八年级数学下册 第16章《二次根式》学案(新版)新人教版

合集下载

(完整版)新人教版八年级数学下册第16章二次根式教案

(完整版)新人教版八年级数学下册第16章二次根式教案

课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。

三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。

(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。

(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。

如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。

思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。

1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。

所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。

3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

八年级数学下册16.1二次根式学案(新版)新人教版

八年级数学下册16.1二次根式学案(新版)新人教版

八年级数学下册16.1二次根式学案(新版)新人教版16、1二次根式一、学习目标1、认识二次根式及其意义。

二次根式的乘方运算。

2、自主学习过程中渗透方程的思想及类比的方法。

3、培养学生探索和思考的精神及归纳的能力。

二、学习重难点二次根式的意义三、学习过程第一课时二次根式的认识(一)构建新知1、16的平方根是(),的平方根是(),()数没有平方根。

2、阅读教材2页(1)完成2页“思考”问题填空。

(2)形如这样的式子叫________,其中a是______数,数学表达式______。

(3)是二次根式的在下面画上横线,-,,3,,(b<0),3+,(a<-3),。

(二)合作学习1、和的取值范围一样吗?2、完成教材3页练习。

(三)课堂检查1、下列式子是二次根式的在下面画上横线:、、、、、、、、2、下列式有意义的条件:(1)当x_____时,在实数范围内有意义。

(2)当x_____时,在实数范围内有意义。

(3)当x_____时,在实数范围内有意义。

(4)当x_____时,有意义。

3、选做题(1)已知式子有意义,计算(2)已知,求的值。

(3)若,求axx+bxx的值、(4)已知,求的(5)、若,求xy 的值。

(四)课堂学习评价(五)课后作业教材5页习题16、11题,3题第二课时二次根式的平方(一)构建新知1、计算:,,。

2、阅读教材3~4页(1)若a≥0,,,即:(填“>,<或=”)。

若a≤0,,。

(2)用运算符号把数或字母连接起来的式子叫____________。

(二)合作学习1、计算:(1)(2)2、教材4页练习(三)课堂检查1、计算:(1)(2)2、计算:(1)(2)(a<b)3、选做题(1)化简若-3≤x≤2时,试化简│x-2│+(2)若是一个整数,则整数n的最小值是(3)已知的整数部分为a,小数部分为b,试求的值(4)如果,则x的取值范围是。

(四)课堂学习评价(五)课后作业教材5页习题16、12题,4题,5~8题。

春八年级数学下册 第16章 二次根式 16.1 二次根式教案 (新版)新人教版-(新版)新人教版初中

春八年级数学下册 第16章 二次根式 16.1 二次根式教案 (新版)新人教版-(新版)新人教版初中

16.1 二次根式第1课时二次根式的概念教学目标一、基本目标【知识与技能】理解并掌握二次根式的概念,掌握二次根式中被开方数的取值X围和二次根式的取值X 围.【过程与方法】经历观察、比较、总结二次根式概念和被开方数取值X围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.二、重难点目标【教学重点】二次根式的概念,二次根式有意义的条件.【教学难点】求二次根式中字母的取值X围.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.一个正数有两个平方根;0的平方根为0;在实数X围内,负数没有平方根.因此,在实数X围内开平方时,被开方数只能是正数或0.2.一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.3.下列式子中,不是二次根式的是( B )A.45 B.-3C.a2+3 D.2 3环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】下列各式中,哪些是二次根式,哪些不是二次根式?11,-5,-72,313,15-16,3-x(x≤3),-x(x≥0),a-12,-x2-5,a-b2(ab≥0).【互动探索】(引发学生思考)要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.【解答】因为11,-72,15-16=130,3-x(x≤3),a-12,a-b2(ab≥0)中的根指数都是2,且被开方数均为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数都小于0,所以不是二次根式.【互动总结】(学生总结,老师点评)判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数.【例2】当x________,x+3+1x+1在实数X围内有意义.【互动探索】(引发学生思考)二次根式有意义要满足什么条件?本题是否还要考虑其他条件?【分析】要使x+3+1x+1在实数X围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.【答案】≥-3且x≠-1【互动总结】(学生总结,老师点评)使一个代数式有意义的未知数的取值X围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数为非负数,三是零次幂的底数不为零.活动2 巩固练习(学生独学)1.下列式子中,是二次根式的是( A )A.-7 B.37C.x D.x2.使式子-x-52有意义的未知数x有( B )A .0 个B .1 个C .2 个D .无数个3.当x 是多少时,2x +3x+x 2在实数X 围内有意义?解:依题意,得⎩⎪⎨⎪⎧2x +3≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-32,x ≠0.∴当x ≥-32且x ≠0时,2x +33+x 2在实数X 围内没有意义.活动3 拓展延伸(学生对学)【例3】若实数x 、y 满足y >x -2+6-3x +3,求|y -3|-x -y2的值.【互动探索】要求|y -3|-x -y2的值,需确定出x 、y 的取值X 围.根据式子y>x -2+6-3x +3,可以确定出x 、y 的取值X 围.【解答】由题意,得x -2≥0且6-3x ≥0, 解得x =2,则y >3. 故|y -3|-x -y2=y -3-y +2=2-3=-1.【互动总结】(学生总结,老师点评)利用二次根式有意义的条件求出x 的值,从而确定y 的取值X 围,然后利用二次根式的性质化简代数式.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式⎩⎪⎨⎪⎧概念有意义的条件——被开方数是非负数练习设计请完成本课时对应训练!第2课时 二次根式的性质教学目标 一、基本目标 【知识与技能】理解a (a ≥0)是一个非负数、(a )2=a (a ≥0)和a 2=a (a ≥0),并利用它们进行计算和化简;了解代数式的概念.【过程与方法】在明确(a )2=a (a ≥0)和a 2=a (a ≥0)的算理的过程中,感受数学的实用性;通过小组合作交流,培养学生的合作意识.【情感态度与价值观】通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力. 二、重难点目标 【教学重点】 二次根式的性质. 【教学难点】运用二次根式的性质进行有关计算. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P3~P4的内容,完成下面练习. 【3 min 反馈】1.(1)当a >0时,a 表示a ;(2)当a =0时,a 表示0概括:一般地,a (a ≥0)是一个非负数.2.教材P3“探究”,根据算术平方根的意义填空: (1)(4)2=4; (2)2=2;⎝ ⎛⎭⎪⎫132=13; (0)2=0. (2)一般地,(a )2=a (a ≥0). 3.教材P4“探究”,填空: (1)22=2; 错误!=;⎝ ⎛⎭⎪⎫232=23; 02=0.(2)一般地,a 2=a (a ≥0).教师点拨:二次根式的三个性质:(1)a (a ≥0)是一个非负数;(2)(a )2=a (a ≥0);(3)a 2=a (a ≥0).4.用基本运算符号把数或表示数的字母连结起来的式子,我们称这样的式子为代数式.5.计算:0.019 6×22 500=21;549=73. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)( 1.5)2; (2)(25)2; (3)16; (4)-52.【互动探索】(引发学生思考)一个非负数的算术平方根的平方等于什么?当二次根式的被开方数是一个完全平方数,开方时有什么规则?【解答】(1)()1.52=1.5. (2)(25)2=22×(5)2=4×5=20. (3)16=(42)=4.(4)()-52=52=5.【互动总结】(学生总结,老师点评)一个非负数的算术平方根的平方等于这个非负数.当二次根式的被开方数是一个完全平方数时,a 2=||a =⎩⎨⎧a ()a ≥0;-a ()a <0.【例2】化简下列二次根式. (1)8a 3b (a ≥0,b ≥0); (2)-36×169×-9.【互动探索】(引发学生思考)根据开方的定义化简.注意:二次根式的结果是最简二次根式.【解答】(1)8a 3b =22·a 2·2ab =2a2·2ab =2a 2ab .(2)-36×169×-9=36×169×9=6×13×3=234.【互动总结】(学生总结,老师点评)(1)若被开方数中含有负因数,则应先化成正因数;(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(式),即化为最简二次根式.活动2 巩固练习(学生独学) 1.下列各式正确的是( D ) A .-4×-9=-4×-9 B .16+94=16×94C .449=4×49D .4×9=4×9 2.计算:(1)(9)2; (2)-(3)2; (3)64; (4)a 2+2a +1. 解:(1)9. (2)-3. (3)8. (4)a 2+2a +1=()a +12=||a +1.当a ≥-1时,原式=a +1;当a <-1时,原式=-a -1.3.已知实数a 、b 在数轴上的位置如图所示,化简:a +12+2b -12-|a -b |.解:从数轴上a 、b 的位置关系,可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0,原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.活动3 拓展延伸(学生对学)【例3】 已知a 、b 、c 是△ABC 的三边长,化简a +b +c2-b +c -a2+c -b -a2.【互动探索】根据三角形的三边关系,得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,然后去绝对值符号合并即可.【解答】∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .【互动总结】(学生总结,老师点评)解答本题的关键是根据三角形的三边关系得出不等关系,进行变换后,结合二次根式的性质进行化简.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的性质⎩⎨⎧a ≥0a ≥0a2=a a ≥0a 2=|a |=⎩⎪⎨⎪⎧a a ≥0a a <0练习设计请完成本课时对应训练!。

八年级数学下册第16章二次根式16.1二次根式(2)教案新版新人教版

八年级数学下册第16章二次根式16.1二次根式(2)教案新版新人教版

八年级数学下册第16章二次根式16.1二次根式(2)教案新版新人教版一、教材分析与处理(一)教材的地位和作用:《二次根式》是人教版义务教育课程标准实验教科书《数学》八年级下册第十六章第一节.二次根式是在学习平方根基础上将具体数字抽象化,并且基于学习二次根式定义的基础上对二次根式的性质进行进一步的探究,本节课为学习二次根式的计算等知识做好了铺垫.(二)教学目标:知识与技能目标:(a ≥0)是一个非负数,)2=a (a ≥0)和a a =2,并利用它们进行计算和化简.过程与方法目标:a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出)2=a (a ≥0),运用结论解题;通过具体数据的解答,(a ≥0),并利用这个结论解决具体问题.情感与价值目标:通过本节课的学习培养学生准确计算和化简的严谨的学习精神,培养学生观察、分析、发现问题的能力,并且通过探究感受学习的乐趣和获得成果的成就感,进一步增强学生自主参与意识. .(三)教学重点与难点:1.重点:a ≥0)是一个非负数,掌握()()02≥=a a a 、a a =2,并利用它们进行计算和化简.2.难点:引导学生自主探究推导得出()()02≥=a a a 、a a =2.二、学生情况分析及对策八年级学生已经学习了算数平方根,而且基本能够理解算数平方根的意义,并且能根据算数平方根进一步扩展探究二次根式的定义及二次根式有意义的条件,但是对于二次根式的意义及运算结果探究不深,而且有些同学不能深入理解二次根式的意义,这样学习本节课就产生了一定的困难.根据学生的实际情况和特点,我采取由特殊到一般,有简到难逐一探究、突破难点的教学方法进行本节课的教学.三、教法与学法1.教法:回顾旧知探究新知,教师设计情境,提出问题,引导学生通过观察,由具体到抽象,得到二次根式的性质,培养学生由特殊到一般的思想方法,先大胆猜想,再进一步探究,最终得到结论,并借助多媒体演示教学,增强课堂实例的直观性和启发性.2.学法:通过观察、猜想、分析、自主探究,得出二次根式的性质,增强数学思维能力.3.教学手段:借助电脑多媒体课件及视频辅助教学。

初二数学二次根式教案

初二数学二次根式教案

初二数学二次根式教案【篇一:新人教版八年级数学下册第16章二次根式教案】课题:16.1二次根式1 课型:新授一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:a?0(a?0)和(a)?a(a?0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质a?0(a?0)和(a)?a(a?0)。

三、学习过程(一)自学导航(课前预习)(1)已知x?a,那么a是x的______;x是a的______, 记为_____,a一定是____数。

(2)4的算术平方根为2,用式子表示为;正数a的算术平方根为4_______,0的算术平方根为_______;式子a?0(a?0)的意义是。

(二)合作交流(小组互助)(1)的平方根是;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式h?5t。

如果用含h的式子表示t,则t;(3)圆的面积为s,则圆的半径是;(4)正方形的面积为b?3,则边长为。

思考:,2222hs ,,?3等式子的实际意义.说一说他们的共同特征. ?5a(a?0)叫做二次根式,a叫做_____________。

定义: 一般地我们把形如1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,?,4a(a?0),x2?1 32、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。

所以,在二次根式a中,字母a必须满足 , 1a才有意义。

3、根据算术平方根意义计算: (1) (4)2 (2)((3)(.5) (4)()2根据计算结果,你能得出结论:(a)2?________,其中a?0,4、由公式(a)?a(a?0),我们可以得到公式a=(a)2 ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

如()=5;也可以把一个非负数写成一个数的平方形式,如5=(). 22212) 32练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解x2?74a2-11(三)展示提升(质疑点拨)例:当x是怎样的实数时,x?2在实数范围内有意义?解:由x?2?0,得x?2当x?2时,x?2在实数范围内有意义。

八年级数学下册16.1 二次根式学案1(新版)新人教版

八年级数学下册16.1 二次根式学案1(新版)新人教版

八年级数学下册16.1 二次根式学案1(新版)新人教版【学习目标】1、了解二次根式的概念,能判断一个式子是不是二次根式、2、掌握二次根式有意义的条件、【学习重点】二次根式有意义的条件、【学习难点】二次根式有意义的条件、【学习过程】一、知识链接这些知识你还记得吗?1、如果对于任意数x ,有x2 = a,那么x叫a的________, 记为______,其中 a是x的______;所以a一定是_______数、2、如果对于一个正数x ,有x2 = a,那么x叫a的________, 记为______,其中 a仍是x的______;所以a一定是_______数、3、正数a的算术平方根为_______,0的算术平方根为_______、二、探究新知1、面积为3的正方形的边长_______,面积为s的正方形的边长_______、2、一个长方形的围栏,长是宽的2倍,面积为130平方米,则它的宽为_______ 米、3、一个物体从高处落下,落到地面所用的时间为t(单位:s)与开始落下时离地面的高度h (单位:m)满足关系式中,用含有h的式子表示t,则t为、观察以上各式,它们有什么共同特点?归纳定义:一般地,我们把形如_______(a≥0)的式子叫做二次根式,“_______”称为二次根号、思考:如何判定一个式子是否是二次根式?2)判断下列各式,哪些是二次根式?哪些不是?为什么?,,,,,3)已知一个正方形的面积是5,那么它的边长是、4)下列各式一定是二次根式的是()A、B、C、D、总结:二次根式应满足的条件:、三、例题精讲例1当x是怎样的实数时,在实数范围内有意义?思考:当x是怎样的实数时,在实数范围内有意义?呢?四、当堂练习1、下列式子中,哪些是二次根式?哪些不是二次根式?,,,(>0),,,,(x≥0,y≥0)2、当x是怎样的实数时,在实数范围内有意义?3、若,则 = 、【补充练习】1、式子有意义的x的取值范围是、2、已知:的值、五、总结反思六、板书设计。

新人教版八年级数学下册 第16二次根式章 导学案

新人教版八年级数学下册 第16二次根式章 导学案

二次根式的概念 (第1课时) 学生姓名:学习目标a ≥0)的意义解答具体题目重点:a ≥0)的式子叫做二次根式的概念;难点:a ≥0)”解决具体问题. 学习过程一、知识准备平方根的性质:正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。

思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为5的正方形的边长为 ;(2)要修建一个面积为3的圆形喷水池,它的半径为 m ;(3)一个位图从高处自由落下,落到地面所用的时间t (单位:s )与开始落下时的高度h(单位:m)满足关系h=t 2 如果用含有h 的式子表示t,则t= 。

(4)6的算术平方根的相反数为 ;(5)0的算术平方根为 。

二、探究在上面的问题中,结果分别是 ,它们都表示一些正数的算术平方根。

一般地,我们把形如 ( )的式子叫做二次根式,称为(二次)根号.注:开平方时,被开方数a 的取值范围 (为什么?) 例1.当x 是多少时,2-x 在实数范围内有意义?例2、当x 11x +在实数范围内有意义?例3,求a 2004+b 2004的值.三、练习(1)下列式子,哪些是二次根式,哪些不是二次根式:1x x>0)1x y+x ≥0,y•≥0) 是二次根式的有: 不是二次根式的有: (2)当a 是怎样的实数时,下列各式在实数范围内有意义?四、课堂小结二次根式的概念需注意:五、课后作业1、形如________ 的式子叫做二次根式.2有意义,则x =_______.3、下列式子中,是二次根式的是( )A .BCD .x 4、已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对5、当x 在实数范围内有意义?6、已知a 、b 为实数,且满足021=-++b a ,求ba的值.六、课后反思二次根式的性质(第2课时) 学生姓名:教学目标1、a ≥0)是一个非负数2、理解二次根式的两个性质2=a (a ≥0)=a (a ≥0)。

八年级数学下册 第十六章 二次根式 16.1 二次根式 二次根式的性质学案(新版)新人教版

八年级数学下册 第十六章 二次根式 16.1 二次根式 二次根式的性质学案(新版)新人教版

二次根式的性质姓名:班级:主备人:授课时间:课题:课型:新课课时数:1学习目标1.理解二次根式的性质,能运用二次根式的性质进行二次根式的运算和化简;2.经历探索(a)2=a(a≥0)的过程,培养分类的数学思想。

学习重点二次根式的性质及运用。

学习难点运用二次根式的性质进行二次根式的化简。

学习过程备注一、自主学习感受新知(一)复习引入:(1)已知x2 = a,那么a是x的______; x是a的________, 记为______,a一定是_______数。

(2)4的算术平方根为2,用式子表示为 =__________;正数a的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥aa的意义是。

(3)当a>0时,a表示a的,因此,a 0;当a=0时,a 表示0的,因此,a= ;就是说a(a≥0)总是一个数。

(4)若3x-+3x-有意义,则2x-=_______.(5)使式子2(5)x--有意义的未知数x有()个.A.0 B.1 C.2 D.无数(二)提出问题1.式子a表示什么意义?2.什么叫做二次根式?3.式子)0(0≥≥aa的意义是什么?4.)0()(2≥=aaa的意义是什么?5.如何确定一个二次根式有无意义?4二、自主交流 探究新知1【探究】根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(9)2=______;(3)2=_______;(13)2=______;(72)2=_______;(0)2=_______.根据以上结果,你能发现什么规律?【归纳】二次根式的性质:(a )2= (a ≥0)2.由公式)0()(2≥=a a a ,我们可以得到公式a=2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

(1)把下列非负数写成一个数的平方的形式:5 0.35(2)在实数范围内因式分解 72-x 4a 2-11三、自主应用 巩固新知【例1】计算:⑴(32)2 ⑵(35)2 ⑶(56)2 ⑷(72)2【例2】计算:⑴(1x +)2(x ≥0) ⑵(2a )2⑶(221a a ++)2 ⑷(24129x x -+)2【例3】在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3四、知识集锦五、检测 一)填空题: 在实数范围内因式分解:(1)x2-9= x2 - ( )2= (x+ ____)(x-____)253⎪⎪⎭⎫ ⎝⎛(2) x2 - 3 = x2 - ( ) 2 = (x+ _____) (x- _____)(二)选择题:1.计算 ( )A. 169B.-13 C±13 D.13 2.已知 A. x>-3 B. x<-3C.x=-3 D x 的值不能确定3.下列计算中,不正确的是 ( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册第16章《二次根式》学案
(新版)新人教版
一、学习目标
1、了解二次根式的定义,掌握二次根式有意义的条件和性质。

2、熟练进行二次根式的乘除法运算。

3、理解同类二次根式的定义,熟练进行二次根式的加减法运算。

4、了解最简二次根式的定义,能运用相关性质进行化简二次根式。

二、学习重点、难点重点:二次根式的计算和化简。

难点:二次根式的混合运算,正确依据相关性质化简二次根式。

三、复习过程
(一)自主复习
1、若a>0,a的平方根可表示为___________a的算术平方根可表示________
2、当a______时,有意义,当a______时,没有意义。

3、4、5、
(二)合作交流,展示反馈
1、式子成立的条件是什么?
2、计算:
(1)
(2)
3、计算:(1)
(2)
(三)精讲点拨在二次根式的计算、化简及求值等问题中,常运用以下几个式子:(1)(2)(3)(4)(5)
(四)达标测试:A组
1、选择题:(1)化简的结果是()A5 B -5 C 士5 D25(2)代数式中,x的取值范围是()A B C D3)下列各运算,正确的是()
A、
B、
C、
D、(4)如果是二次根式,化为最简二次根式是()
A、
B、
C、
D、以上都不对(5)化简的结果是()
2、计算、(1)
(2)
(3)
(4)
3、已知求的值B组
1、选择:(1),则() A a,b互为相反数 B a,b互为倒数 C D a=b(2)在下列各式中,化简正确的是()
A、
B、
C、
D、(3)把中根号外的移人根号内得()
2、计算:(1)(2)(3)
3、归纳与猜想:观察下列各式及其验证过程:(1)按上述两个等式及其验证过程的基本思路,猜想的变化结果并进行验证、(2)针对上述各式反映的规律,写出n(n为任意自然数,且n≥2)表示的等式并进行验证、。

相关文档
最新文档