简单的步进电机控制系统

合集下载

步进电机控制方法及编程实例

步进电机控制方法及编程实例

步进电机控制方法及编程实例
步进电机在现代自动化控制系统中广泛应用,其精准的位置控制和相对简单的驱动方式使其成为许多工业和家用设备中的理想选择。

本文将介绍步进电机的控制方法及编程实例,帮助读者更好地理解和应用这一技术。

步进电机的基本原理
步进电机是一种将电能转换为机械能的电机,其运行原理基于磁场相互作用。

步进电机内部包含多个电磁线圈,根据电流方向和大小的不同来控制转子的运动。

通过逐个激活线圈,可以实现步进电机的准确位置控制,使其能够按照指定的步长旋转。

步进电机的控制方法
1.单相激励控制:最简单的步进电机控制方式之一。

通过依次激活每一相的线圈,
使电机按照固定步长旋转。

这种方法控制简单,但稳定性较差。

2.双相正交控制:采用两相电流的正交控制方式,提高了步进电机的稳定性和精
度。

可以实现正向和反向旋转,常用于对位置要求较高的应用场景。

3.微步进控制:将步进电机每个步进细分为多个微步进,以提高控制精度和减小振
动。

虽然增加了控制复杂度,但可以获得更平滑的运动和更高的分辨率。

步进电机的编程实例
下面以Python语言为例,演示如何通过控制步进电机的相序来实现简单的旋转控制。

通过以上代码,可以实现对步进电机的简单控制,按照设定的相序进行旋转,实现基本的位置控制功能。

结语
步进电机是一种常用的精准位置控制设备,掌握其控制方法和编程技巧对于工程师和爱好者来说都是有益的。

希望本文介绍的步进电机控制方法及编程实例能够帮助读者更好地理解和应用这一技术。

步进电机控制方法

步进电机控制方法

步进电机控制方法步进电机是一种将电脉冲信号转换为角位移的执行器,广泛应用于打印机、数控机床、纺织机械、包装设备等自动控制系统中。

步进电机控制方法的选择对于系统的性能和稳定性具有重要影响,下面将介绍几种常见的步进电机控制方法。

1. 开环控制。

开环控制是最简单的步进电机控制方法之一,通过给步进电机施加一定的脉冲信号来控制其旋转角度。

这种方法简单直接,但无法对步进电机的运动状态进行实时监测和调整,容易出现失步现象,适用于对精度要求不高的场合。

2. 半闭环控制。

半闭环控制是在开环控制的基础上增加了位置传感器反馈的控制方法。

通过位置传感器实时监测步进电机的位置,将反馈信息与设定值进行比较,从而实现对步进电机位置的闭环控制。

这种方法相比于开环控制能够更好地提高系统的稳定性和精度,但仍然存在一定的失步风险。

3. 闭环控制。

闭环控制是最为精确的步进电机控制方法,通过在步进电机上增加编码器等位置传感器,实时反馈步进电机的位置信息,并对其进行精确控制。

闭环控制能够及时调整步进电机的运动状态,减小失步风险,提高系统的稳定性和精度,适用于对位置精度要求较高的场合。

4. 微步进控制。

微步进控制是一种通过改变步进电机相序激励方式,使步进电机在每个步距内分成多个微步距的控制方法。

微步进控制能够提高步进电机的分辨率,减小振动和噪音,提高系统的平稳性和精度,适用于对步进电机运动要求较高的场合。

总结。

在实际应用中,步进电机控制方法的选择应根据具体的控制要求和系统性能需求来确定。

不同的控制方法各有特点,开环控制简单直接,但精度较低;半闭环控制提高了系统的稳定性和精度,但仍存在失步风险;闭环控制精度最高,但成本较高。

微步进控制能够提高步进电机的平稳性和分辨率,但相应的控制电路较为复杂。

因此,在选择步进电机控制方法时,需要综合考虑系统的实际需求和成本因素,选择最合适的控制方法来实现系统的稳定运行和高精度控制。

步进电机控制方法plc

步进电机控制方法plc

步进电机控制方法plc随着现代制造业的飞速发展,步进电机作为一种精密控制技术在自动化设备中得到广泛应用,而PLC(可编程逻辑控制器)则是控制步进电机的常见方案之一。

在工业生产中,步进电机的控制方法多种多样,其中结合PLC技术进行控制是一种高效可靠的方式。

本文将介绍一些常见的步进电机控制方法,并分析PLC在这些控制方法中的应用。

正转和反转控制正转和反转控制是步进电机最基本的控制方法之一。

通过控制电机输入的脉冲信号的频率和方向,可以实现步进电机的正转和反转。

在PLC中通常会使用计数器来记录脉冲信号的数量,从而控制电机的转动角度和方向。

通过设定计数器的值和控制脉冲信号的输出频率,可以精确控制步进电机的转动。

速度控制除了控制电机的方向外,控制步进电机的速度也是至关重要的。

在工业自动化系统中,需要根据不同的生产需求来调整步进电机的转速。

PLC可以通过调节输出脉冲信号的频率来实现步进电机的精确速度控制。

通过监控电机的转速并根据实际情况进行调整,可以保证生产过程的稳定性和效率。

位置控制在很多自动化系统中,需要步进电机按照预先设置的位置进行精确定位。

PLC在位置控制中发挥了关键作用。

通过监测电机的位置信息以及输入的控制指令,PLC可以精确地控制步进电机的位置。

在工业生产中,位置控制常常用于需要高精度定位的场景,如自动装配线和自动化仓储系统等。

脉冲控制步进电机的运动是通过输入一定数量的脉冲信号来实现的。

因此,脉冲控制是控制步进电机最基本的方法之一。

PLC通过输出一定频率和数量的脉冲信号,可以精确控制步进电机的运动。

在工业生产中,通常会根据实际需求设定脉冲信号的参数,如脉冲频率、脉冲数量和脉冲方向等,从而实现对步进电机的精确控制。

总结步进电机作为一种精密控制技术,在工业自动化领域具有重要的应用意义。

结合PLC技术可以实现对步进电机的高效控制,包括正转和反转控制、速度控制、位置控制和脉冲控制等。

通过合理设计控制方案并结合PLC的灵活性和可编程特性,可以实现对步进电机运动的精确控制,从而提高生产效率和产品质量。

步进电动机的控制

步进电动机的控制
i —传动比
αmin—负载轴要求的最小位移增量(即每个脉冲对应的最小角位 移增量)
➢步距脚θb也可用分辨率bs来表示:bs=360°/ θb(步/转)
➢ 当步进电机拖动的机械作直线运动时,用丝杠作运动转换器,步进电 t/ t
δ—直线增量运动当量(mm/每步)
360 tb z
因为每通电一次(即运行一拍),转子就走一步,各相绕
组轮流通电一次,转子就转过一个齿距。故步距角:
b

齿距 拍数

齿距 Km

360 Kmz
K--定子绕组通电方式系数。相邻两次通电的相数一样,取K=l,如三 相单三拍、三相双三拍工作方式;反之,取K=2,如三相单双六拍工作方 式。(拍数/相数)
步距精度Δθb应满足: b i(L )
ΔθL—丝杠传动精度
2)最大静转矩
步进电动机的静特性,是指步进电动机在稳定状态(即步进电动机不改 变通电情况的运行状态)时的特性,包括静转矩、矩角特性及静态稳定区。
静转矩:指步进电动机处于稳定状态下的电磁转矩。它是绕组电流和失 调角的函数。
在稳定状态下,如果在转子轴上加一负载转矩使转子转过一个角度θ, 并能稳定下来,这时转子受到的电磁转矩与负载转矩相等,该电磁转矩即 为静转矩,而角度θ即为失调角(或:电机定子齿与转子齿中心线之间的 夹角叫做失调角)。
(一)反应式步进电机的结构
1.单段(径向式)三相反应式步进电机的结构原理图
主要由定子和转子两部分组成。
• 定子铁芯由硅钢片叠压而成,定子上有六 个均匀分布的极,每两个为一对。定子绕 组是绕置在定子上的六个均匀分布铁芯齿 上的线圈,它把沿直径方向上相对的两个 齿上的线圈串联在一起,构成一相控制绕 组。图中所示的步进电机为A、B、C三相 控制绕组,故称为三相步进电机。当任一 相绕组通电时,便形成一对定子磁极,即 形成N、S极。 在定子的每个磁极上,即定子铁芯的每 个齿上又开了五个小齿,齿槽等宽,齿间 夹角为9°,在空间位置上依次错开1/3齿 距其展开图如图所示。

步进电机控制方法

步进电机控制方法

步进电机控制方法步进电机是一种常见的电动执行器,广泛应用于各个领域的控制系统中。

它具有结构简单、控制方便、定位精度高等优点,是现代自动化控制系统中必不可少的重要组成部分。

本文将从基本原理、控制方法、应用案例等方面对步进电机进行详细介绍。

1. 基本原理步进电机是一种通过输入控制信号使电机转动一个固定角度的电机。

其基本原理是借助于电磁原理,通过交替激励电机的不同线圈,使电机以一个固定的步距旋转。

步进电机通常由定子和转子两部分组成,定子上布置有若干个线圈,而转子则包含若干个极对磁体。

2. 控制方法步进电机的控制方法主要包括开环控制和闭环控制两种。

开环控制是指根据既定的输入信号频率和相位来驱动电机,控制电机旋转到所需位置。

这种方法简单直接,但存在定位误差和系统响应不稳定的问题。

闭环控制则是在开环控制的基础上,增加了位置反馈系统,通过不断校正电机的实际位置来实现更精确的控制。

闭环控制方法相对复杂,但可以提高系统的定位精度和响应速度。

3. 控制算法控制步进电机的常用算法有两种,一种是全步进算法,另一种是半步进算法。

全步进算法是指将电流逐个向电机的不同线圈通入,使其按照固定的步长旋转。

而半步进算法则是将电流逐渐增加或减小,使电机能够以更小的步长进行旋转。

半步进算法相对全步进算法而言,可以实现更高的旋转精度和更平滑的运动。

4. 应用案例步进电机广泛应用于各个领域的控制系统中。

例如,在机械领域中,步进电机被用于驱动数控机床、3D打印机等设备,实现精确的定位和运动控制。

在医疗设备领域,步进电机被应用于手术机器人、影像设备等,为医疗操作提供准确定位和精确运动。

此外,步进电机还广泛应用于家用电器、汽车控制、航空航天等领域。

总结:步进电机作为一种常见的电动执行器,具有结构简单、控制方便、定位精度高等优点,在自动化控制系统中扮演着重要的角色。

通过本文的介绍,我们了解到步进电机的基本原理、控制方法、算法以及应用案例等方面的知识。

步进电机控制系统设计

步进电机控制系统设计
INT 21H
INC AL
JZ MAIN1
CALL XIAN
MOV AL,[DI]
OUT DX,AL
CALL DLY
INC DI
DEC BL
JNZ SHSIF2
DEC CL
JNZ SHSIF0
JMP WAIT00
MAIN11:JMP MAIN1
;四相八拍正转
SIBAZH:
MOV AL,02H
MOV DX,MY8255_C
OUT DX,AL
CALL DLY
INC DI
DEC BL
JNZ SIBAF2
SIBAF0:MOV AH,0BH
INT 21H
INC AL
JZ MAIN11
LEA BX,TABLE1
MOV AL,CL
XLAT
MOV DX,MY8255_A
OUT DX,AL
SIBAF1:
MOV BL,08H
MOV DX,MY8255_B
LEA DI,TABBF
SIBAF2:CALL XIAN
MOV AL,[DI]
OUT DX,AL
CALL DLY
INC DI
DEC BL
JNZ FANSI2
DEC CL
JNZ FANSI0
JMP WAIT00
;中间跳转
SIBA0: JMP SIBAZH
SIBA1: JMP SIBAF
MAIN1: JMP MAIN
QUIT1: JMP QUIT
;双四拍正转
SHSIZH:
MOV AL,02H
3.2流程图- 6 -
4结束语- 6 -
1
步进电动机是一种将电脉冲信号转换相应的角位移的特种电动机。是工业过程控制及仪表中的主要控制元件之一。步进电动机具有快速起动能力,而且精度高,在数字控制系统中可以直接接受来自计算机的数字信号,不需要进行数/模转换,所以步进电动机在定位场合得到了广泛应用。

基于单片机的步进电机控制系统设计

基于单片机的步进电机控制系统设计

基于单片机的步进电机控制系统设计引言:步进电机是一种常用的电机类型,具有精准的位置控制、高效的能量转换等特点。

在许多自动化设备中广泛应用,如数控机床、3D打印机、机器人等。

本文将以基于单片机的步进电机控制系统设计为主题,介绍系统的硬件设计、软件设计以及实验验证。

一、硬件设计1.步进电机选型:根据实际应用需求,选择适当的步进电机。

包括步距角、转速范围、扭矩要求等等。

2.电源设计:步进电机需要驱动电压和电流,根据步进电机的额定电压和电流选用适当的电源。

3.驱动电路设计:步进电机通常需要驱动电路来控制电流和脉冲序列。

常见的驱动电路有全桥驱动器、半桥驱动器等。

4.信号发生器设计:步进电机通过脉冲信号来控制转动角度和速度,因此需要信号发生器来产生合适的脉冲序列。

常见的信号发生器有定时器、计数器等。

5.单片机接口设计:单片机作为步进电机控制系统的核心,需要与其他硬件进行通信。

因此需要设计合适的接口电路,将单片机的输出信号转换为驱动电路和信号发生器所需的电压和电流。

二、软件设计1.单片机程序框架设计:根据具体的单片机型号和开发环境,设计合适的程序框架。

包括初始化设置、主循环、中断处理等。

2.脉冲生成程序设计:根据步进电机的控制方式(如全步进、半步进、微步进等),设计脉冲生成程序。

通过适当的延时和输出信号控制,产生合适的脉冲序列。

3.运动控制程序设计:设计运动控制程序,实现步进电机的前进、后退、加速、减速等功能。

根据具体需求,可以设计不同的运动控制算法,如速度环控制、位置环控制等。

4.保护机制设计:为了保护步进电机和控制系统,设计合适的保护机制。

如过流保护、过压保护、过载保护等。

三、实验验证1.硬件连接:将步进电机、驱动电路和单片机按照设计进行连接。

2.软件调试:通过单片机编程,调试程序代码。

确保脉冲生成、运动控制等功能正常工作。

3.功能测试:对步进电机控制系统进行功能测试,包括正转、反转、加速、减速等功能。

通过观察步进电机的运动状态和测量相关参数来验证系统设计的正确性和性能。

步进电机的简单控制方法

步进电机的简单控制方法

步进电机的简单控制方法
步进电机是一种无负载特性的伺服电机,在控制上也具有相对简单的优势,可以通过相关的控制设备对电机的运动进行精确的控制。

因此,步进电机在数控机床、机器人、医疗设备、航空航天及其他行业中得到了广泛的应用。

一般来说,步进电机的控制可以分为两种方式,脉冲模式控制和三相电机控制。

脉冲模式控制是直接通过脉冲和方向信号来控制电机,通过改变脉冲的重复频率和/或方向,可以控制电机的旋转方向和速度,控制也比较精细。

three-phase motor控制方式是通过调节3相电机电网中的电压幅度和每相电压的相位进行控制的,功率容易调节,但是精度不够高。

两种控制方式的优劣势较明显,实际应用当中,通常会采用比较适用的控制,以适应不同的场景要求。

对于对功率要求不高,而且要求控制精度比较高的情况时,脉冲模式控制更加合适。

而对于功率比较大,而且不需要太高精度的场合,采用三相电机控制方式比较合适。

实际应用中,步进电机控制最为复杂的地方就是步进电机参数的设定。

通过准确的参数设定,可以精确的控制步进电机的运动,从而满足各种精确的控制要求。

此外,步进电机的控制也可以通过相关的控制软件进行实现,把原本复杂的手动控制过程转变为软件编程控制流程,可以大大提高步进电机的控制效率,以及完成更加复杂的控制要求。

总之,在实际应用中,步进电机的简单控制多次结合不同的设备及技术,可以有效的满足不同的控制要求,可以大大提高工作效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
system based on it. It verifies the applicability of the stepper motor structure and principle in mechatronics. Key words: stepper motor;single chip microcomputer;control system
1 工作原理
步进电机有许多不同种类不同型号,不过基本原理大 致相同,这里以四相反应式步进电机为例,其内部主体结 构如图 1 所示,外围一圈 A、B、C、D 为定子绕组,是一
图 1 四相反应式步进电机工作原理图
* 大学生创新创业训练计划 (编号:201713720004)
收稿日期:2018-10-08
机电工程技术 2019 年第 48 卷第 04 期
电力电网
DOI: 10. 3969 / j. issn. 1009-9492. 2019. 04. 048
简单的步进电机控制系统*
罗志远,张尤隆,李耀鑫
(广东理工学院, 广东肇庆 526100)
Hale Waihona Puke 摘要:步进电机作为一种可以将数字信号方便地转换为角位移或线位移的器件,是许多行业实现机电一体化的关键产品之一。
上面介绍了很多种控制方式,不过这些控制方式都有 一个共同的特点,那就是在进行了一个通电循环后转子都 转过一个齿距角[5],在四相反应式步进电机里即为 45°,也 就是说可以通过对通电频率进行调节来控制步进电机的角 频率即体现为转速。
2 控制系统
步进电机的控制系统可以采用纯硬件的方式,可以使 用一些专用的模拟芯片控制器或者信号发生器控制,不过 这样缺乏灵活性,不利于后期添加新的控制要求,有一定 的局限性。本文以单片机为核心对四相步进电机进行简单 的控制,使用单片机控制后期能够方便修改程序以达到改 变控制或添加新的控制要求的目的。本文设计的控制系统 主要由硬件和软件两大部分组成。
Simple Stepper Motor Control System
LUO Zhi-yuan,ZHANG You-long,LI Yao-xin
(Guangdong Polytechnic College,Zhaoqing526100,China)
Abstract: As a device that can easily convert digital signals into angular displacement or line displacement,stepper motor is one of the key products for mechatronics in many industries. In order to further deepen the understanding of stepping motor and realize the cross-application of disciplines,this paper analyzes the structure and working principle of stepping motor,and designs a simple control
化系统的结构,提高系统性能的稳定性,从而在提升系统 工作可靠性的前提下又降低系统成本。
但步进电机不同于普通电机,不能像普通电机那样直 接通上直流电或交流电就能够工作,步进电机是需要用多 个信号脉冲来进行驱动的,这些信号脉冲需要特殊的发 生器或单片机产生,其正反转也不像普通电机那样切换 电源极性或相序就能够切换,需要通过改变信号脉冲的 顺序改变。
为进一步加深对步进电机的认识,实现学科的交叉运用,通过对步进电机结构和工作原理进行分析,在此基础上对其设计了一
个简单的控制系统,综合运用了多个学科知识,验证了步进电机结构和原理上在机电一体化的适用性。
关键词:步进电机;单片机;控制系统
中图分类号:TM34
文献标识码:A
文章编号:1009-9492 ( 2019 ) 04-0163-03
0 引言
步进电机正如其名字一样,旋转一圈是分为若干个步 进动作进行的,每一步旋转一定角度,完成一圈后再进行 循环,能够非常容易地将接收的数字信息转换输出为相对 应的角位移或线性位移[1],其结构特点和动作方式使得其 具有启动快和停止快的优点,一个脉冲动作一次的动作方 式能够让其动作迅速地和指令脉冲进行同步,这也使得其 能够比较精确地定位在指定位置,具有较高的定位精度, 同时可以轻松地实现正反转的切换和速度的平滑过渡 , [2] 由于是通过指令脉冲运行,电源电压的波动或者负载不会 影响其运转速度与步距 , [3] 这些特性满足了有数模转换、 速度控制和位置控制方面应用的要求,运用步进电机能简
163
电力电网
机电工程技术 2019 年第 48 卷第 04 期
个整体,ABCD 上都分别绕有相应线圈,内部 1,2,3, 4,5,6 为转子,转子通常为永磁体[4]。
步进电机旋转的内部动作情况如下:第一步,当电流 只通过 A 相定子绕组时,A 相定子绕组会在电磁感应作用 下产生一个矢量磁场,该磁场会迫使转子 1,4 极向 A 相对 齐,而其余定、转子错开;第二步,A 相电流切断,进而 通过 B 相定子绕组,则 B 相定子绕组产生矢量磁场使转子 3,6 极向 B 相对齐,这时候转子就由原来图 1 (a) 的位置 逆时针旋转了 15°后到达了图 1 (b) 的位置;第三步,B 相电流切断,来到 C 相定子绕组,转子 2,5 极向 C 相对 齐,转子继续旋转 15°;第四步,C 相电流切断,D 相接 通,此时转子便向 D 向对齐,再旋转 15°;随后回到第一 步再进行循环,这样按 A→B→C→D→A……不断地循环 通电,便可以使步进电机逆时针旋转。若要让步进电机顺 时针旋转即反转,仅需按上述通电顺序的逆序通电即可, 即 A→D→C→B→A……,这种控制方式称为四相单四拍, 此 外 还 有 四 相 双 拍 : AB→BC→CD→DA→AB……, 和 四 相单双八拍:A→AB→B→BC→C→CD→D→DA→A……。
相关文档
最新文档