三角形的面积计算即可.解答:解:阴影部分的面积=π×22÷2+π×12÷2﹣4×2÷2=;故选A.点评:此题考查了三角形的面积;解题的关键是看出图中阴影部分的面积为两个半圆的面积﹣三角形的面积.3.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种考点:三角形三边关系.专题:常规题型.分析:要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.解答:解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°考点:全等三角形的判定.分析:本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.解答:解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.E F∥BC考点:全等三角形的判定.分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解答:解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.6.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C 的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)考点:全等三角形的判定与性质;坐标与图形性质;正方形的性质.专题:几何图形问题.分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解答:解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为何?()A.110 B.125 C.130 D.155考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A. 3 B.4 C.6 D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥A C于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°考点:线段垂直平分线的性质;等腰三角形的性质.专题:几何图形问题.分析:由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB 的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.解答:解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.二.填空题(共8小题)10.若一个三角形三边长分别为2,3,x,则x的值可以为 4 (只需填一个整数)考点:三角形三边关系.专题:开放型.分析:根据三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得x的取值范围.解答:解:根据三角形的三边关系可得:3﹣2<x<3+2,即:1<x<5,所以x可取整数4.故答案为:4.点评:此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.11.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75 度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据三角形三内角之和等于180°求解.解答:解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.点评:考查三角形内角之和等于180°.12.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= 70 度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108° ①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.14.(2014•佛山)如图是一副三角板叠放的示意图,则∠α= 75°.考点:三角形的外角性质.分析:首先根据三角板度数可得:∠ACB=90°,∠1=45°,再根据角的和差关系可得∠2的度数,然后再根据三角形内角与外角的关系可得答案.解答:解:∵∠ACB=90°,∠1=45°,∴∠2=90°﹣45°=45°,∴∠α=45°+30°=75°,故答案为:75°.点评:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.考点:全等三角形的性质.分析:根据全等三角形对应角相等可得∠C=∠A,再根据四边形的内角和定理列式计算即可得解.解答:解:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为:130°.点评:本题考查了全等三角形的性质,四边形的内角和定理,根据对应顶点的字母写在对应位置上确定出∠C=∠A是解题的关键.16.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF 或AB∥DE),使△ABC≌△DEF.考点:全等三角形的判定.专题:开放型.分析:可选择利用SSS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.解答:解:①添加AC=DF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).②添加∠B=∠DEF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).③添加AB∥DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF(或∠B=∠DEF或AB∥DE).点评:本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.17.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE .(只填一个即可)考点:全等三角形的判定.专题:开放型.分析:此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.解答:解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.三.解答题(共7小题)18.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.考点:全等三角形的判定.专题:证明题.分析:根据中点定义求出AC=CB,根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE.解答:证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).点评:本题主要考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)考点:全等三角形的判定.专题:开放型.分析:先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.解答:AC=DF.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:根据平行线求出∠A=∠C,求出AF=CE,根据AAS证出△ADF≌△CBE即可.解答:证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.点评:本题考查了平行线的性质和全等三角形的性质和判定的应用,判定两三角形全等的方法有:SAS、ASA、AAS、SSS.21.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.22.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.23.如图,在R t△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.考点:全等三角形的判定与性质;旋转的性质.专题:几何综合题.分析:(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.解答:(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.点评:本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.专题:几何综合题.分析:(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.解答:(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.2点评:本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB≌△CFB,找出相等的线段.3。

2020-2021学年人教版六年级下册小升初总复习《三角形》专项训练卷1

2020-2021学年人教版六年级下册小升初总复习《三角形》专项训练卷1

2020-2021学年人教版六年级下册小升初总复习《三角形》专项训练卷1学校:___________姓名:___________班级:___________考号:___________一、解答题1.一块三角形的交通标志牌(如右图),它的面积大约是28平方分米,底是8分米,高大约是多少分米?2.计算下图中阴影部分的面积。

(单位:cm2)3.根据图完成下列各题。

①把线段比例尺改成数值比例尺是________。

②量得AC的长是________厘米,AC的实际长度是________米。

③量得∠B=________度。

(精确到整数位)④在图上画出从B点到AC边的最短路线。

⑤求出△ABC的图上面积是________平方厘米。

4.一个边长是3厘米的正方形铁丝框,现将它改围成一个直角三角形,要求三角形的面积是6平方厘米,高是3厘米。

请你通过计算,作出直角三角形的示意图。

5.在一块三角形稻田里共收获稻谷2500千克,平均每公顷收获稻谷多少千克?6.计算三角形面积:底10.6分米,高7分米。

7.一个等腰三角形的周长是40厘米,底边长是12厘米,每条腰长是多少厘米?8.一个等边三角形的周长是39分米,它的边长是多少分米?二、作图题9.在如图的方格中画一个三角形,使它的面积等于6cm2,并画出它的对称图形。

10.在下列平行线之间画一个平行四边形,使它的面积是三角形ABC的两倍。

11.把梯形分成一个平行四边形和一个三角形。

三、填空题12.自学下面这段材料,然后回答问题。

我们知道,在整数中“两个数的和等于这两个数的积”的情形并不多,例如2+2=2×2.但是在分数中,这种现象却很普遍。

请观察下面的几个例子:因为:74+73=4112,74×73=4112,所以74+73=74×73。

因为:95+94=4120,95×94=4120,所以95+94=95×94。

根据以上结果,我们发现了这样的一个规律:两个分数,如果它们的(______)相同,并且(______),那么这两个分数的和等于它们的积。

中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)

中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)

中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)时间:45分钟满分:100分学校:___________班级:___________姓名:___________考号:___________ 1.(2023·长沙)下列长度的三条线段,能组成三角形的是( )A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( )第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( )第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( )第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是.(只填一个即可) 7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是.第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.11.(2023·大连)如图,在△ABC和△ADE中,延长BC交DE于点F,BC=DE,AC=AE,∠ACF+∠AED=180°.求证:AB=AD.第11题图12.(2023·聊城)如图,在四边形ABCD中,点E是BC边上一点,且BE=CD,∠B=∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4,求△AED的面积.参考答案1.(2023·长沙)下列长度的三条线段,能组成三角形的是( C)A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( D)第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( C)第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( B)第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( C)第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是(示例)3.(只填一个即可)7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是4.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是(2,5).第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有①②④.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.解:(1)证明:∵AD是△ABC的角平分线由作图知,AE =AF. 在△ADE 和△ADF 中 ⎩⎪⎨⎪⎧AE =AF ,∠BAD =∠CAD ,AD =AD ,∴△ADE ≌△ADF(SAS);(2)∵∠BAC =80°,AD 为△ABC 的角平分线 ∴∠EAD =12∠BAC =40°由作图知,AE =AD. ∴∠AED =∠ADE∴∠ADE =12×(180°-40°)=70°∵AB =AC ,AD 为△ABC 的角平分线 ∴AD ⊥BC.∴∠BDE =90°-∠ADE =20°.11.(2023·大连)如图,在△ABC 和△ADE 中,延长BC 交DE 于点F ,BC =DE ,AC =AE ,∠ACF +∠AED=180°.求证:AB =AD.第11题图证明:∵∠ACB +∠ACF =∠ACF +∠AED =180°在△ABC 和△ADE 中 ⎩⎪⎨⎪⎧BC =DE ,∠ACB =∠AED ,AC =AE ,∴△ABC ≌△ADE(SAS) ∴AB =AD.12.(2023·聊城)如图,在四边形ABCD 中,点E 是BC 边上一点,且BE =CD ,∠B =∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE =4,求△AED 的面积.解:(1)证明:∵∠B =∠AED =∠C ,∠AEC =∠B +∠BAE =∠AED +∠CED ∴∠BAE =∠CED 在△ABE 和△ECD 中 ⎩⎪⎨⎪⎧∠BAE =∠CED ,∠B =∠C ,BE =CD ,∴△ABE ≌△ECD(AAS) ∴AE =ED ∴∠EAD =∠EDA ;(2)∵∠AED =∠C =60°,AE =ED ∴△AED 为等边三角形 ∴AE =AD =ED =4 过A 点作AF ⊥ED 于点F.第12题图∴EF =12ED =2∴AF =AE 2-EF 2=42-22=2 3 ∴S △AED =12ED ·AF =12×4×23=4 3.。

最新人教版数学中考复习试卷——第四章《三角形》综合测试卷

最新人教版数学中考复习试卷——第四章《三角形》综合测试卷

返回目录
(2)解:∵AD⊥DB,∠A=30°,∴∠DBE=60°. ∵BD平分∠ABC, ∴∠DBC=∠DBE=60°. 在Rt△BCD中,∠DBC=60°,DC= ∴DB=2. ∵DE=BE,且∠DBE=60°,∴△BDE是等边三角形. ∴DE=DB=2. ∵DE∥BC,∴∠EDC=180°-∠BCD=90°. 则在Rt△EDC中,EC=
返回目录
16. 如图S4-12,△ABC是等边三角形,AB=6,AD是BC边上的中 线,点E在边AC上,且∠EDA=30°,则直线ED与AB的位置关系是 __平__行____,ED的长为___3_____.
返回目录
17. 如图S4-13,在△ABC中,BC的垂直平分线EF交∠ABC的平分 线BD于点E,连接CE.如果∠BAC=60°,∠ACE=24°,那么 ∠BCE=___3_2_°___.
活页测试卷
第四章《三角形》综合测试卷
一、选择题(本大题10小题,每小题3分,共30分)
1. 若一个正多边形的一个内角是135°,则这个正多边形的边
数是( C )
A. 10
B. 9
C. 8
D. 6
返回目录
2. 如图S4-1,下列说法不正确的是( B ) A. ∠2与∠C是内错角 B. ∠2与∠B是同位角 C. ∠1与∠B是同位角 D. ∠EAC与∠B是同位角
返回目录
23. 如图S4-19,在四边形ABCD中,∠BCD=90°,AD⊥DB,点E为 AB的中点,DE∥BC. (1)求证:BD平分∠ABC; (2)连接EC,若∠A=30°, DC= 求EC的长.
返回目录
(1)证明:∵AD⊥DB,点E为AB的中点, ∴DE=BE.∴∠DBE=∠BDE. ∵DE∥BC,∴∠BDE=∠DBC. ∴∠DBE=∠DBC. ∴BD平分∠ABC.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总复习——三角形的练习卷
一、复习目标:1、通过讲评练习使学生对三角形的相关概念更清楚。

3、三角形按角分和按边分的分类,以及通过三角形的内角和180度来求三角形的各角,特殊三角形的求角度。

二、复习过程:
1、复习概念:
概念:1、由三条线段组成的图形叫做三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

3、三角形的内角和为180度
4、三角形任意两条边的和大于第三条边
2、练习讲评:
(一)在钉子板上画指定的三角形
注意:画的时候为了准确,需要画在钉子之间
(二)填空:
1、一个三角形有()条边、()个角和()个顶点
2、三角形按角的大小来分,可分为()、()( |三类
3、三角形按边的长短来分,可分为()、()
注意:基础概念题,主要是给学生对知识做个梳理
4、5、6、题主要是根据三角形内角和是180度,来计算角度,除了方法外,还要强调细心计算。

(三)判断:
1、2、3、4、5都为概念的延伸题,要求学生要记忆
6、7、8为多项选择,主要是让学生利用公式、概念灵活做题
(四)画高:
注:重点也是难点,放慢速度,让学生用幻灯展示作业,大家来评一评做对了没有。

学生说一说画高的时候应该注意什么
1、用三角板画垂线,用虚线
2、要标上垂直符号
(五)计算
1、在三角形中角1=136度;角2=29度;角3=?
2、妈妈买了个等腰三角形的风铃。

它的一个底角是25度,它的顶角是多
少度?
3、在直角三角形中,一个锐角是35度,另一个锐角是多少度?
注意:强调三角形的内角和是180度。

相关文档
最新文档