第四代发动机先进结构

合集下载

4rb3发动机维修手册

4rb3发动机维修手册

4rb3发动机维修手册一、引言4RB3发动机是一款先进的汽车发动机,广泛应用于各类车辆中。

本手册旨在为用户提供详细的发动机维修指南,帮助用户了解发动机的结构、维修方法和常见故障处理。

二、发动机结构4RB3发动机采用了先进的技术和材料,具有稳定可靠的性能。

它包括以下主要组成部分:1. 缸体:4RB3发动机采用铸铁缸体,具有良好的强度和刚性,用于容纳气缸和活塞。

2. 活塞组件:活塞是发动机中的关键部件之一,它与气缸配合密封气体并传递动力。

3. 曲轴:曲轴是发动机的动力输出部分,它将活塞运动转化为旋转运动,并通过连杆将动力传递给其他部件。

4. 气门及气门机构:气门负责控制进气和排气过程,气门机构用于控制气门的开闭时间和幅度。

5. 燃油系统:4RB3发动机采用电喷燃油系统,通过精确的喷油控制实现高效燃烧和低排放。

6. 冷却系统:发动机的冷却系统用于控制发动机温度,保证发动机正常运行。

三、发动机维修方法1. 维护保养:定期更换机油、机滤、空滤等关键部件,清洗燃油喷嘴、进气道等,保持发动机的正常工作状态。

2. 故障诊断:通过读取发动机诊断码和检查相关传感器、线路等,确定故障原因,并采取相应的修复措施。

3. 拆装维修:对于出现损坏或故障的部件,需要进行拆装修复。

注意在拆卸过程中按照正确的顺序操作,避免造成二次损坏。

4. 调整:定期进行发动机的点火正时、气门间隙等调整,确保发动机的正常工作和性能。

四、常见故障处理1. 发动机无法启动:可能是由于电池电量不足、点火系统故障、燃油系统故障等造成的。

可以通过检查电池电量、点火线圈、燃油喷嘴等进行排查。

2. 发动机运转不稳:可能是由于燃油供应不足、气门间隙过大、点火系统故障等原因引起的。

可以通过清洗燃油系统、调整气门间隙和检查点火系统来处理。

3. 发动机冷却系统故障:可能是由于水泵、散热器、温度传感器等故障引起的。

可以通过更换相关部件和检查线路来修复。

4. 发动机排放超标:可能是由于燃油供应不正常、点火系统故障、氧传感器故障等原因导致的。

航空发动机关键材料技术的发展现状与趋势

航空发动机关键材料技术的发展现状与趋势

1、航空发动机关键材料技术的发展现状与趋势航空发动机是在高温、高压、高速旋转的恶劣环境条件下长期可靠工作的复杂热力机械,在各类武器装备中,航空发动机对材料和制造技术的依存度最为突出,航空发动机高转速、高温的苛刻使用条件和长寿命、高可靠性的工作要求,把对材料和制造技术的要求逼到了极限。

材料和工艺技术的发展促进了发动机更新换代,如:第一、二代发动机的主要结构件均为金属材料,第三代发动机开始应用复合材料及先进的工艺技术,第四代发动机广泛应用复合材料及先进的工艺技术,充分体现了一代新材料、一代新型发动机的特点。

在航空发动机研制过程中,设计是主导,材料是基础,制造是保障,试验是关键。

从总体上看,航空发动机部件正向着高温、高压比、高可靠性发展,航空发动机结构向着轻量化、整体化、复合化的方向发展,发动机性能的改进一半靠材料。

据预测,新材料、新工艺和新结构对推重比12~15一级发动机的贡献率将达到50%以上,从未来发展来看,甚至可占约2/3。

因此,先进的材料和制造技术保证了新材料构件及新型结构的实现,使发动机质量不断减轻,发动机的效率、使用寿命、稳定性和可靠性不断提高,可以说没有先进的材料和制造技术就没有更先进的航空发动机。

正是由于不断提高的航空发动机性能对发动机材料与制造技术提出了更高的要求,各航空发达国家都投入了大量人力、物力和财力,对航空发动机用的材料与制造技术进行全面、深入的研究,取得了丰硕的成果,满足了先进发动机的技术要求。

从国外航空发动机材料与制造技术的发展情况来看,加强材料与制造技术工程化研究是缩短发动机研制周期、减少应用风险、增加研制投入产出比最有效的途径之一。

因此从20世纪70年代至今,航空发达国家安排了一系列的发动机材料和制造技术工程化研究计划,规划了整个材料和制造技术领域的发展方向,为各种先进军、民用发动机提供了坚实的技术基础。

如美国综合高性能发动机技术(IHPTET)计划、下一代制造技术计划(NG-MTI),美国空军复合材料经济可承受性计划(CAI)等(见表1)。

四缸发动机的工作原理

四缸发动机的工作原理

四缸发动机的工作原理
四缸发动机是一种常见的汽车发动机类型,其工作原理如下:
1. 引擎的循环过程:四冲程(或称四时)循环,包括进气冲程、压缩冲程、燃烧冲程和排气冲程。

2. 进气冲程:气缸活塞下行,进气门打开,混合气体(燃油和空气的混合物)由进气阀门进入气缸内。

3. 压缩冲程:气缸活塞上行,压缩进气冲程中的混合气体,通过压缩以提高燃烧效率。

4. 燃烧冲程:当活塞达到顶部时,点火系统触发火花塞产生火花,引燃混合气体,产生爆炸推动活塞向下运动。

5. 排气冲程:气缸活塞再次上行,排气门打开,将燃烧后的废气通过排气门排出气缸。

这四个冲程构成了循环,不断重复进行,通过连杆和曲轴的转动将产生的推力传递给车轮,驱动汽车前进。

四缸发动机的“四缸”指的是引擎内部有四个气缸,每个气缸独立完成上述工作,从而提供更平稳的驱动力和较高的动力输出。

涡轮风扇发动机的结构和工作原理

涡轮风扇发动机的结构和工作原理

涡轮风扇发动机的结构和工作原理引言:涡轮风扇发动机是现代航空领域广泛使用的一种发动机类型。

它以其高效率、低噪音和大推力的特点而备受推崇。

本文将介绍涡轮风扇发动机的结构和工作原理,以帮助读者更好地了解这一先进的航空动力装置。

一、结构涡轮风扇发动机的结构包括压缩机、燃烧室、涡轮、喷管等部分。

1. 压缩机:压缩机是涡轮风扇发动机的关键组件之一,它负责将大量空气压缩,提高空气的密度和压力,为燃烧提供充足的氧气。

涡轮风扇发动机通常采用多级轴流式压缩机,可以实现高压缩比和高效率。

2. 燃烧室:燃烧室是将燃料和空气混合并燃烧的地方。

在燃烧过程中,燃料和空气经过点火后产生高温高压的燃烧气体。

为了保证燃烧效率和减少排放物的产生,现代涡轮风扇发动机通常采用多级燃烧室和先进的燃烧技术。

3. 涡轮:涡轮是涡轮风扇发动机的动力来源,它通过高温高压的燃烧气体驱动。

涡轮由高压涡轮和低压涡轮组成,它们通过轴连接,并共同驱动压缩机和风扇。

高压涡轮负责驱动压缩机,而低压涡轮则驱动风扇。

4. 喷管:喷管是涡轮风扇发动机的尾部部分,负责喷出高速喷流,产生推力。

喷管的形状和设计对推力和燃料效率有着重要影响。

现代喷管通常采用可变喷口设计,可以根据不同的工作状态调整喷口的形状和尺寸,以达到最佳的推力效果。

二、工作原理涡轮风扇发动机的工作原理可以简单描述为压气、燃烧和推力三个阶段。

1. 压气阶段:在压气阶段,压缩机将大量空气压缩,提高其密度和压力。

空气经过多级压缩后,进一步进入燃烧室。

2. 燃烧阶段:在燃烧室中,燃料和空气混合并点火燃烧,产生高温高压的燃烧气体。

燃烧气体的高温高压状态使其具有较大的能量,这些能量将在后续的阶段转化为推力。

3. 推力阶段:燃烧气体通过高压涡轮和低压涡轮驱动,为涡轮风扇发动机提供动力。

高压涡轮驱动压缩机,使其继续压缩空气;低压涡轮则驱动风扇,产生大量的气流。

最终,高速喷流通过喷管喷出,产生巨大的推力,推动飞机前进。

国外涡桨发动机的发展_周辉华

国外涡桨发动机的发展_周辉华

0 概述涡轮螺旋桨(简称涡桨)发动机是一种主要依靠螺旋桨产生的拉力或推力驱动飞机的航空动力装置,非常适合中等飞行速度(400~800km/h )的飞机使用。

与航空活塞式发动机相比,涡桨发动机具有功重比大、迎风面积小、振动小等优点,特别是随着飞行高度的增加,其性能更为优越;与涡轮喷气和涡扇发动机相比,它又具有耗油率低、起飞推力大等优点。

涡桨发动机的这些特点对于往返于中小型机场甚至简易机场的短、中程运输飞机和通用飞机来说是非常适宜的。

自20世纪50年代起,世界各国纷纷发展了以涡桨发动机和涡扇发动机为动力的中型运输机,其后因涡桨发动机高速性能不理想,市场逐渐被涡扇发动机挤占。

近年来,由于燃油价格飙升,涡桨飞机的经济性优势更为凸显出来,同时随着螺旋桨设计、制造技术的进步,涡桨飞机在高亚声速国外涡桨发动机的发展摘 要:以航空发动机的技术性能为重点,通过对比、分析涡桨发动机的发展历程、发展现状,发展途径和发展计划,预测其未来的技术发展趋势并整理出成功的发展经验,为我国涡桨发动机的发展提供参考。

Abstract: Focusing on the technical performance characteristics of aero-engine,this article analyzes the development status, approach,trend,experience of turbo-propeller engines, and provides reference for the turbo-propeller engine research.关键词:涡桨发动机;发展现状;发展途径;发展趋势;发展经验Keywords: turbo-propeller engine ;development status ;development approach ;development trend ;development experienceThe Development Prospect of Turbo -Propeller Engines周辉华/中航工业航空动力机械研究所飞行时的推进效率大大提高,涡桨飞机重新受到军民用户的青睐,其市场开始逐渐复苏,涡桨发动机也被誉为“明天的绿色动力”、“支线飞机的脊梁”。

(整理)F414发动机.

(整理)F414发动机.

F414涡轮风扇发动机(军民用)2010-2-10牌号F414用途军用/民用涡扇发动机类型涡轮风扇发动机国家美国厂商通用电气公司航空发动机集团生产现状研制中装机对象F414-GE-400 F/A-18E/F、Saab“鹰师”C(建议)。

研制情况F414是通用电气公司为满足美国海军对F/A-18“大黄蜂”战斗机最新发展型F/A-18E/F的要求而设计的加力式涡轮风扇发动机。

它以该公司的F404和F412为基础,因此曾被称为F404的Ⅱ型推力增长型。

1991年开始研制。

1993年5月20日首次试车。

计划于1995年12月首次试飞,1998年定型并交付首台生产型发动机。

通用电气公司在研制F414时充分吸取F404积累的使用经验,采用GE23A、YF120、F412以及其他军、民用发动机一些经过验证的技术,因而研制工作进展顺利,投资少、研制时间短,效果明显。

F414的风扇与F118的相同,第1级风扇叶片带中间凸台,第2和第3级为焊接的整体叶盘。

通过1993年作的280多小时试验证明,这种风扇的流量、效率、喘振裕度和抗畸变能力均超过或达到预定的目标,流量比F404-GE-400的大16%,重量轻20.4kg。

F414的高压压气机采用F412的7级设计,但前3级改为叶盘结构,以减少榫头漏气、减轻重量和提高效率。

燃烧室和高压涡轮是以F412为基础发展的,低压涡轮是一种先进设计。

加力燃烧室采用了该公司为先进战斗机设计的F120发动机的结构。

径向火焰稳定器可用风扇后空气冷却,中心环形火焰稳定器沿圆周做成12段,可以自由膨胀,整套火焰稳定器可在发动机装在飞机上的条件下进行更换,设计寿命为2000h,5700次点火。

海平面和高空试验证明,这种加力燃烧室不易发生振荡燃烧。

尾喷管的设计采用了F110-GE-129 IPE的技术,装有先进的陶瓷基复合材料的尾喷管调节片。

结构和系统进气口环形。

结构与F404的相同。

风扇3级轴流式。

先进航空发动机设计与制造技术综述.

先进航空发动机设计与制造技术综述.

先进航空发动机设计与制造技术综述进入21世纪,世界航空发动机技术取得了巨大进步,并呈现加速发展的趋势。

美国推重比10一级涡扇发动机F119作为第四代战斗机F22的动力装备部队,是当今航空动力技术最具标志性的成就。

在此基础上,美国持续实施了多个技术研究计划,正在推动世界航空发动机技术继续向前发展。

本文从未来高性能航空发动机采用的高级负荷压缩系统、高温升燃烧室、高效冷却涡轮叶片、推力矢量等方面,对其先进设计和制造技术的发展方向和趋势进行初步的分析研究。

高级负荷压缩系统高压压气机技术发展的目标是单级压比高、级数少、推重比高、飞行性能好。

对高级负荷的压缩系统,低展弦比设计、气动前掠设计、整体叶盘、整体叶环、压气机稳定性主动控制等技术是其中具有代表性的新技术。

1低展弦比叶片设计及制造低展弦比叶片即宽弦叶片,它与窄弦叶片相比,增宽了弦长,使压气机的长度缩短,抗外物损伤能力、抗疲劳特性和失速裕度有所提高。

还可使压气机零件数减少,降低生产和制造费用成本(图表1。

90年代以来,英国罗·罗(R·R公司、美国普惠公司和GE 公司、法国SNECMA公司不断研制和改进高压压气机钛合金宽弦叶片的气动和结构性能,广泛应用于大涵道比涡扇发动机和高推重比小涵道涡扇发动机上。

GE 公司TECH56技术计划的验证机和F119发动机、EJ200发动机都采用了这种宽弦叶片。

叶片的低展弦比设计,结合整体叶盘技术使得高压压气机在减少级数和提高叶片强度的同时,具有更好的气动稳定性。

低展弦比叶片需要解决的关键技术问题是因重量增加而导致的轮盘与叶根结合处和轮盘本身的离心力增大问题。

IHPTET计划在大型涡扇和涡喷发动机验证机上验证了该技术,该技术还将在F135和F136发动机上采用。

目前,低展弦比叶片已成为先进航空发动机压缩系统的关键技术,与3D气动掠形、空心结构、整体叶盘结构和更轻的钛金属基复合材料技术相结合,是未来的发展重点。

奥迪A4L_2.0T发动机介绍

奥迪A4L_2.0T发动机介绍

奥迪A4L 2.0T发动机介绍2008年11月16日,这个日子距离广州车展只有两天了,一汽奥迪如约正式在中国发布了新奥迪A4L,一时间网友争相讨论,新A4L一下子成为了明星。

关于这款车的基本介绍已不必在这里赘述,对奥迪A4L 已经有足够的文章介绍过了,相信您也已经有了基本了解,如果您想查阅相关资料,请查看如下文章:这些讨论中包含如下最热的几个话题:1 新奥迪A4L的价格问题,特别是2.0TSI标准型。

2 新奥迪A4L的变速箱为什么用了CVT,而没有用DSG。

3 新奥迪A4L为什么没全系用Quattro四驱系统。

4 加长问题。

● 对于常见问题的解答:根据这些问题,作者综合了网上网友的大量评论和技术讲解,对有这些问题的答案进行了整理:1 新奥迪A4L的价格问题。

答:网友普遍认为的确很便宜,比预期的33万的价格低。

但是价格毕竟是奥迪的家务事,谁也管不了。

2 新奥迪A4L的变速箱为什么用了CVT,而没有用DSG。

答:大众集团的DSG现在只能用在前横置平台上,所以AUDI品牌里只有TT和A3用到了DSG,他们是GOLF的横置平台。

具体原因可能是纵置平台的动力输出方向的问题。

好像只有日产GTR是在前纵置车型上用到了双离合。

(感谢汽车之家网友猫主席)。

编者按:纵置+DSG的现在不可能不代表未来不可能,奥迪纵置平台的DSG只在06年底的底特律车展上的一款概念车上出现过,但是到量产车上肯定不是这代A4能做到的。

3 新奥迪A4L为什么没全系用Quattro四驱系统。

答:成本问题,没啥好说的。

4 加长问题。

答:适应国内需求,国内消费者对内部空间的要求比较大,加长轴距能够最直接的获得充裕的车内空间。

●一篇文章激起千层浪在网友热议的问题中,也有不少网友在关心新款奥迪A4L会不会烧机油的问题,这是因为奥迪A6L 2.0TSI就存在普遍的烧机油现象,而新奥迪A4L如果使用和A6L 同样的2.0TSI发动机,就很有可能仍然有这个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Tiles reduce wall cooling air requirements making more air available for NOx reduction A significant cost reduction relative to conventional machined combustors is also achieved
双转子轴流双涵道涡轮风扇发动机(大涵道比)
2. 四代航空发动机的划分(战斗机的燃气涡轮发动机)
第一代:单转子亚音速喷气发动机(推重比3~4) 20 世纪30~40 年代研制。 代表机种:美国的J47。 第二代:超声速涡喷发动机(推重比5~6) 大都在50 年代研制。 代表机种:美国的J79。 第三代:超声速涡扇发动机(推重比7~8,有的达到9左右) 研制始于 60 年代,用于高性能超音速战斗机。 代表机种:美国的F404、F100、前苏联的AL-31F、 英国的RB199 和法国的M88-2。 第四代:先进技术涡扇发动机(推重比达到10) 从 80 年代中期开始发展,代表机种有:美国的 F119、F135、俄罗斯的AL-41F 和欧洲四国联合研制 的EJ200。
F135以F119 发动 机核心机为基础,重 新设计了风扇和低 压涡轮,改进了加力 燃烧室和喷管。
• 风扇截面面积增加 了10% ~20 • 低压涡轮增加到2 级,以适应增大的 风扇 • 加力燃烧室平衡了 推力性能和隐身性 • 喷管由二元俯仰矢 量喷管改为轴对称 喷管
F135
F119
F135发动机实物照片
两台AL-41F
F-35
一台F135
4S: Stealth Supersonic cruise Super maneuverability Superior Avionics
3. F119双转子加力式涡扇发动机(普惠)
设计目标:(与F100相比)
• 不加力超音速巡航能力 • 非常规机动和短距起落能力 • 隐身能力(低红外和雷达信号特征) • 寿命期费用降低至少25% • 零件数量减少40~60% • 推重比提高20% • 耐久性提高两倍 • 零件寿命延长50%
常规起降型
F135发动机试车
常规起降型
F135发动机试车
常规起降型
F135发动机试车
常规起降型
F135发动机 短距起飞垂直降落型
F-35闪电II 联合攻击战斗机
罗罗升力系统+P&W F135发动机(短距起飞垂直降落型) 为洛克希德马丁公司研制的F-35闪电II联合攻击战斗机 提供短距起飞垂直降落能力
5. EJ200涡扇发动机(欧洲发动机公司)
1. 航空燃气涡轮发动机简介 航空燃气涡轮发动机的作用及力学原理
波音747-400 (发动机: PW 4056
GE CF6-80C2B5F RR RB211-524H ) 空载重量:179 吨,最大加油量:170 吨,载客量:416 座,最大起飞重量:397 吨 单台发动机的最大起飞推力:27 吨 ( RR RB211-524H )
3级风扇
• 非定常有粘设计的转子叶片 • 无中间凸台的空心宽弦叶片 • 扩散粘接/线性摩擦焊整体叶盘
风扇叶片技术
Fan Blade Technology
Clappered
+ 4% efficiency
Wide-chord fan
宽弦风扇叶片技术
1st generation: 1984
Wide-chord Fan Technology
轴流压气机的喘振及防喘措施
什么叫喘振? 防喘措施:
1. 2. 3. 4. 5. 级间放气 可调进口导流叶片 可调整流叶片 多转子 处理机匣
轴流压气机的喘振及防喘措施
防喘措施1:级间放气
A
A-A
放气带 A 放气口
涡喷6发动机的压气机
压气机机匣
打开放气带
轴流压气机的喘振及防喘措施
防喘措施2:可调进口导流叶片
作用:为飞机提供推力 原理:作用反作用原理
航空燃气涡轮发动机的作用及力学原理
波音747-400 (发动机: PW 4056
GE CF6-80C2B5F RR RB211-524H ) 巡航高度:10670 m, 巡航马赫数 M=0.85,飞机尺寸:70.7m X 68.6 m X 19.4 m 单台发动机的巡航推力:5.36 吨 ( RR RB211-524H )
雅克-38舰载战斗机垂直起降原理示意图
5. EJ200涡扇发动机(欧洲发动机公司)
欧洲战机 EF2000 ―台风”
风扇
燃烧室
高压涡轮
喷管
高压压气机
低压涡轮
加力燃烧室
EJ200涡轮风扇发动机(欧洲发动机公司)
轴流压气机的喘振及防喘措施
防喘措施5:处理机匣
俄罗斯的PD-33发动机
昆仑发动机(涡喷14)
F119涡扇发动机 环形燃烧室
• 气动喷嘴
• 三维高紊流度 的高旋流头部
• 浮壁式火焰筒
燃烧室
三种结构形式剖面相同
分管燃烧室
环管燃烧室 环形燃烧室
气动喷嘴
普通环形火焰筒
浮壁式环形火焰筒
Cold supporting wall
三转子遄达发动机 – 推力423kN
IP System 8 compressor stages 1 Turbine stage > 7,500 rpm
LP System HP System 1 Fan stage 6 compressor stages 5 Turbine stages 1 Turbine stage > 3,000 rpm > 10,000 rpm
F119涡扇发动机
高、低压转子对转
对转的好处:提高效率、减轻重量、陀螺力矩、中介轴承
对转后风扇(由对转自由动力涡轮驱动)
对转后风扇(由对转自由动力涡轮驱动)
对转桨扇(由自由动力涡轮驱动)
F119涡扇发动机
二元收括俯仰矢量喷管
喷管上、下的收 扩式调节片可单 独控制喉道与出 口面积, 当上、 下调节片同时向 上或向下摆动时, 改变了排气流的 方向, 即改变推 力的方向。排气 方向能上下偏转 正负20度, 从正 20度到负20度只 需1秒钟。
压气机减重
Compressor Weight Reduction
Conventional disk & blades
Blisk - up to 30% weight saving
Bling - Ti MMC - up to 70% weight saving
金属基复合材料
Metal Matrix Composites
作用:为飞机提供推力 原理:作用反作用原理
燃气涡轮发动机的工作原理
涡轮喷气发动机与活塞发动机工作循环的对比
航空燃气涡轮发动机的分类
涡轮喷气发动机 涡轮风扇发动机 涡轮螺旋桨发动机 航空燃气涡轮发动机 涡轴轮发动机
桨扇发动机
垂直/短距起降 发动机
航空燃气涡轮航空发动机的四种基本类型
Fan
Nozzle Turbojet
Cast tile
Thermal barrier coating
Large primary zone volume for altitude re-light Small total volume for NOx control
Large airspray injectors for improved mixing and smoke control
F119涡扇发动机
高、低压涡轮
• 高低压涡轮反转, 有导向器
• 多通道对流冷却和 气膜冷却
• 单晶叶片 • 粉末冶金轮盘
F119涡扇发动机
多通道对流冷却和气膜冷却
F119涡扇发动机
多通道对流冷却和气膜冷却
F119涡扇发动机
多通道对流冷却和气膜冷却
涡轮叶片冷却
Turbine Blade Cooling
垂直/短距起降发动机
垂直/短距起降发动机
F-35闪电II 联合攻击战斗机
垂直/短距起降发动机
F-35闪电II 联合攻击战斗机
尾喷管技术
F135发动机的三轴承矢量喷管
F-35战斗机
垂直/短距起降发动机
三类垂直/短距起降飞机:
英国的鹞式战斗机、俄罗斯的雅克-38、美国的F-35
鹞式战斗机
罗尔斯-罗伊斯公司的 “飞马”发动 机
垂直/短距起降发动机
“飞马”涡轮风扇发动机结构
垂直/短距起降发动机
鹞式战斗机
最大垂直起飞重量8165千克
最大短距起飞重量10433千克
垂直/短距起降发动机
“鹞式”飞机垂直起飞时的姿态控制
垂直/短距起降发动机
雅克-38
舰载战斗机
图曼斯基 R-27V-300 双转子涡轮喷气发动机
垂直/短距起降发动机
PT Propeller G/ B GG Start here PT G/ B Turboshaft PT Turboprop Turbofan
燃气涡轮发动机的工作循环和气流
典型单转子涡轮喷气发动机的气流参数变化规律
燃气涡轮发动机的工作循环和气流
流过小涵道比和大涵道比涡轮风扇发动机的气流
双转子轴流双涵道涡轮风扇发动机(小涵道比)
F119涡扇发动机
二元矢量喷管
F119涡扇发动机
二元矢量喷管
F119涡扇发动机
二元矢量喷管
F119涡扇发动机
二元矢量喷管
F119二元矢量喷管
Two-directional Nozzle
4. F135双转子加力式涡扇发动机(普惠)
联合攻击战斗机F-35的发动机
相关文档
最新文档