3.3解一元一次方程(二)—去括号
数学人教版七年级上册3.3解一元一次方程(二) ----去括号.3解一元一次方程(二) ---去-括号

x - 4) + 2x = 7-( x - 1)
1 3
• 训练提高 :
3x-2[3(x-1)-2(x+2)]=3(18-x)
本节课学习了什么?
• 本节课学习了用去括号的方法解一元一次方 程。 • 需要注意的是: (1)如果括号外的因数是负数时,去括号后, 原括号内各项的符号要改变符号; (2)乘数与括号内多项式相乘时,乘数应乘括 号内的每一项,不要漏乘。
3.3 解一元一次方程(二)
—— 去括号(第一课时
)
解方程:6x-7=4x-1 1、一元一次方程的解法我们学了 哪几步? 移项 合并同类项
系数化为1Leabharlann 2、移项,合并同类项,系数化为1, 要注意什么? ①移项时要变号。(变成相反数) ②合并同类项时,只是把同类项的 系数相加作为所得项的系数,字母 部分不变。 ③系数化为1,也就是说方程两边同 时除以未知数前面的系数。
2(X+3)=2.5(X-3)
注:方程中有带括号的式子时,去括
号是常用的化简步骤。 例2. 解方程:3x - 7(x-1) = 3 - 2(x+3)
例3. 解方程:3(5x-1)- 2(3x+2)=6(x-1)+2
试一试:解下列方程
1、 4x + 3(2X-3) = 12- (x+4) 2、6(
× 顺航时间=逆航速 也就是:顺航速度___ 度___ ×逆航时间
一艘船从甲码头到乙码头顺流航行,用了2 小 时;从乙码头到甲码头逆流航行,用了2.5小时; 已知水流的速度是3千米/小时,求船在静水中 的平均速度是多少千米/小时? × 逆航时间 顺航速度___ × 顺航时间=逆航速度___
解:设船在静水中的平均速度是X千米/小 时,则船在顺水中的速度是______ (X+3) 千米/ (X-3) 千米/ 小时,船在逆水中的速度是_______ 小时.
七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

3.3 解一元一次方程(二)-去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x﹣2(x﹣3)=5去括号变形正确的是()A.3x﹣2x﹣3=5 B.3x﹣2x﹣6=5 C.3x﹣2x+3=5 D.3x﹣2x+6=52.把方程去分母,下列变形正确的是()A.2x﹣x+1=1 B.2x﹣(x+1)=1 C.2x﹣x+1=6 D.2x﹣(x+1)=63.下列方程变形中,正确的是()A.方程去分母,得5(x﹣1)=2xB.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.方程3x﹣2=2x+1移项,得3x﹣2x=﹣1+2D.方程系数化为1,得t=14.一元一次方程的解为()A.x=1 B.x=﹣1 C.x=﹣12 D.x=125.解方程时,把分母化为整数,得()A.B.C.D.6.解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④7.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个8.某同学在解关于x的方程3a﹣x=13时,误将“﹣x”看成“x”,从而得到方程的解为x=﹣2,则原方程正确的解为()A.x=﹣2 B.x=﹣C.x=D.x=29.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8 B.﹣8 C.6 D.﹣610.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=0的解是()x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0 B.﹣1 C.﹣3 D.﹣4二、填空题11.当x=时,代数式2x﹣与代数式x﹣3的值相等.12.方程1﹣=去分母后为.13.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为.14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x=.三、解答题15.解方程:(1)2(x+8)=3x﹣1(2)16.已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?17.定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.18.(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a 的值.(2)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?3.3 解一元一次方程(二)--去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.3.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册

《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对一元一次方程中“去括号”和“去分母”的掌握,通过实际操作练习,加深对一元一次方程解法的理解,并能够熟练运用这些方法解决实际问题。
二、作业内容1. 基础知识练习:(1)通过例题讲解,让学生熟悉去括号和去分母的步骤和方法,理解其原理。
(2)布置基础练习题,包括去括号和去分母的混合练习,旨在让学生熟练掌握两种方法。
2. 实践应用题:(1)设计一系列实际问题,如购物找零、速度与时间的关系等,通过这些问题让学生运用去括号和去分母的方法解决实际问题。
(2)设置开放性问题,鼓励学生自主探索,培养其创新思维和解决问题的能力。
三、作业要求1. 学生在完成作业时,应先复习课堂所学知识,确保理解去括号和去分母的原理及步骤。
2. 学生在做题时,应按照先易后难的原则,逐步提高难度,从基础练习开始,再到实践应用题。
3. 学生在解题过程中,应注重步骤的完整性,每一步都应清晰明了,确保解题思路的连贯性。
4. 学生在完成实践应用题时,应尽量用所学知识去解决问题,尝试不同的解题方法,培养创新思维。
5. 学生在解题过程中遇到问题时,应积极思考、查阅资料或向老师请教,不轻易放弃。
四、作业评价1. 老师应根据学生完成作业的情况,给予相应的评价和指导。
2. 评价内容应包括学生对知识的掌握程度、解题思路的连贯性、解题方法的多样性等方面。
3. 对于表现优秀的学生,老师应给予表扬和鼓励,激发其学习积极性。
4. 对于表现欠佳的学生,老师应给予指导和帮助,找出问题所在,并帮助其改正。
五、作业反馈1. 老师应根据学生的作业情况,及时调整教学计划和方法,以更好地满足学生的学习需求。
2. 对于普遍存在的问题,老师应在课堂上进行讲解和指导,帮助学生解决疑惑。
3. 老师应及时将学生的作业情况反馈给学生和家长,以便家长了解孩子的学习情况并给予支持。
3.3 解一元一次方程(二)——去括号与去分母(3)去分母;解一元一次方程的步骤

根据等式的性质2,在这个方程的两边乘各分母的 最小公倍数42,得
28 x 21x 6 x 42 x 1386
合并同类项,得 97 x 1386 .
1386 系数化为1,得 x . 97
你能解这个方程吗?
这个 方程 中各 分母 的最 小公 倍数 是多 少?
3x 1 3x 2 2x 3 2 2 10 5
A.15x-5(x+1)=1-3(x+3)
B. 15x-(x-1)=15-3(x+3) C.x-5(x-1)=1-3(x+3) D. 15x-5(x-1)=15-3(x+3) x 1 x +7 2 4.如果方程 的解也是方程 3 6 7. 那么a的值是
2 ax 0 3
的解,
5.小张和小王从甲地去乙地,小张早出发1小时,却晚到 1小时,他的速度为4千米/时,小王的速度为6千米/时, 则甲、乙两地的距离是 24 千米.
2
3
互为相反数.
6.解下列方程:
19 21 () 1 x ( x 2); 100 100 (2) x 1 x 2 ; 2 4
5 x 1 3x 1 2 x 3x 2 2x 1 2x 1 (3) ; (4) 1 . 4 2 1 3 2 5 9 4
x=21
B.4x+2-x+1=12 D.x=3
B.7 C.8 D.-1 x 1 3 2x 5 4.方程 的解是( C ) 4 6 2 A.x=-1 B.x=-2 C.x=-3 D.x=-4
1 1 ( x 1) 3.若式子 与 ( x 2)的值相等,则x的值是( B ) 2 3
13 3 2x 2 x 5.当x=____ 时,式子 与 8
3.3解一元一次方程(二)-去括号与去分母(教案)

举例:如果问题是“甲车比乙车快10km/h,甲车行驶100km的时间比乙车少2小时,求乙车的速度”,学生需要能够根据问题列出方程,如x + 10 = 100/(t + 2),其中x是乙车的速度,t是乙车行驶100km的时间。
2.设计更多具有实际情境的问题,让学生在实际问题中运用所学知识,提高他们解决问题的能力。
3.鼓励学生独立思考,培养他们的自主学习能力,减少对同题,提高教学效果。
其次,去分母部分,学生在寻找最小公倍数时感到困惑。这一方面是因为他们的数学基础不够扎实,另一方面也反映出他们在实际问题中运用知识的能力有待提高。针对这个问题,我在课堂上通过举例和引导,让学生们学会如何找到最小公倍数并应用到方程中。在以后的教学中,我计划增加一些关于最小公倍数的专项训练,以提高学生们的运算速度和准确性。
3.3解一元一次方程(二)-去括号与去分母(教案)
一、教学内容
本节课选自教材第三章第三节“3.3解一元一次方程(二)-去括号与去分母”。教学内容主要包括以下两部分:
1.去括号法则:掌握一元一次方程中括号外的数字因数乘括号内各项,以及括号外是“-”时,去括号后括号内各项改变符号的法则。
2.去分母法则:掌握一元一次方程中各分母的最小公倍数,并利用最小公倍数将方程两边乘以相应的数,使方程两边同时去掉分母的方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和方程的简化过程。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“去括号与去分母在实际问题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
《 3.3 解一元一次方程(二)——去括号与去分母》学历案-初中数学人教版12七年级上册

《3.3 解一元一次方程(二)——去括号与去分母》学历案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》学历案(第一课时)一、学习主题本节课的学习主题是“解一元一次方程的进一步学习”,具体聚焦于“去括号与去分母”这一关键知识点。
通过本课的学习,学生将掌握去括号和去分母的方法,为后续学习一元一次方程的解法打下坚实的基础。
二、学习目标1. 掌握去括号的法则和技巧,能够在解一元一次方程的过程中正确运用。
2. 理解去分母的意义和作用,掌握去分母的方法,并能在实际问题中应用。
3. 通过练习,提高学生的计算能力和问题解决能力,培养学生的数学思维和逻辑推理能力。
三、评价任务1. 能否正确理解和掌握去括号的法则和技巧,能否在解一元一次方程的过程中正确运用。
2. 能否理解去分母的意义和作用,能否掌握去分母的方法,并能在实际问题中应用。
3. 通过课堂练习和课后作业,评价学生的计算能力和问题解决能力是否有所提高。
四、学习过程1. 导入新课:通过回顾一元一次方程的基本形式和解法,引出本节课的学习内容——去括号与去分母。
2. 学习新知:首先,讲解去括号的法则和技巧,通过例题演示让学生理解并掌握。
其次,讲解去分母的方法和意义,同样通过例题演示让学生理解并掌握。
3. 课堂练习:提供一系列练习题,让学生运用所学知识进行练习,加深对知识的理解和掌握。
4. 课堂讨论:组织学生进行课堂讨论,分享解题经验和技巧,提高学生的交流和合作能力。
5. 归纳总结:对本节课的学习内容进行归纳总结,强调重点和难点,加深学生的印象。
五、检测与作业1. 课堂检测:通过小测验或课堂练习,检测学生对本节课所学知识的掌握情况。
2. 课后作业:布置相关练习题,让学生在家中进行巩固练习,提高计算能力和问题解决能力。
六、学后反思1. 学生应反思自己在课堂上的表现,包括听讲、练习、讨论等方面,找出自己的不足之处。
2. 学生应思考如何更好地掌握去括号与去分母的方法和技巧,提高自己的计算能力和问题解决能力。
人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母

1. 对于方程 2( 2x-1 )-( x-3 ) =1 去括号正确的
是
(D)
A. 4x-1-x-3=1
B. 4x-1-x +3=1
C. 4x-2-x-3=1
2
10 5
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 4x
去括号 15x 5 20 3x 2 4x
移项
15x 3x 4x 2 5 20 合并同类项
16x 13
系数化为1
x 13 16
下列方程的解法对不对?如果不对,你能找出错在
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
1. 方程 3 5x 7 x 17 去分母正确的是
(C)
2
4
A. 3-2(5x+7) = -(x+17)
B. 12-2(5x+7) = -x+17
C. 12-2(5x+7) = -(x+17)
七年级数学上(RJ)
第三章 一元一次方程
3.3 解一元一次方程(二) ——去括号与去分母
第1课时 利用去括号解一元一次方程
化简下列各式: (1) (-3a+2b) +3(a-b); (2) -5a+4b-(-3a+b).
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.
人教版七年级上数学:3.3 解一元一次方程(二) ——去括号与去分母

锦囊妙计
航行或飞行问题的解题方法 (1)抓住水流速度(风速)、静水航行速度(无 风飞行速度)、顺水 航行速度(顺风飞行速度)、 逆水航行速度(逆风飞行速度)的关系, 确 定船航 行速度(飞机飞行速度), 即: 顺水(顺风)速度=静水(无风)速度+水流速 度(风速); 逆水(逆风)速度=静水(无风)速度-水流速 度(风速). (2)结合题意, 灵活应用路程、时间、速度 之间的关系, 建立方 程求解.
求a的值, 并正确地求 出方程的解.
分析 根据“由此求得的解为x=4”, 可知x=4 是方程2(2x-1)+1=5(x+a)的 解.
解 因为去分母时, 左边的1没有乘10, 所以小明去分母后的方程是2(2x-1)+1= 5(x+a). 把x=4代入, 可求得a=1. 所以原方程为 去分母, 得2(2x-1)+10=5(x-1). 去括号, 得4x-2+10=5x-5. 移项、合并同类项, 得-x=-13. 系数化为1, 得x=13.
例题2 解方程:
解 去分母, 得2(x-2)-(2x-3)=6+3(x-1). 去括号, 得2x-4-2x+3=6+3x-3. 移项, 得2x-3x-2x=6+4-3-3. 合并同类项, 得-3x=4. 系数化为1, 得x=
锦囊妙计
去分母解一元一次方程的方法 (1)在方程的两边都乘各分母的最小公倍数, 不要漏乘不 含分母的项; (2)若分子是多项式, 去分母后要把分子用括 号括起来.
锦囊妙计
行程问题中常用的相等关系 (1)相遇问题: 甲的行程+乙的行程=A, B两地间的路程.
(2)追及问题: 同地不同时出发, 前者行程=追及者的行 程; 同时不同地出发, 前者行程+初始相距的路 程=追及者的行程.