冲压模具——圆筒形件拉深变形分析 23页PPT文档

合集下载

拉深件各个计算ppt课件

拉深件各个计算ppt课件

适当放大,并加以调整,其原则是:
1)保证m1m2…mn= d D
2)使m1<m2<…mn
最后按调整后的拉深系数计算各次工序件直径:
d1=m1D d2=m2d1 dn=mndn-1
精选ppt
5
(2)工序件高度的计算
根据拉深后工序件表面积与坯料表面积相等的原则,可得
到如下工序件高度计算公式。计算前应先定出各工序件的底部 圆角半径
精选ppt
12
(2)确定拉深次数 坯料相对厚度为 t 210 % 02.0% 32%
D 9.2 8
按表可不用压料圈,但为了保险,首次拉深仍采用压料圈。
根据t/D=2.03%,查表6-6得各次极限拉深系数m1=0.50,
m2=0.75,m3=0.78,m4=0.80,…。
故 d1=m1D=0.50×98.2mm=49.2mm
FY= Ap
式中 A――压料圈下坯料的投影面积; p――单位面积压料力,p值可查表6.13;
精选ppt
16
压料装置与压料力(续)
圆筒形件首次拉深 F Y4D 2(d12rA1)2p
圆筒形件以后各次拉深 F Y4d2i 1(di2rA)i2p
(i=2、3、…、n)
精选ppt
17
2.拉深力与压力机公称压力 (1)拉深力 采用压料圈拉深时
反拉深主要用于板料较薄的大件和中等尺寸零件的拉深,反拉深后 圆筒的最小直径为(30-90)t,圆角半径r>(2-6)t。
精选ppt
15
三、圆筒形件拉深的压料力与拉深力
1. 压料装置与压料力
压料装置产生的压料力FY大小应适当: 在保证变形区不起皱的前提下,尽量选用小的压料力。
理想的压料力是随起皱可能性变化而变化。 任何形状的拉深件:

第一节 圆筒形零件拉深讲解

第一节 圆筒形零件拉深讲解
由于切向压应力引起板料失去稳定而产生弯曲;
筒壁传力区拉裂: 由于拉应力超过抗拉强度引起板料断裂。
一、无凸缘圆筒形零件拉深 4、圆筒形零件拉深成形的缺陷及防止措施
1)凸缘变形区的起皱 主要决定于:
切向压应力σ3的大小,越大越容易失稳起皱; 凸缘区板料本身的抵抗失稳的能力。
凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越小, 抵抗失稳能力越差。
第n次拉深系数: mn=dn/dn-1
6、拉深系数的确定 1)拉深系数的概念
拉深系数m 表示拉深前后坯料(工序件)直径的变化率.
m 愈小,说明拉深变形程度愈大,相反变形程度愈小. 拉深件的总拉深系数等于各次拉深系数的乘积,即
若m 取得过小,会使拉深件起皱、断裂或严重变薄超差。 极限拉深系数: 工件在危险断面不至拉破时,所能达到的最小拉深系数mmin。
压料装置产生的压料力Fy大小应适当;
在保证变形区不起皱的前提下,尽量选用小的压料力。 理想的压料力是随起皱可能性变化而变。
9、圆筒形零件拉深的压料力和拉深力
2)拉深力与压力机的公称压力 ①拉深力F
按经验公式可计算出圆筒形件带压料装置和不带压料装置的 首次拉深和以后各次拉深的拉深力。 ②压力机的公称压力
②金属的流动过程 工艺网格实验 材料转移:高度、厚度发生变化。
③拉深变形过程
外力
凸缘产生内应力: 径向拉应力σ1;切向压应力σ3
凸缘塑性变形: 径向伸长,切向压缩,形成筒壁
直径为d高度为H的圆筒形件(H>(D-d)/2)
拉深单元变形动画
一、无凸缘圆筒形零件拉深
2、圆筒形零件拉深过程中坯料内的应力与应变状态 拉深过程中某一瞬间坯料所处的状态
当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在 底部圆角与筒壁相切处——“危险断面”产生破裂。

《冲压工艺与模具设计》图文课件ppt 第4章

《冲压工艺与模具设计》图文课件ppt 第4章

4.5 带凸缘圆筒形件的拉深
4.5.2 宽凸缘圆筒形件的拉深
当 r凸 = r凹 = r 时,宽凸缘圆筒形件毛坯直径 D 为: 根据拉深系数的定义,宽凸缘圆筒形件的拉深系数为:
目录
4.5 带凸缘圆筒形件的拉深
4.5.2 宽凸缘圆筒形件的拉深
宽凸缘圆筒形件的尺寸
目录
4.5 带凸缘圆筒形件的拉深
4.5.2 宽凸缘圆筒形件的拉深பைடு நூலகம்
拉深系数
拉深系数表示拉深后圆筒形件的直径与拉深前毛坯(或半成品) 的直径之比。
目录
基本概念
极限拉深系数
在实际生产中,拉深系数的减少有个限度,这个限度称为 极限拉深系数 。
拉深模的间隙
凸、凹模之间的间隙,简称为拉深间隙。
修边余量
由于拉深材料厚度有公差,板料具有各向异性,所以拉深后工件 的口部或凸缘周边不齐,必须进行修边,以达到工件的要求。修 边的值称为修边余量。
拉深件的工艺性
拉深件的工艺性是指工件拉深的难易程度。
变薄拉深
变薄拉深主要是在拉深过程中改变拉深件筒壁厚度,而毛坯的直 径变化很小的拉深方法 。
目录
拉深件类型
目录
4.1 拉深变形过程分析
4.1.1 拉深变形的过程及特点
1—凸模; 2—压边圈; 3—凹模; 4—制件
目录
4.1 拉深变形过程分析
4.1.2 拉深过程中板料的应力应变状态
4.2.1 起皱及其控制
(1)采用压边圈。


(2)采用锥形凹模


的 措
(3)采用拉深筋


(4)采用反拉深
目录
4.2 拉深件的质量控制
4.2.1 起皱及其控制

第四章 拉深

第四章 拉深

§4.1 圆筒件拉深的变形过程
三、拉深变形过程的力学分析(续)
1、凸缘变形区的应力分析(续) (2)最大径向拉应力σ1max的变化规律:
在变形区的内边缘(即R=r处) 径向拉应力最大,其值为:
1max
1.1 s
ln
Rt r
s:加工硬化
变形区Rt
§4.1 圆筒件拉深的变形过程
三、拉深变形过程的力学分析(续)
角,表面质量要求高,凸、凹模间隙略大于板料厚度。
1-模柄 2

-上模座 3-

凸模固定板 4-

弹簧 5-压

边圈 6-定位 板 7-凹模 8-下模座 9
构 图
-卸料螺钉 10-
凸模
§4.1 圆筒件拉深的变形过程
一、拉深变形过程
圆筒形件是最典型的拉深件。 (一)拉深变形过程及特点(如图)
1、金属的流动过程 在毛坯上画作出距离为a的等距离的同心圆与相同弧
三、拉深变形过程的力学分析(续)
1、凸缘变形区的应力分析(续) (1)拉深中某时刻变形区应力分布(续)
平衡方程:
Rd1 (1 3 )dR 0
屈服条件:
1 3 s 1.1 s
由上述两式,并考虑边界条件(当R=Rt时,σ1=0),经数学 推导就可以求出径向拉应力,和切向压应力的大小为:

d
2 r1 t f
ln

r r1

4 37
拉深力F应等于dW dh
,它在拉深开始时,r
R0
具有最大值,故
Fm a x

2
r1
t

f
ln
R0 r1

2019年圆筒形件拉深模设计.ppt

2019年圆筒形件拉深模设计.ppt
防止拉裂:
一方面要通过改善材料的力学性能,提高筒壁抗拉强度;
另一方面通过正确制定拉深工艺和设计模具,降低筒壁所 受拉应力。
学习情境3.1:圆筒形件拉深模设计
拉 深 件 类 型
a)轴对称旋转体拉深件 b)盒形件 c)不对称拉深件
学习情境3.1:圆筒形件拉深模设计
1-模柄 2

-上模座 3-深Biblioteka 凸模固定板 4-模
弹簧 5-压

边圈 6-定位 板 7-凹模 8-下模座 9
构 图
-卸料螺钉 10-
凸模
学习情境3.1:圆筒形件拉深模设计
拉 深 变 形 过 程
学习情境3.1:圆筒形件拉深模设计
拉 深 的 网 格 试 验
学习情境3.1:圆筒形件拉深模设计








下标1、2、3分

别代表坯料径向、

厚度方向、切向 的应力和应变
(2)凹模圆角部分
(3)筒壁部分
学习情境3.1:圆筒形件拉深模设计
第一节 拉深基本原理
(4)凸模圆角部分 (5)筒底部分
2.应力
拉深成形后制件壁厚和硬度分布
三、拉深时凸缘区的应力分布与起皱
1.拉深过程中某一瞬间,凸缘区的应力分布 (1)径向拉应力边缘最小为0,凹模口处最大。 (2)切向压应力边缘最大,凹模口处最小,但不为0。
学习情境3.1:圆筒形件拉深模设计
本次课的重点:
1.什么是起皱? 2.起皱的原因? 3.在什么情况下会起皱? 4.凸缘区抗起皱的能力与什么有关? 5.什么时刻最易起皱? 6.在什么情况下可能出现拉裂? 7.在筒壁的什么部位可能拉裂?

无凸缘圆筒形件冲压成形工艺及模具设计

无凸缘圆筒形件冲压成形工艺及模具设计

无凸缘圆筒形件冲压成形工艺及模具设计绪论冲压使板料经分离或成形而得到制件的加工方法。

冲压利用冲压模具对板料进行加工。

常温下进行的板料冲压加工成为冷加工。

冷冲压除部分冷挤和冷锻等体积冲压工序外,主要原料材料是板料(金属和非金属),因此,有“板料冲压”之称。

在冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,成为冲压模具。

冲模在实现冲压加工中是必不可少的工艺设备,与冲压件是“一模一样”的关系,若没有符合要求的冲模,已不能生产出合格的冲压件;没有先进的冲模,先进的冲压成型工艺就无法实现。

在冲压零件的生产中,合理的冲压成型工艺、先进的模具、高效的冲压设备是必不可少的三要素。

根据冷冲压材料变形的基本方式不同,冷冲压可分为冲裁、弯曲、引伸、冷挤、成型等几种基本工序。

用于上述各工序的冷从模,分别称为冲裁模、弯曲模、引申模、冷挤模、成形模等。

分析这些工序的特征,解决相应的特征,解决相应工序模具的设计问题,便是本课程的基本任务。

对冷冲压的新工艺、模具的性技术及其新材料、模具寿命问题和自动送进能够料装置等,亦将作适当的分析。

冲压加工与其他加工方法相比,无论在技术方面,还是在经济方面,都具有许多独特的优点。

生产的质检所表现出来的高精度、高复杂程度、高一致性、高生产率和低消耗,是其他加工制造方法所不能比拟的。

模具可保证冲压产品的尺寸精度,使产品质量稳定,而且在加工中不破坏产品表面。

但需要指出的是,由于进行冲压成形加工必须具备相应的模具,而模具是技术密集型产品,其制造属但见小批量生产,具有难加工、精度要求高、生产成本高的特点。

所以,只有在冲压零件生产批量大的情况下,冲压成形加工的情况下,冲压成形加工的优点才能充分体现,从而获得好的经济效益。

由于冲压加工具有上述突出的优点,因此在批量生产中得到了广泛的应用,在现代工业生产中占有十分重要的地位。

板料冲压加工在国民经济制造行业中占有十分重要的地位,在机械、电子、汽车、航空、轻工业(如自行车、照相机、五金、日用器皿等生产)等领域有广泛的应用。

冲压成形概述ppt课件

冲压成形概述ppt课件

最新课件
15
最新课件
16
冲压加工的缺点: 模具制造周期长,成本高。
403×350 4.74万元
传统加车工门方板法修边自冲动孔叠铆级进 和手段模及:传9统8万元模:98万元
模具材料
但随着先进的模具加工技术及新型模具材料的出 现,这种缺点也可逐渐被克服。
如采用快速原型制造技术制造模具,采用低熔 点合金材料制造模具。
冲压工艺与模具设计
最新课件
1
第一章 冲压工艺概述
ቤተ መጻሕፍቲ ባይዱ
第一节 冲压工艺特点 第二节 冲压工艺分类 第三节 冲压技术的发展 第四节 冲压工艺用材料 第五节 冲压设备
最新课件
2
第一节 冲压工艺特点
一、冲压的概念 二、冲压的特点
一、 冲 压 的 概 念
D
D
D
D
D
t
δ=t
下刀
条料
板料
下刀
δ=t
板料
剪板机
压力机 压力机
由此可看出,要制造一个看似简单的饭盆,需经历: 矿石冶炼 → 钢锭→板料→ 条料 → 单个毛坯 → 饭盆等 多个工序,由板料到条料,由条料到单个毛坯,由单个 毛坯到饭盆均是一个冲压过程。
产生变形
圆形平板毛坯
空心件 (一次冲压——拉深)
条料
产生分离
圆形毛坯(一次冲压——冲裁)
产生分离
最新课件
21
➢成形工序
冲压成形时,变形材料内部应力超过屈服极限σs, 但未达到强度极限σ ,使材料产生塑性变形,从而得
b
到一定形状和尺寸的零件。成形工序主要有弯曲、拉深、 翻边等。
最新课件
22
D
最新课件
23

圆筒拉深件冲压模设计

圆筒拉深件冲压模设计

圆筒拉深件冲压模设计题目:圆筒拉深件:如下图,材料;spcen生产批量年产20万件。

请设计其冲压之总装配图及模具主要零件的各零件图(任选一副模具,如:首次拉深模或后续拉深模)。

圆筒拉深件目录1 引言···································1.1冲压模具发展历史和国外冲压模具发展状况···············1.2 冲压模具行业发展现状及技术趋势···················1.3 我国模具水平与国际先进水平的差距··················2 工艺分析····························2.1材料····························2.2生产批量··························2.3 形状与尺寸·························2.4 精度·························3 工艺尺寸的计算····························3.1 确定切边余量····························3.2 计算毛胚直径····························3.3 拉升系数···························3.4 拉深工序的直径···························3.5 拉深工序的高度··························3.6 拉深模间隙··························4 生产方案··························排样方案和计算材料利用率··························计算落料和每次拉深的刃口尺寸··························凸凹模圆角半径的确定··························冲压力的计算·························4.1 落料力·························4.2 卸料力·························4.3 压边力·························4.4 拉深力························· 5 6 7 8910 冲压设备的选择························· 拉深的工件序图························5.1 首次拉深························5.2 第二次拉深························11 零件图························6.1 凹模和凸模························6.2 总装配图························1.引言1.1冲压模具发展历史和国外冲压模具发展状况我国考古发现,早在2000多年前,我国已有冲压模具被用于制造铜器,证明了中国古代冲压成型和冲压模具方面的成就就在世界领先。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 拉深工艺与拉深模设计
学习目的与要求:
1. 了解拉深变形规律及拉深件质量影响因素; 2. 掌握拉深工艺计算方法。 3. 掌握拉深工艺性分析与工艺设计方法; 4. 认识拉深模典型结构及特点,掌握拉深模工作零件设计 方法; 5. 掌握拉深工艺与拉深模设计的方法和步骤。
第五章 拉深工艺与拉深模设计
第二节 圆筒形件拉深变形分析
三、拉深件的起皱与拉裂
拉深过程中的质量问题:
主要是凸缘变形区的起皱和筒壁传力区的拉裂。
凸缘区起皱:由于切向压应力引起板料失去稳定而产生弯曲; 传力区拉裂:由于拉应力超过抗拉强度引起板料断裂。
第五章 拉深工艺与拉深模设计
第二节 圆筒形件拉深变形分析
三、拉深件的起皱与拉裂(续)
重点:
1. 拉深变形规律及拉深件质量影响因素; 2. 拉深工艺计算方法; 3. 拉深工艺性分析与工艺方案制定; 4. 拉深模典型结构与结构设计; 5. 拉深工艺与拉深模设计的方法和步骤。
难点:
1.拉深变形规律及拉深件质量影响因素;
2.拉深工艺计算 ; 3.其它形状零件的拉深变形特点 ; 4.拉深模典型结构与拉深模工作零件设计 。
第一节 概述
拉深:
又称拉延,是利用拉深模在压力机的压力作用下,将平板坯 料或空心工序件制成开口空心零件的加工方法。
它是冲压基本工序之一。可以加工旋转体零件,还可加工盒 形零件及其它形状复杂的薄壁零件。
拉深 不变薄拉深
变薄拉深
拉深模: 拉深所使用的模具。
拉深模特点:结构相对较简单,与冲裁模比较,工作部分有较
1.凸缘变形区的起皱
主要决定于:
一方面是切向压应力σ 3的大小,越大越容易失稳起皱; 另一方面是凸缘区板料本身的抵抗失稳的能力。 凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越 小,抵抗失稳能力越小。
最易起皱的位置:凸缘边缘区域 起皱最强烈的时刻: 在Rt=(0.7~0.9)R0时 防止起皱:压边
第五章 拉深工艺与拉深模设计
第二节 圆筒形件拉深变形分析
二、拉深过程中坯料内的应力与应变状态
拉深过程中某一瞬间坯料所处的状态 1.凸缘部分
应力分布图 2.凹模圆角部分 3.筒壁部分 4.凸模圆角部分 5.筒底部分
坯料各区的应力与应变是很不均匀的。 拉深成形后制件壁厚和硬度分布
第五章 拉深工艺与拉深模设计
第五章 拉深工艺与拉深模设计
拉深件的壁厚和硬度的变化
第五章 拉深工艺与拉深模设计
凸 缘 变 形 区 的 起 皱
第五章 拉深工艺与拉深模设计
筒 壁 的 拉 裂
第五章 拉深工艺与拉深模设计
不变薄拉深
变薄拉深
第五章 拉深工艺与拉深模设计
第二节 圆筒形件拉深变形分析
三、拉深件的起皱与拉裂(续)
2.筒壁的拉裂
主要取决于:
一方面是筒壁传力区中的拉应力; 另一方面是筒壁传力区的抗拉强度。
当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在 底部圆角与筒壁相切处——“危险断面”产生破裂。
防止拉裂:
一方面要通过改善材料的力学性能,提高筒壁抗拉强度;
-卸料螺钉 10-
凸模
第五章 拉深工艺与拉深模设计
第五章 拉深工艺与拉深模设计
拉深变形过程
第五章 拉深工艺与拉深模设计
拉 深 的 网 格 试 验
第五章 拉深工艺与拉深模设计










下标1、2、3分

别代表坯料径向、 厚度方向、切向

的应力和应变
第五章 拉深工艺与拉深模设计
圆 筒 形 件 拉 深 时 凸 缘 变 形 区 的 应 力 分 布
第五章 拉深工艺与拉深模设计
本章目录
第一节 概述 第二节 圆筒形件拉深变形分析 第三节 旋转体拉深件坯料尺寸的确定 第四节 圆筒形件拉深工艺计算 第五节 其它形状零件的拉深 第六节 拉深件的工艺性 第七节 拉深模的典型结构 第八节 拉深模工作零件的设计 第九节 拉深工艺的辅助工序
第五章 拉深工艺与拉深模设计
第五章 拉深工艺与拉深模设计
复习第四章的内容
1.弯曲变形规律及弯曲件质量影响因素。 2.影响回弹的因素与减少回弹的措施。 3.弯曲工艺计算方法。 4.弯曲模典型结构及特点,弯曲模工作零件设计方法。
第五章 拉深工艺与拉深模设计
内容简介: 拉深是基本冲压工序之一
本章在分析拉深变形过程及拉深件质量影响因素的基础 上,介绍拉深工艺计算、工艺方案制定和拉深模设计。涉及 拉深变形过程分析、拉深件质量分析、拉深系数及最小拉深 系数影响因素、圆筒形件的工艺计算、其它形状零件的拉深 变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结 构、拉深模工作零件设计、辅助工序等。
大的圆角,表面质量要求高,凸、凹模间隙略大 于板料厚度。
第五章 拉深工艺与拉深模设计
第二节 圆筒形件拉深变形分析
一、拉深变形过程
圆筒形件是最典型的拉深件。 (一)拉深成形时板料的受力分析
(二)拉深变形过程及特点 1.变形现象 平板圆形坯料的凸缘——弯曲绕过凹模圆角, 然后拉直——形成竖直筒壁。 变形区——凸缘; 已变形区——筒壁; 不变形区——底部。 底部和筒壁为传力区。
第五章 拉深工艺与拉深模设计
第二节 圆筒形件拉变形过程及特点(续)
2.金属的流动过程
工艺网格实验
材料转移:高度、厚度发生变化。
3.拉深变形过程
外力
凸缘产生内应力:径向拉应力σ1;切向压应力σ3 凸缘塑性变形:径向伸长,切向压缩,形成筒壁
直径为d高度为H的圆筒形件(H>(D-d)/2) 拉深单元变形动画
另一方面通过正确制定拉深工艺和设计模具,降低筒壁所 受拉应力。
第五章 拉深工艺与拉深模设计
拉 深 件 类 型
a)轴对称旋转体拉深件 b)盒形件 c)不对称拉深件
第五章 拉深工艺与拉深模设计
1-模柄 2

-上模座 3-

凸模固定板 4-

弹簧 5-压

边圈 6-定位 板 7-凹模 8-下模座 9
构 图
相关文档
最新文档