人教版八年级数学下册导学案全册

合集下载

三角形的中位线(导学案)-八年级数学下册(人教版)

 三角形的中位线(导学案)-八年级数学下册(人教版)

学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学八年级下册18.1.5三角形的中位线导学案一、学习目标:1.理解三角形中位线的概念,掌握三角形的中位线定理.2.能利用三角形的中位线定理解决有关证明和计算问题.重点:三角形的中位线定理以及定理的证明过程,应用三角形中位线.难点:中位线定理的应用.二、学习过程:问题引入问题:A、B 两地被池塘隔开,如何测量A、B 两地的距离呢?你能用学过的知识来解决吗?自主学习你能将任意一个三角形分成四个全等的三角形吗?学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________猜想:增加的线段与它所对的边有什么关系?【归纳】如图,在△ABC 中,D,E 分别是AB,AC 的中点,连接DE.像DE 这样,连接三角形两边中点的线段叫做三角形的_______.一个三角形有几条中位线?三角形的中位线和中线一样吗?合作探究探究:观察上图,你能发现△ABC 的中位线DE 与边BC 的位置关系吗?度量一下,DE 与BC之间有什么数量关系?猜想:________________________________.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________定理证明如图,D,E 分别是△ABC 的边AB,AC 的中点.求证:DE∥BC,且DE=21BC.你还有其它证法吗?【归纳】三角形的中位线定理:__________________________________________________________________________________________.几何符号语言:∵_________________________,∴__________________________.学以致用问题:A、B 两地被池塘隔开,如何测量A、B 两地的距离呢?你能用学过的知识来解决吗?_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________典例解析例1.如图,在△ABC 中,点M,N 分别是AB,AC 的中点,连接MN,点E 是CN 的中点,连接ME 并延长,交BC 的延长线于点D.若BC=4,求CD的长.【针对练习】如图,在四边形ABCD 中,AB=CD,M、N、P 分别是AD、BC、BD 的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.例2.如图,在△ABC 中,AB=AC,E 为AB 的中点,在AB 的延长线上取一点D,使BD=AB,求证:CD=2CE._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例3.如图,D、E 是△ABC 边AB,AC 的中点,O 是△ABC 内一动点,F、G 是OB,OC 的中点.判断四边形DEGF的形状,并证明.例4.如图,E、F、G、H 分别为四边形ABCD 各边的中点.求证:四边形EFGH是平行四边形.【针对练习】如图,E、F、G、H 分别为四边形ABCD 四边之中点.求证:四边形EFGH 为平行四边形._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例5.如图,在Rt△ABC 中,∠BAC=90°,点E,F 分别是BC,AC 的中点,延长BA 到点D,使得AB=2AD,连接DE,DF,AE,EF,AF 与DE 相交于点O.(1)求证:AF 与DE 互相平分;(2)如果AB=6,BC=10,求DO的长.达标检测1.如图,在△ABC 中,D、E 分别是边AB、AC 的中点,若BC=6,则DE 的长为()学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________A.2B.3C.4D.62.如图,在□ABCD 中,对角线AC、BD 交于点O,E 是BC 的中点,若OE=2cm,则CD 的长为()A.3cmB.4cmC.5cmD.6cm3.如图,已知四边形ABCD,R,P 分别是DC,BC 上的点,E,F 分别是AP,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时,那么下列结论成立的是()A.线段EF 的长逐渐增长B.线段EF 的长逐渐减少C.线段EF 的长不变D.线段EF 的长不能确定4.如图,已知△ABC 的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,依次类推,第2000个三角形的周长是()A .11998B .11999C .121998D .121999学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.如图,D、E、F 分别是△ABC 各边的中点,且AB=11cm、BC=8cm、AC=6cm.则:DE=____cm,DF=____cm,EF=____cm,△DEF的周长是_____cm.6.如图,△ABC 中,D、E、F 分别是AB、BC、CA 的中点,AB=10cm,AC=6cm,则四边形ADEF的周长为_____cm.7.如图,□ABCD 的周长为36,对角线AC,BD 相交于点O,点E 是CD 的中点,BD=12,则△DOE的周长为_______.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________8.如图,□ABCD 的周长为36,对角线AC ,BD 相交于点O ,点E 是CD 的中点,BD =12,求△DOE的周长.9.如图,等边△ABC 的边长是2,D、E 分别为AB、AC 的中点,延长BC 至点F,使CF=12BC,连接CD 和EF.(1)求证:DE=CF;(2)求EF的长.10.如图,在△ABC 中,M 是BC 的中点,AN ⊥BN 于N 点,AN 平分∠BAC ,且AB =12,AC =16,求MN的长.。

人教版八年级数学下册导学案全册

人教版八年级数学下册导学案全册

第十七章反比例函数课题 17.1.1 反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。

2.会判断一个给定函数是否为反比例函数。

3.会根据已知条件用待定系数法求反比例函数的解析式。

【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。

难点:反比例函数的意义。

【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?第1页共135页3.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。

(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。

学习新知:阅读教材P39-P40相关内容,思考,讨论,合作交流完成下列问题。

1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。

【课堂练习】1.下列等式中y是x的反比例函数的是()第2页共135页①y=4x ②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2 ⑥y=x/2 ⑦y=-√2/x⑧y=-3/2x2.已知y是x的反比例函数,当x=3时,y=7,(1)写出y与x的函数关系式;(2)当x=7时,y等于多少?【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。

【拓展训练】1.函数y=(m-4)x3-|m|是反比例函数,则m的值是多少?第3页共135页2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。

课题:17.1.2 反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。

新人教版八年级数学下导学案(全册)

新人教版八年级数学下导学案(全册)

, ,b - 3 等式子的实际意义.说一说他们的共同特征.第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质: a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0) 。

三、学习过程(一)复习回顾:(1)已知 x 2 = a ,那么 a 是 x 的_____; x 是 a 的____, 记为____, a 一定是 ____数。

(2)4 的算术平方根为 2,用式子表示为=______;正数 a 的算术平方根为4_____,0 的算术平方根为____;式子 a ≥ 0(a ≥ 0) 的意义是。

(二)自主学习(1) 16 的平方根是;(2)一个物体从高处自由落下,落到地面的时间是 t (单位:秒)与开始下落时的高度 h ( 单位:米 ) 满足关系式 h = 5t 2 。

如果用含 h 的式子表示 t ,则t =;(3)圆的面积为 S ,则圆的半径是 ;(4)正方形的面积为 b - 3 ,则边长为。

思考: 16 ,h 5s π定义: 一般地我们把形如 a ( a ≥ 0 )叫做二次根式,a 叫做______。

1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3 , - 16 , 34 , -5 , a (a ≥ 0) , x 2 + 13。

2、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。

所以,在二次根式a中,字母a必须满足,a才有意义。

3、根据算术平方根意义计算:(1)(4)2(2)(3)2(3)(0.5)2(4)(13)2根据计算结果,你能得出结论:(a)2=________,其中a≥0,4、由公式(a)2=a(a≥0),我们可以得到公式a=(a)2,利用此公式可以把任意一个非负数写成一个数的平方的形式。

2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)

2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)

人教版初中数学八年级下册18.1.3 平行四边形的判定(1) 导学案一、学习目标:1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.重点:掌握平行四边形的判定定理.难点:综合运用平行四边形的性质与判定解决问题.二、学习过程:课前自测平行四边形的性质:边:_____________________________;∵ _______________________________∴ _______________________________角:_____________________________;∵ _______________________________∴ _______________________________对角线:_____________________________;∵ _______________________________∴ _______________________________自主学习思考:反过来,对边相等,或对角相等,或对角线互相平分的四边形是平行四边形吗?也就是说,平行四边形的性质定理的逆命题成立吗?逆命题1:____________________________________________.逆命题2:____________________________________________.逆命题3:____________________________________________.逆命题1:(证明过程)如图,在四边形ABCD中,AB=CD,AD=CB.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理1:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题2:(证明过程)如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理2:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题3:(证明过程)如图,在四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理3:_________________________________________.几何符号语言:∵ _______________________,∴ _________________________.典例解析例1.如图,以△ABC的各边向同侧作正三角形,即等边△ABD、等边△ACE、等边△BCF,连接DF,EF.求证:四边形AEFD是平行四边形.【针对练习】如图,将□ABCD的四边DA,AB,BC,CD分别延长至点E,F,G,H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.求证:四边形EFGH为平行四边形.例2.如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【针对练习】如图,在□ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.例3.如图,□ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.【针对练习】变式1:若E、F继续移动至OA、OC的延长线上,仍使AE=CF,则结论还成立吗?为什么?变式2:问题中AE=CF,过点O作一直线分别交AB、CD于G、H,则四边形GFHE 是平行四边形吗?为什么?达标检测1.下面给出四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )A.1:2:3:4B.2:3:2:3C.2:3:3:2D.1:2:2:32.如图,在四边形ABCD中,AB=CD,BC=AD.若∠D=120°,则∠C的度数为( )A.60°B.70°C.80°D.90°3.如图,在□ABCD中,对角线AC、BD交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE= ∠CBF;④∠ABE= ∠CDF.其中不能判定四边形DEBF是平行四边形的有( )A.0个B.1个C.2个D.3个4.四边形ABCD中,AB=9cm,BC=6cm,CD=9cm,当AD=____cm时,四边形ABCD 是平行四边形.5.如图,在□ABCD中,点E,F分别在边AD,BC上,且BE//DF,若AE=5,则CF=_____.6.如图,线段AB,CD相交于点O,且图上各点把线段AB,CD四等分,这些点可以构成平行四边形的个数是_____.7.如图,在□ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN为平行四边形.8.如图,在□ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.9.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.10.如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.。

新人教版八年级数学下册导学案(全册136页)

新人教版八年级数学下册导学案(全册136页)

第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。

形如 、 、 不是二次根式。

2、应用举例例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。

例2.当x 是多少时,31x -在实数范围内有意义? 解:由 得: 。

当 时,31x -在实数范围内有意义.(3)注意:1、形如a (a ≥0)的式子叫做二次根式的概念;2、利用“a (a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

二、学生小组交流解疑,教师点拨、拓展例3.当x 是多少时,23x ++11x +在实数范围内有意义? 例4(1)已知y=2x -+2x -+5,求xy的值.(答案:2)(2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:25)三、巩固练习 教材练习. 四、课堂检测 (1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式? -7 37x x 4 16 8 1x(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________. (3)、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.若3x -+3x -有意义,则2x -=_______.3.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数4.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0). 学习目标:1、理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a<0时,a 有意义吗? (二)学生学习课本知识 (三)、探究新知1、a (a ≥0)是一个 数。

2020春人教版数学八年级下册(RJ)导学案17.2 第2课时 勾股定理的逆定理的应用

2020春人教版数学八年级下册(RJ)导学案17.2 第2课时 勾股定理的逆定理的应用

第十七章勾股定理17.2 勾股定理的逆定理第2课时勾股定理的逆定理的应用学习目标:1.灵活应用勾股定理及其逆定理解决实际问题;2.将实际问题转化成用勾股定理的逆定理解决的数学问题.重点:灵活应用勾股定理及其逆定理解决实际问题.难点:将实际问题转化成用勾股定理的逆定理解决的数学问题.一、知识回顾1.你能说出勾股定理及其逆定理的内容吗?2.快速填一填:(1)已知△ ABC中,BC=41,AC=40,AB=9,则此三角形为_______三角形,_________是最大角;(2)等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是__________cm.一、要点探究探究点1:勾股定理的逆定理的应用典例精析例1如图,某港口P位于东西方向的海岸线上. “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?分析:题目已知“远航”号的航向、两艘船的一个半小时后的航程及距离,实质是要求出两艘船航向所成角,由此容易联想到勾股定理的逆定理.方法总结:解决实际问题的步骤:构建几何模型(从整体到局部);标注有用信息,明确已知和所求;应用数学知识求解.变式题如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我沿海靠近,里,AB=6海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我领海?课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3-5)2.探究点1新知讲授(见幻灯片6-14)分析:根据勾股定理的逆定可得△ABC是直角三角形,然后利用勾股定理的逆定理及直角三角形的面积公式可求PD,然后再利用勾股定理便可求CD.例2一个零件的形状如图①所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图②所示,这个零件符合要求吗?针对训练1.A、B、C三地的两两距离如图所示,A地在B地的正东方向,C在B地的什么方向?2.如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?探究点2:勾股定理及其逆定理的综合应用典例精析教学备注2.探究点1新知讲授(见幻灯片6-14)例3 如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.分析:连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断△ACD是直角三角形.方法总结:四边形问题对角线是常用的辅助线,它把四边形问题转化成两个三角形的问题.在使用勾股定理的逆定理解决问题时,它与勾股定理是“黄金搭挡”,经常配套使用.变式题1 如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积.变式题2如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30 cm2,DC=12 cm,AB=3cm,BC=4cm,求△ABC的面积.针对训练1.如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC= 5 ,BD=2.(1)求证:△BCD是直角三角形;(2)求△ABC的面积.教学备注配套PPT讲授4.课堂小结(见幻灯片27)5.当堂检测(见幻灯片20-26)教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片15-19)二、课堂小结1.医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东______的方向.2.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中摆放方法正确的是()A B C D3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.4.如图,在△ABC中,AB=17,BC=16,BC边上的中线AD=15,试说明:AB=AC.当堂检测勾股定理的逆定理的应用应用认真审题,画出符合题意的图形,熟练运用勾股定理及其逆定理来解决问题航海问题与勾股定理结合解决不规则图形等问题方法教学备注5.当堂检测(见幻灯片20-26)5.在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B.于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A的前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B.此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?6.如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向点以每秒2cm的速度移动,点Q从点C沿CB边向点B以每秒1cm的速度移动,如果同时出发,则过3秒时,求PQ的长.温馨提示:配套课件及全册导学案WORD版见光盘或网站下载:(无须登录,直接下。

新人教版八年级下册数学教案《导学案》

新人教版八年级下册数学教案《导学案》

新人教版八年级下册数学教学设计《导教案》一、选择题1.以下式子中,是二次根式的是()A.-7B.37C.x D.x2.以下式子中,不是二次根式的是()A.4B.16C.8D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5B.51D.以上皆不对C.5二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提升题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,?底面应做成正方形,试问底面边长应是多少?2.当x是多少时,2x3x+x2在实数范围内存心义?3.若3x+x 3存心义,则x2=_______.4.使式子(x5)2存心义的未知数x有()个.A.0B.1C.2D.无数5.已知a、b为实数,且a5+2102a=b+4,求a、b的值.第一课时作业设计答案:一、1.A2.D3.B二、1.a(a≥0)2.a3.没有三、1.设底面边长为x,则0.2x2=1,解答:x=5.2x30,x 32.依题意得:2x0x0∴当x>-32x3且x≠0时,x+x2在实数范围内没存心义.213.34.B5.a=5,b=-4新人教版八年级下册数学教学设计《导教案》第二课时作业设计一、选择题1.以下各式中15、3a、b21、a2b2、m220、144,二次根式的个数是().A.4B.3C.2D.12.数a没有算术平方根,则a的取值范围是().A.a>0B.a≥0C.a<0D.a=0二、填空题1.(-3)2=________.2.已知x1存心义,那么是一个_______数.三、综合提升题1.计算(1)(9)2(2)-(3)2(3)(16)2(4)(-32)2 23(2332)(2332)2.把以下非负数写成一个数的平方的形式:(1)5(2)3.41(4)x(x≥0)(3)63.已知xy1+x3=0,求x y的值.4.在实数范围内分解以下因式:(1)x2-2(2)x4-93x2-5第二课时作业设计答案:一、1.B2.C二、1.32.非负数三、1.(1)(9)2=9(2)-(3)2=-3(3)(16)2=1×6=3 242(4)(22(5)-6 -3)2=9×=6332.(1)5=(5)2(2)3.4=( 3.4)2(3)1=(1)2(4)x=(x)2(x≥0)66x y10x3x y=34=81 3.30y4x4.(1)x2-2=(x+2)(x-2)新人教版八年级下册数学教学设计《导教案》(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+3)(x-3)(3)略第三课时作业设计一、选择题1.(21)2(21)2的值是().33A.02C.42D.以上都不对B.332.a≥0时,a2、(a)2、-a2,比较它们的结果,下边四个选项中正确的选项是().A.a2=(a)2≥-a2B.a2>(a)2>-a2C.a2<(a)2<-a2D.-a2>a2=(a)2二、填空题1.-0.0004=________.2.若20m是一个正整数,则正整数m的最小值是________.三、综合提升题1.先化简再求值:当a=9时,求a+12a a2的值,甲乙两人的解答以下:甲的解答为:原式=a+(1a)2=a+(1-a)=1;乙的解答为:原式=a+(1a)2=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原由是__________.2.若│1995-a│+ a 2000=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a?的值是正数仍是负数,去掉绝对值)3.若-3≤x≤2时,试化简│x-2│+(x3)2+x210x25。

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册

2022-2023新人教版八年级数学下册导学案全册第一单元:有理数的加减第一课时:有理数的加法- 研究目标:掌握有理数的加法运算- 研究内容:正数加正数、负数加负数、正数加负数、有理数加零的运算法则- 研究重点:灵活运用有理数的加法规则解决实际问题- 研究方法:理解规则,多做练题第二课时:有理数的减法- 研究目标:掌握有理数的减法运算- 研究内容:正数减正数、负数减负数、正数减负数、有理数减零的运算法则- 研究重点:理解减法的本质,解决实际问题- 研究方法:理解规则,多做练题第三课时:加减混合运算- 研究目标:运用有理数加减法解决实际问题- 研究内容:有理数的混合运算,包括正数、负数的加减混合运算- 研究重点:分析问题,运用加减法的规则解决问题- 研究方法:多做实际问题练,加强思维训练第二单元:比例与相似第一课时:比例- 研究目标:了解比例的概念,掌握比例的基本性质- 研究内容:比例的定义、比例的基本性质- 研究重点:掌握比例的性质,能够应用到实际问题中- 研究方法:理解概念,多做练题第二课时:比例的应用- 研究目标:学会应用比例解决实际问题- 研究内容:比例的应用,包括物体的放大缩小、图形的相似等- 研究重点:分析问题,应用比例的知识解决实际问题- 研究方法:多做应用题,强化实际操作能力第三课时:相似图形- 研究目标:了解相似图形的性质和判定条件- 研究内容:相似图形的定义、相似图形的性质- 研究重点:掌握相似图形的性质和确定相似关系的条件- 研究方法:理解概念,多做练题......(继续给出下一单元的导学案)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章反比例函数课题 17.1.1 反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。

2.会判断一个给定函数是否为反比例函数。

3.会根据已知条件用待定系数法求反比例函数的解析式。

【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。

难点:反比例函数的意义。

【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?3.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。

(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。

学习新知:阅读教材P39-P40相关容,思考,讨论,合作交流完成下列问题。

1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。

【课堂练习】1.下列等式中y是x的反比例函数的是()①y=4x ②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2 ⑥y=x/2 ⑦y=-√2/x⑧y=-3/2x2.已知y是x的反比例函数,当x=3时,y=7,(1)写出y与x的函数关系式;(2)当x=7时,y等于多少?【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。

【拓展训练】1.函数y=(m-4)x3-|m|是反比例函数,则m的值是多少?2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。

课题:17.1.2 反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。

2.能用描点的方法画出反比例函数的图象。

3.通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。

【重点难点】重点:画反比例函数的图象;探索并掌握反比例函数的主要性质。

难点:画反比例函数的图象;理解反比例函数的性质,并能初步运用。

【导学指导】复习旧知:1.根据上节课的学习,说说反比例函数的意义和如何用待定系数法求反比例函数的解析式。

2.用描点法画函数图象的步骤是什么?2.我们研究一次函数y=kx+b(k,b为常数,k≠0)的图象是什么?性质有哪些?正比例函数呢?学习新知:1.在同一个平面直角坐标系中用不同颜色的笔画出反比例函数y=6/x和y=-6/x的图象。

并思考,(1)从以上作图中,发现y=6/x和y=-6/x的图象是什么?(2)y=6/x和y=-6/x的图象分别在第几象限?(3)在每一个象限y随x是如何变化的?(4)y=6/x和y=-6/x的图象之间的关系?2.请同学们自己给k赋值,再画一组反比例函数的图象,看看是不是反比例函数y=k/x(k为常数,k≠0)的图象都有类似的性质?思考:影响反比例函数的图象的因素主要是什么?图象和坐标轴是否有交点?【课堂练习】1.教材P43-P44练习第1,2题。

2.已知反比例函数y=4-k/x,分别根据下列条件求k的取值围。

(1)函数图象位于第一、三象限;(2)函数图象的一个分支向左上方延伸。

【要点归纳】通过今天的学习,你有什么收获?与同伴交流一下。

【拓展训练】1.已知反比例函数y=(2-a)x|a|-3中,y随x的增大而减小,则a= .2.反比例函数y=m/x的图象的两个分支在第二、四象限,则点(m,m-2)在第象限。

3.如图是三个反比例函数y=k/x,y=k/x,y=k/x,在x轴上方的图象,由此观察得到k1,k2,k3的大小关系是。

第二课时反比例函数的图象和性质的应用【学习目标】1.进一步理解和掌握反比例函数的图及其性质。

2.结合函数图象,能利用待定系数法求函数关系式,并能比较大小。

3.能灵活运用函数图象和性质解决一些较综合的问题。

【重点难点】重点:灵活运用反比例函数的性质。

难点:利用数形结合的思想比较大小及求函数关系式。

【导学指导】复习旧知:1.反比例函数y=-2/x的图象在第象限,在每个象限中y随x的增大而。

2.已知反比例函数y=m/x的图象位于一、三象限,则m的取值围是。

3.已知点(-3,1)在双曲线y=k/x上,则k= .4.面积为4的三角形ABC,一边长为x,设这条边上的高为y,则y与x的变化规律用图象表示大致为()5.已知y是x的反比例函数,当x=3时,y=-2,(1)写出y与x的函数关系式;(2)求当x=-2时y的值;(3)求当y=4时x的值。

学习新知:1.已知反比例函数的图象经过点A(2,6),(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4)、点C(-5/2,-24/5)、点D(2,5)是否在函数图象上?2.下图是反比例函数y=m-5/x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m的取值围是什么?(2)在这个函数图象的某一支上任取点A(a,b)和B(a1,b1).如果a>a1,那么b和b1有怎样的大小关系?【课堂练习】1.教材P45练习第1,2题。

2.比较练习第1题与学习新知的第1题,你发现了什么?3.比较练习第2题与学习新知的第2题,你发现了什么?【要点归纳】通过本节课的学习,你有什么收获?还有什么疑惑?与同伴交流一下。

【拓展训练】如图,在反比例函数y=6/x的图象上任取一点P,过P点作x轴和y轴的垂线,垂足分别是N,M,那么四边形ONPM的面积是多少?课题 17.2 实际问题与反比例函数课时:四课时第一课时实际问题与反比例函数【学习目标】1.运用反比例函数的概念和性质解决实际问题。

2.利用反比例函数求出问题中的值。

【重点难点】重点:运用反比例函数的意义和性质解决实际问题。

难点:把实际问题转化为反比例函数这一数学模型。

【导学指导】复习旧知:1.反比例函数的意义、图象和性质。

2.已知y是x的反比例函数,当x=3时,y=-5,(1)写出y与x的函数关系式;(2)求当y=2/3时x的值。

前面我们学习了反比例函数的意义、图象及其性质,今天我们将研究如何利用反比例函数来解决实际问题。

学习新知:1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过湿地,他们沿着前进路线铺垫了若干木板,构筑成一条临时通道,从而顺利完成了任务。

(1)你能理解这样做的道理吗?(2)若人和木板对湿地地面的压力合计600牛,那么如何用含S的代数式表示p?p是S的反比例函数吗?为什么?(3)当木板面积为0.2m2时,压强多大?当压强是6000Pa时,木板面积多大?2.教材例1。

【课堂练习】1.教材P54练习第1题。

2.一个面积为42的长方形,相邻两边长分别为x和y,写出x与y的关系式并画出图象。

小红的解答:y 与x的函数关系式是y=42/x,画出的图象如下图所示。

小红的解答对吗?为什么?【要点归纳】今天你有什么收获?还有什么疑惑?与同伴交流一下。

【拓展训练】某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y()之间有如下关系:(2)设经营此贺卡的利润为w元。

试求出w与x间的函数关系。

若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?第二课时实际问题与反比例函数【学习目标】1.进一步体验现实生活与反比例函数的关系。

2.能解决确定反比例函数中常数k值的实际问题。

3.进一步运用反比例函数的概念和性质解决实际问题。

【重点难点】重点:运用反比例函数的知识解决实际问题。

难点:如何把实际问题转化我数学问题,利用反比例函数的知识解决实际问题。

【导学指导】复习旧知:1.反比例函数的意义、图象和性质。

2.利用待定系数法求解问题的思路。

学习新知:自主学习教材P51例2后,讨论、交流合作完成下列问题。

1.在例2中,什么是不变的?由此我们可以得到一个怎样的等量关系?这是我们学过的什么函数?为什么?2.今天的例2求出的反比例函数和昨天的例1求出的反比例函数有什么不同?那么例2的第2问应如何解决?【课堂练习】1.教材P54练习第2题。

2.某蓄水池的排水管每小时排水8立方米,6小时可将满池水全部排空。

(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到Q立方米,将满池水排空所需要的时间为t小时,求Q 与t之间的函数关系式。

(3)如果准备在5小时将满池水排空,那么每小时排水量至少为多少?(4)已知排水管的最大排水量为每小时12立方米,那么最少多长时间可将满池水全部排空呢?【要点归纳】今天你有哪些收获,与同伴交流一下。

【拓展训练】一辆汽车从甲地开往乙地,汽车速度v随时间t的变化情况如图所示。

(1)甲乙两地的路程是多少?(2)写出t与v的函数关系式。

(3)当汽车的速度是75千米/时时,所需时间是多少?(4)如果准备在5小时之到达,那么汽车的速度最少是多少?第三课时实际问题与反比例函数【学习目标】1.掌握反比例函数在其他学科中的运用,体验学科整合思想。

2.通过解决“杠杆原理”实际问题与反比例函数关系的探究,能够从函数的观点来解决实际问题。

【重点难点】重点:运用反比例函数的知识解决实际问题。

难点:如何把实际问题转化成数学问题,利用反比例函数的知识解决实际问题。

【导学指导】希腊科学家阿基米德发现“杠杆定律”后,豪言壮志地说:给我一个支点我能撬动这个地球。

杠杆定理:若两个物体与支点的距离反比于其重量,则杠杆平衡,通俗点说:阻力×阻力臂=动力×动力臂学习新知:自主学习教材P52例3,讨论、交流合作完成下列问题。

1.例3中,相等关系是什么?由此得到一个什么等式?它是什么函数关系?2.例3第(2)中,至少是什么意思?如何解决?3.用反比例函数的知识解释,我们在使用撬棍时,为什么动力臂越长越省力?4.希腊科学家阿基米德发现“杠杆定律”后说的撬动地球,请同学们帮他计算一下:假定地球的质量的近似值是6×1025牛顿(即为阻力),假设阿基米德有500牛顿的力量(即为动力),阻力臂为2000千米,计算多长的动力臂才能把地球撬动?5.同学们还能否举出我们生活中经常碰到的具有“杠杆定律”的物理模型?【课堂练习】1.教材P54习题17.2第4题。

2.教材P55习题17.2第5题。

【要点归纳】本节课你有哪些收获?与同伴交流一下。

【拓展训练】教材P55习题17.2第7题。

第四课时实际问题与反比例函数【学习目标】1.体验现实生活与反比例函数的关系。

相关文档
最新文档