2017年山东省德州市中考数学三模试卷带答案解析

合集下载

山东省德州市2017年中考数学试题解析

山东省德州市2017年中考数学试题解析

2017年山东德州市中考试卷满分:120分 版本: 第Ⅰ卷 (选择题 共36分)一、选择题(共12小题,每小题3分,合计36分) 1.(2017山东德州,1,3分)-2的倒数是( ) A .21-B .21C .-2D .2答案:A ,解析:乘积为1的两个数互为倒数,故-2的倒数为1÷(-2)= 21-. 2.(2017山东德州,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是( )答案:D ,解析:图形A 、B 是中心对称图形但不是轴对称图形;图形C 是轴对称图形但不是中心对称图形,图形D 既是轴对称图形又是中心对称图形,符合题意. 3.(2017山东德州,3,3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是( ) A .4.77×105 B .47.7×105 C .4.77×106 D .0.477×106 答案:C ,解析:477万=4 770 000=4.77×106. 4.(2017山东德州,4,3分)如图,两个等直径圆柱构成如图所示的T 型管道,则其俯视图正确的是( )答案:B ,解析:俯视图是从上往下看得到的图形,图中竖直圆柱的俯视图是圆形,横放的圆柱的俯视图是长方形,又它们等直径,故该T 型管道的俯视图是选项B 中图形. 5.(2017山东德州,5,3分)下列运算正确的是( ) A .(a 2)m =a 2mB .(2a )3=2a 3C .a 3·5-a =15-aD .a 3÷5-a =2-a答案:A 解析:(a 2)m =a 2m ,故A 正确;(2a )3=23a 3=8a 3,故B 错误;a 3·5-a =)15(3-+a =12-a,故C 错误;a 3÷5-a =)5(3--a =8a ,故D 错误. 6.(2017山东德州,6,3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:) A .平均数 B .方差 C .众数 D .中位数答案:C ,解析:由于41尺码的衬衫销售的数量最多,因此该店主本周进货时,增加一些41码的衬衫,一组数据中出现次数最多的数即为这组数据的众数,所以影响该店主决策的统计量是众数. 7.(2017山东德州,7,3分)下列函数中,对于任意实数x 1,x 2,当x 1>x2时,满足y 1<y 2的是( )A .y =-3x +2B .y =2x +1C .y =2x 2+1D .y =x1-答案:A ,解析:一次函数y =-3x +2中,由于k =-3<0,所以y 随着x 的增大而减小,即对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2.8.(2017山东德州,8,3分)不等式组⎪⎩⎪⎨⎧->+≥+1321,392x x x 的解集是( )A .x ≥-3B .-3≤x <4C .-3≤x <2D .x >4答案:B ,解析:解不等式2x +9≥3,得2x ≥-6,x ≥-3;解不等式321x+>x -1,得1+2x >3x -3,4>x ,即x <4;所以原不等式组的解是-3≤x <4. 9.(2017山东德州,8,3分)公式L =L 0+KP 表示当重力为P 时的物体作用在弹簧上时弹簧的长度.L 0代表弹簧的初始长度,用厘米(cm)表示,K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是( ) A .L =10+0.5P B .L =10+5P C .L =80+0.5P D .L =80+5P答案:A ,解析:公式L =L 0+KP 中,L 0代表弹簧的初始长度,故四个选项中选项A 与B 的L 0=10cm ,为较短的弹簧;K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,选项A 中K =0.5cm ,选项B 中K =5cm ,显然选项A 中的弹簧更硬,综上可知,应选A . 10.(2017山东德州,10,3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A .412020240=--x xB .412020240=-+x xC .420240120=--x xD .420240120=+-x x答案:D 解析:根据题意可知,第一次购买的资料的单价为x120元,第二次购买的资料的单价为20240+x 元,因比第一次购买时的单价少4元,故有420240120=+-x x .11.(2017山东德州,11,3分)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b (a >b ),M 在BC 边上,且BM =b ,连接AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF .给出以下五个结论:①∠MAD =∠AND ;②CP =b -ab 2;③△ABM ≌△NGF ;④S 四边形AMFN =a 2+b 2;⑤A ,M ,P ,D 四点共圆.其中正确的个数是( ) A .2 B .3 C .4D .5答案:D ,解析:由△ABM 绕点A 旋转至△ADN ,可得∠AND =∠AMB ,在正方形ABCD 中,AD ∥BC ,∴∠AMB =∠MAD ,∴∠MAD =∠AND ,即①正确;由FG ∥CM ,易得△MCP ∽△FGP ,∴GP CP FG MC =,即cPb CPb b a -=-,解得CP =b -a b 2,故②正确;C AB D NEFGP∵BM =CE =b ,∴BM +CM =CE +CM ,即BC =EM ,∴AB =EM .又∵∠B =∠E ,BM =EF ,∴△ABM ≌△MEF .又△NGF 是由△MEF 旋转所得,∴△ABM ≌△NGF ,③正确;由旋转条件及已证△ABM ≌△MEF ,得AN =AM =MF =NF ,∠MAN =∠MAD +∠DAN =∠AND+∠DAN =90°,∴四边形AMFN 是正方形,∴S 四边形AMFN =AM 2=AB 2+BM 2=a 2+b 2,④正确; 由∠AMP =∠ADP =90°,可得Rt △AMP 与Rt △AMP 的外接圆的圆心均为斜边AP 的中点,半径均为斜边AP 长的一半,即A ,M ,P ,D 四点共圆,故⑤正确. 12.(2017山东德州,12,3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,……将这种做法继续下去(如图2、图3……),则图6中挖去三角形的个数为( ) A .121 B .362 C .364 D .729答案:C ,解析:图1挖去三角形的个数为1;图2挖去三角形的个数为1+3;图3挖去三角形的个数为32+3+1;图4挖去三角形的个数为33+32+3+1;图5挖去三角形的个数为34+33+32+3+1;图6挖去三角形的个数为35+34+33+32+3+1=364. 二、填空题(共5小题,每小题4分,合计20分)13.(2017山东德州,13,4分)计算:8-2= .答案:2,解析:8-2=22-2=2. 14.(2017山东德州,14,4分)如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是 .答案:同位角相等,两直线平行,解析:由作平行线的过程可知,三角板移动前后的60°角为同位角,根据“同位角相等,两直线平行”的判定条件,可得过点P 的直线与直线l 平行. 15.(2017山东德州,15,4分)方程3x (x -1)=2(x -1)的根为 .答案:x =1或x =32解析:当x -1=0时,即x =1,方程两边均为0,即x =1是原方程的根;当x -1≠0时,方程两边同除以x -1,得3x =2,解得x =32.综上可知,原方程的根为x =1或x=32. 16.(2017山东德州,16,4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是 .答案:91,解析:画树状图如下:图1 图2 图3或列表如下:可知共有9种等可能的结果,其中两人都抽到物理实验的情况只有1种,所以他们两人都抽到物理实验的概率是91. 17.(2017山东德州,17,4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(F ,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,根据设计要求,若∠EOF =45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为 .答案:82)2(+π,解析:如图,作OH ⊥AD 于点H .由切线的性质,得OE ⊥AB ,又∠A =90°,可知四边形AHOE 是矩形.∵∠EOF =45°,∴∠HOF =45°.OH =OF ·sin45°=1×22=22.所以此窗户透光区域的面积为(21×22×22+3601452⋅⋅π)×4=22+π,矩形的面积为(22×2)×(1+1)=22.此窗户的透光率为22+π:22=82)2(+π.三、解答题(本大题共7个小题,满分64分)18.(2017山东德州)(本小题满分6分)先化简,再求值:44422-+-a a a ÷aa a 222+--3,其中a =27. 思路分析:把分式的分子与分母进行因式分解,同时把除法运算转化为乘法运算,然后再进行约分化简,最后代数求值.解:44422-+-a a a ÷aa a 222+--3=)2)(2()2(2+--a a a ·2)2(-+a a a -3=a -3.H物化 生 物 (物,物) (物,化) (物,生) 化 (化,物) (化,化) (化,生) 生 (生,物) (生,化)(生,生)淘淘丽丽代入a =27求值得,原式=21.19.(2017山东德州)(本小题满分8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可或缺的一部分.为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B .学习;C .购物;D .游戏;E .其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m ,n ,p 的值,并补全条形统计图;(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议. 思路分析:(1)利用选项C(或E)中已知的频数及其所占的频率,其商即为这次被调查的学生人数;(2)m 的值为10除以调查的学生人数所得的商,或者用1减去其他选项的频率即为m 的值;n 的值为调查的学生人数与0.2的积;同理,p 的值为调查的学生人数与0.4的积;根据选项B 与D 的频数补全条形统计图即可;(3)由调查数据可估计全校学生中利用手机购物或玩游戏的频率和为0.1+0.4=0.5,它与800之积即为所求结果.可从使用手机多学习少玩游戏等具有积极意义的方面提出合理建议.解:(1)从C 可以看出:5÷0.1=50(人). 答:这次被调查的学生有50人.(2)m =5010=0.2,n =0.2×50=10,p =0.4×50=20. 补全图形如图所示.(3)800×(0.1+0.4)=800×0.5=400(人).合理即可.比如:中学生使用手机要多用于学习;中学生要少用手机玩游戏等.20.(2017山东德州)(本小题满分8分)如图,已知Rt △ABC ,∠C =90°,D 为BC 的中点.以AC为直径的⊙O 交AB 于点E . (1)求证:DE 是⊙O 的切线;(2)若AE ∶EB =1∶2,BC =6,求AE 的长.思路分析:(1)连接OE ,只需证OE ⊥DE ,即得DE 是⊙O 的切线.再连接CE ,利用圆的性质与直角三角形的性质,易证∠OED =∠ACD =90°,从而获得结论;(2)根据AE : EB =1:2,易得BE 与BA 之比,通过证明Rt △BEC ∽Rt △BCA ,获得BC ,BE ,BA 间的数量关系,据此构建方程可求解AE 的长.证明:(1)如图所示,连接OE ,CE .∵AC 是⊙O 的直径,∴∠AEC =∠BEC =90°.∵D 是BC 的中点,∴ED =21BC =DC . ∴∠1=∠2.∵OE =OC ,∴∠3=∠4.∴∠1+∠3=∠2+∠4,即∠OED =∠ACD . ∵∠ACD =90°,∴∠OED =90°,即OE ⊥DE . 又∵E 是⊙O 上一点,∴DE 是⊙O 的切线.(2)由(1)知∠BEC =90°.在Rt △BEC 与Rt △BCA 中,∠B 为公共角, ∴△BEC ∽△BCA .∴BC BE =BABC. 即BC 2=BE ·BA .∵AE : EB =1:2,设AE =x ,则BE =2x ,BA =3x . 又∵BC =6,∴62=2x ·3x . ∴x =6,即AE =6.21.(2017山东德州)(本小题满分10分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m 的A 处,测得一辆汽车从B 处行驶到C 处所用时间为0.9秒.已知∠B =30°,∠C =45°. (1)求B 、C 之间的距离;(保留根号)(2)如果此地限速为80km/h ,那么这辆汽车是否超速?请说明理由.(参考数据:3≈1.7,2≈1.4)思路分析:(1)作AD ⊥BC 于点D ,通过解Rt △ACD 与Rt △ABD 分别得到线段BD 与DC 的长AB C度,其和即为B 、C 之间的距离;(2)利用(1)中所求B 、C 之间的距离除以汽车的行驶时间,得汽车的速度,与限速相比,即可判断是否超速. 解:(1)如图,过点A 作AD ⊥BC 于点D ,则AD =10cm .∵在Rt △ACD 中,∠C =90°, ∴Rt △ACD 是等腰直角三角形. ∴CD =AD =10cm .在Rt △ABD 中,tan B =BD AD, ∵∠B =30°,∴33=BD10.∴BD =103m .∴BC =BD +DC =(103+10)m .答:B 、C 之间的距离是(103+10)m . (2)这辆汽车超速.理由如下:由(1)知BC =(103+10)m ,又3≈1.7, ∴BC =27m . ∴汽车速度v =9.027=30(m/s). 又30m/s =108km/h ,此地限速为80km/h , ∵108>80,∴这辆汽车超速. 答:这辆汽车超速.22.(2017山东德州)(本小题满分10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽.小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米. (1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度是多少?思路分析:(1)由于题目所给数据均与水池中心相关,故可选取水池中心为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系,再利用顶点式求解函数关系式;(2)抛物线的顶点纵坐标即为水柱的最大高度. 解:(1)如图,以水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.AB C D由题意可设抛物线的函数解析式为y =a (x -1)2+h (0≤x ≤3). 抛物线过点(0,2)和(3,0),代入抛物线解析式可得⎩⎨⎧=+=+.2,04h a h a 解得⎪⎪⎩⎪⎪⎨⎧=-=.38,32h a 所以,抛物线解析式为y =38)1(322+--x (0≤x ≤3). 化为一般式为y =32-x 2+34x +2(0≤x ≤3).(2)由(1)抛物线解析式为y =38)1(322+--x (0≤x ≤3).当x =1时,y =38.所以抛物线水柱的最大高度为38m .23.(2017山东德州)(本小题满分10分)如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ .过点E 作EF ∥AB 交PQ 于F ,连接BF . (1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动. ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.思路分析:(1)由折叠知PB =PE ,BF =EF ,结合平行线的性质,易得∠EPF =∠BPF =∠EFP ,故有EP =EF ,从而可得四边相等,则四边形BFEP 为菱形;(2)①在Rt △CDE 中,已知CD 长,CE =CB ,利用勾股定理计算DE 的长,进而可得AE 的长;又知AB 的长,且BP =PE ,故Rt △APE 中,利用勾股定理构建方程求解PE 的长.②点Q 与点C 重合时,点E 离A 点最近,①中已求此时AE 的长.当点P 与点A 重合时,则点E 离A 点最远,此时四边形ABQE 为正方形,AE =AB .两者之差就是点E 在边AD 上移动的最大距离.解:(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称.∴PB =PE ,BF =EF ,∠BPF =∠EPF . 又∵EF ∥AB ,∴∠BPF =∠EFP .A BDC PF(Q )E图2 A BC D P FQ E 图1∴∠EPF =∠EFP .∴EP =EF . ∴BP =BF =FE =EP . ∴四边形BFEP 为菱形.(2)①如图2,∵四边形ABCD 为矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°. ∵点B 与点E 关于PQ 对称, ∴CE =BC =5cm .在Rt △CDE 中,DE 2=CE 2-CD 2,即DE 2=52-32,∴DE =4cm . ∴AE =AD -DE =5cm -4cm =1cm .∴在Rt △APE 中,AE =1,AP =3-PB =3-PE , ∴EP 2=12+(3-EP )2,解得EP =35cm . ∴菱形BFEP 边长为35cm . ②当点Q 与点C 重合时,如图2,点E 离A 点最近,由①知,此时AE =1cm . 当点P 与点A 重合时,如图3,点E 离A 点最远,此时四边形ABQE 为正方形, AE =AB =3cm ,∴点E 在边AD 上移动的最大距离为2cm .24.(2017山东德州)(本小题满分12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y =k 1x 与y =xk(k ≠0)的图象性质. 小明根据学习函数的经验,对函数y =k 1x 与y =xk,当k >0时的图象性质进行了探究.下面是小明的探究过程: (1)如图所示,设函数y =k 1x 与y =xk图象的交点为A ,B .已知A 点的坐标为(-k ,-1),则B 点的坐标为 .(2)若点P 为第一象限内双曲线上不同于点B 的任意一点. ①设直线P A 交x 轴于点M ,直线PB 交x 轴于点N . 求证:PM =PN . 证明过程如下:设P (m ,mk),直线P A 的解析式为y =ax +b (a ≠0). A BDC PF(Q )E图2 A BC D P FQ E 图1图3EDQ CA (P )。

山东省德州市数学中考三模试卷

山东省德州市数学中考三模试卷

山东省德州市数学中考三模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017七上·绍兴月考) 下列各数0,,,,,﹣3.14,2π中,是无理数的有()A . 5个B . 4个C . 3个D . 2个2. (2分) (2018七上·梁子湖期末) 从权威部门获悉,中国海洋面积是2897000平方公里,2897000用科学记数法表示为A .B .C .D .3. (2分)如图,该几何体的主视图是()A .B .C .D .4. (2分)(2018·桂林) 下列计算正确的是()A .B .C .D .5. (2分)如图,直线y=x﹣b与y轴交于点C,与x轴交于点B,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA,则△AOB的面积为()A . 1B .C . 2D . 36. (2分)有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为()A . 20%B . 40%C . 50%D . 60%7. (2分) (2016九上·萧山期中) 有下列事件,其中是必然事件的有()①367人中必有2人的生日相同;②在标准大气压下,温度低于0℃时冰融化;③抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;④如果a、b为实数,那么a+b=b+a.A . 1个B . 2个C . 3个D . 4个8. (2分)已知当x=2时,多项式x2-2mx+4的值为-4,那么当x为何值时,该多项式的值为11?()A . 7B . -1C . 3D . 7或-19. (2分)如图,在□ABCD中,对角线AC,BD相交于点0,OA=2,若要使□ABCD为矩形,则OB的长应该为().A . 4B . 3C . 2D . 110. (2分) (2020九上·昌平期末) AB是⊙O的弦,∠AOB=80°,则弦AB所对的圆周角是()A . 40°B . 140°或40°C . 20°D . 20°或160°11. (2分)(2017·乐清模拟) 如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB 绕点O逆时针旋转30°,此时点A对应点A′的坐标是()A . (0,)B . (2,0)C . (0,2)D . (,1)12. (2分) (2019九上·泉州期中) 如图,菱形和菱形的边长分别为4和6,,则阴影部分的面积是()A .B .C .D .二、填空题 (共5题;共5分)13. (1分)分解因式:a3b﹣4ab=________ .14. (1分)某校对1200名女生的身高进行了测量,其中身高在1.58~1.63(单位:cm )的这一小组的频率为0.25,则该组的人数为________人15. (1分) (2018八上·兴义期末) 如图, ABC是等边三角形,AE=CD,BQ AD于点Q,BE交AD于P,则 BPQ的度数为________16. (1分) (2018九上·渠县期中) 边长为5㎝的菱形,一条对角线长是6㎝,则菱形的面积为________㎝2 。

2017年山东省德州市中考数学试卷

2017年山东省德州市中考数学试卷

2017年山东省德州市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)﹣2的倒数是()A.B.C.﹣2D.22.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×106 4.(3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A.B.C.D.5.(3分)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣26.(3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数7.(3分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2B.y=2x+1C.y=2x2+1D.y8.(3分)不等式组的解集是()>A.x≥﹣3B.﹣3≤x<4C.﹣3≤x<2D.x>49.(3分)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P 10.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.4B.4C.4D.411.(3分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b (a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.512.(3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121B.362C.364D.729二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)化简:.14.(4分)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是.15.(4分)方程3x(x﹣1)=2(x﹣1)的根为.16.(4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.17.(4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)先化简,再求值:3,其中a.19.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.20.(8分)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB 于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(10分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B =30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据: 1.7,1.4)22.(10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度是多少?23.(10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.24.(12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y x与y(k≠0)的图象性质.小明根据学习函数的经验,对函数y x与y,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y x与y图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线P A交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下:设P(m,),直线P A的解析式为y=ax+b(a≠0).则,解得∴直线P A的解析式为请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△P AB的形状,并用k表示出△P AB的面积.2017年山东省德州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)﹣2的倒数是()A.B.C.﹣2D.2【解答】解:﹣2的倒数是.故选:A.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,不符合题意;B、是中心对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,故符合题意.故选:D.3.(3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×106【解答】解:477万用科学记数法表示4.77×106,故选:C.4.(3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A.B.C.D.【解答】解:两个等直径圆柱构成如图所示的T型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:B.5.(3分)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣2【解答】解:(B)原式=8a3,故B不正确;(C)原式=a﹣2,故C不正确;(D)原式=a8,故D不正确;故选:A.6.(3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.7.(3分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2B.y=2x+1C.y=2x2+1D.y【解答】解:A、y=﹣3x+2中k=﹣3,∴y随x值的增大而减小,∴A选项符合题意;B、y=2x+1中k=2,∴y随x值的增大而增大,∴B选项不符合题意;C、y=2x2+1中a=2,∴当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大,∴C选项不符合题意;D、y中k=﹣1,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大,∴D选项不符合题意.故选:A.的解集是()8.(3分)不等式组>A.x≥﹣3B.﹣3≤x<4C.﹣3≤x<2D.x>4【解答】解:解不等式2x+9≥3,得:x≥﹣3,解不等式>x﹣1,得:x<4,∴不等式组的解集为﹣3≤x<4,故选:B.9.(3分)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选:A.10.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.4B.4C.4D.4【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:4.故选:D.11.(3分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b (a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.5【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,∴S四边形AMFN=AM2=a2+b2;故④正确;⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠AMP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选:D.12.(3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121B.362C.364D.729【解答】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,故选:C.二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)化简:.【解答】解:原式=2.故答案为:.14.(4分)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.15.(4分)方程3x(x﹣1)=2(x﹣1)的根为x=1或x.【解答】解:3x(x﹣1)=2(x﹣1),移项得:3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,∴x﹣1=0,3x﹣2=0,解方程得:x1=1,x2.故答案为:x=1或x.16.(4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.【解答】解:画树状图为:因为共有9种等可能的结果数,其中淘淘与丽丽同学同时抽到物理物的结果数为1,所以他们两人都抽到物理实验的概率是.故答案为:.17.(4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.【解答】解:设⊙O与矩形ABCD的另一个交点为M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=1,∴S透明区域21×11,过O作ON⊥AD于N,∴ON FG,∴AB=2ON=2,∴S矩形=22,透光区域.∴矩形故答案为:.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)先化简,再求值:3,其中a.【解答】解:3=a﹣3,当a时,原式.19.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.【解答】解:(1)从C可看出5÷0.1=50人,答:次被调查的学生有50人;(2)m0.2,n=0.2×50=10,p=0.4×50=20,,(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.20.(8分)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB 于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x•3x,解得:x,即AE.21.(10分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B =30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据: 1.7,1.4)【解答】解:(1)如图作AD⊥BC于D.则AD=10m,在Rt△ACD中,∵∠C=45°,∴AD=CD=10m,在Rt△ABD中,∵∠B=30°,∴tan30°,∴BD AD=10m,∴BC=BD+DC=(10+10)m.(2)结论:这辆汽车超速.理由:∵BC=10+1027m,∴汽车速度30m/s=108km/h,∵108>80,∴这辆汽车超速.22.(10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度是多少?【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为:y=a(x﹣1)2+h,ℎ,代入(0,2)和(3,0)得:解得:,∴抛物线的解析式为:y(x﹣1)2;即y x2x+2(0≤x≤3),根据对称性可知:抛物线的解析式也可以为:y x2x+2(﹣3≤x≤0),(2)y x2x+2(0≤x≤3),当x=1时,y,即水柱的最大高度为m.23.(10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.【解答】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.24.(12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y x与y(k≠0)的图象性质.小明根据学习函数的经验,对函数y x与y,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y x与y图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为(k,1);(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线P A交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下:设P(m,),直线P A的解析式为y=ax+b(a≠0).则,解得1∴直线P A的解析式为y x1请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△P AB的形状,并用k表示出△P AB的面积.【解答】解:(1)由正、反比例函数图象的对称性可知,点A、B关于原点O对称,∵A点的坐标为(﹣k,﹣1),∴B点的坐标为(k,1).故答案为:(k,1).(2)①证明过程如下,设P(m,),直线P A的解析式为y=ax+b(a≠0).则,解得:,∴直线P A的解析式为y x1.当y=0时,x=m﹣k,∴M点的坐标为(m﹣k,0).过点P作PH⊥x轴于H,如图1所示,∵P点坐标为(m,),∴H点的坐标为(m,0),∴MH=x H﹣x M=m﹣(m﹣k)=k.同理可得:HN=k.∴MH=HN,∴PM=PN.故答案为:;y x1.②由①可知,在△PMN中,PM=PN,∴△PMN为等腰三角形,且MH=HN=k.当P点坐标为(1,k)时,PH=k,∴MH=HN=PH,∴∠PMH=∠MPH=45°,∠PNH=∠NPH=45°,∴∠MPN=90°,即∠APB=90°,∴△P AB为直角三角形.当k>1时,如图1,S△P AB=S△PMN﹣S△OBN+S△OAM,MN•PH ON•y B OM•|y A|,2k×k(k+1)×1(k﹣1)×1,=k2﹣1;当0<k<1时,如图2,S△P AB=S△OBN﹣S△PMN+S△OAM,ON•y B﹣k2OM•|y A|,(k+1)×1﹣k2(1﹣k)×1,=1﹣k2.。

2017年山东省德州市中考数学试卷和解析答案

2017年山东省德州市中考数学试卷和解析答案

2017年山东省德州市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)﹣2的倒数是()A .﹣B .C.﹣2 D.22.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.(3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×1064.(3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A .B .C .D .5.(3分)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣26.(3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数7.(3分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣8.(3分)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>49.(3分)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P10.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=411.(3分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF 绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()四边形AMFN=aA.2 B.3 C.4 D.512.(3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)计算:﹣= .14.(4分)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是.15.(4分)方程3x(x﹣1)=2(x﹣1)的解为.16.(4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.17.(4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)先化简,再求值:÷﹣3,其中a=.19.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.20.(8分)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(10分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)22.(10分)随着新农村的建设和旧城的改造,我们的家园越越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?23.(10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E 处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.24.(12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x 与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B 点的坐标为;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得∴直线PA的解析式为请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB的面积.2017年山东省德州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)(2017•德州)﹣2的倒数是()A.﹣B.C.﹣2 D.2【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2017•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•德州)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:477万用科学记数法表示4.77×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•德州)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形.【解答】解:两个等直径圆柱构成如图所示的T型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•德州)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣2【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=8a3,故B不正确;(C)原式=a﹣2,故C不正确;(D)原式=a8,故D不正确;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A .平均数 B.方差 C.众数 D.中位数【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.(3分)(2017•德州)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣【分析】A、由k=﹣3可得知y随x值的增大而减小;B、由k=2可得知y随x值的增大而增大;C、由a=2可得知:当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大;D、由k=﹣1可得知:当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大.此题得解.【解答】解:A、y=﹣3x+2中k=﹣3,∴y随x值的增大而减小,∴A选项符合题意;B、y=2x+1中k=2,∴y随x值的增大而增大,∴B选项不符合题意;C、y=2x2+1中a=2,∴当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大,∴C选项不符合题意;D、y=﹣中k=﹣1,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大,∴D选项不符合题意.故选A.【点评】本题考查了一次函数的性质、二次函数的性质以及反比例函数的性质,根据一次(二次、反比例)函数的性质,逐一分析四个选项中y与x之间的增减性是解题的关键.8.(3分)(2017•德州)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>4【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+9≥3,得:x≥﹣3,解不等式>x﹣1,得:x<4,∴不等式组的解集为﹣3≤x<4,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)(2017•德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论.【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选A.【点评】本题考查了一次函数的应用,比较L0和K的值,找出短而硬的弹簧是解题的关键.10.(3分)(2017•德州)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=4【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选D.【点评】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.(3分)(2017•德州)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM ≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2 B.3 C.4 D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM ≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM2=a2+b2;故④正确;⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,∴S四边形AMFN=AM2=a2+b2;故④正确;⑤∵四边形AMFN是正方形,∵∠ADP=90°,∴∠ABP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选D.【点评】本题考查了四点共圆,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质旋转的性质,勾股定理,正确的理解题意是解题的关键.12.(3分)(2017•德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729【分析】根据题意找出图形的变化规律,根据规律计算即可.【解答】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,故选:C.【点评】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)(2017•德州)计算:﹣= .【分析】原式化简后,合并即可得到结果.【解答】解:原式=2﹣=,故答案为:【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2017•德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.(4分)(2017•德州)方程3x(x﹣1)=2(x﹣1)的解为x=1或x=.【分析】移项后分解因式得到(x﹣1)(3x﹣2)=0,推出方程x﹣1=0,3x﹣2=0,求出方程的解【解答】解:3x(x﹣1)=2(x﹣1),移项得:3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,∴x﹣1=0,3x﹣2=0,解方程得:x1=1,x2=.故答案为:x=1或x=.【点评】本题主要考查对解一元一次方程,等式的性质,解一元二次方程等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.16.(4分)(2017•德州)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.【分析】先画树状图展示所有9种等可能的结果数,再找出淘淘与丽丽同学同时抽到物理的结果数,然后根据概率公式求解即可.【解答】解:画树状图为:因为共有9种等可能的结果数,其中淘淘与丽丽同学同时抽到物理物的结果数为1,所以他们两人都抽到物理实验的概率是.故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.(4分)(2017•德州)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.【分析】把透光部分看作是两个直角三角形与四个45°的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果.【解答】解:设⊙O与矩形ABCD的另一个交点为M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=1,∴S透明区域=+2××1×1=+1,过O作ON⊥AD于N,∴ON=FG=,∴AB=2ON=2×=,∴S矩形=2×=2,∴==.故答案为:.【点评】本题考查了矩形的性质、扇形的面积、直角三角形的面积,将透光部分化分为几个熟知图形的面积是关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)(2017•德州)先化简,再求值:÷﹣3,其中a=.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣3==a﹣3,当a=时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)(2017•德州)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.【分析】(1)根据C的人数除以C所占的百分比,可得答案;(2)根据人数比抽查人数,所占的百分比乘以抽查人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)从C可看出5÷0.1=50人,答:次被调查的学生有50人;(2)m==0.2,n=0.2×50=10,p=0.4×50=20,,(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(8分)(2017•德州)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O 交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴=,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x•3x,解得:x=,即AE=.【点评】本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解此题的关键.21.(10分)(2017•德州)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)【分析】(1)如图作AD⊥BC于D.则AD=10m,求出CD、BD即可解决问题.(2)求出汽车的速度,即可解决问题,注意统一单位;【解答】解:(1)如图作AD⊥BC于D.则AD=10m,在Rt△ACD中,∵∠C=45°,∴AD=CD=10m,在Rt△ABD中,∵∠B=30°,∴tan30°=,∴BD=AD=10m,∴BC=BD+DC=(10+10)m.(2)结论:这辆汽车超速.理由:∵BC=10+1027m,∴汽车速度==30m/s=108km/h,∵108>80,∴这辆汽车超速.【点评】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(10分)(2017•德州)随着新农村的建设和旧城的改造,我们的家园越越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?【分析】(1)以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y 轴,建立平面直角坐标系,设抛物线的解析式为y=a(x﹣1)2+h,代入(0,2)和(3,0)得出方程组,解方程组即可,(2)求出当x=1时,y=即可.【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为:y=a(x﹣1)2+h,代入(0,2)和(3,0)得:,解得:,∴抛物线的解析式为:y=﹣(x﹣1)2+;即y=﹣x2+x+2(0≤x≤3);(2)y=﹣x2+x+2(0≤x≤3),当x=1时,y=,即水柱的最大高度为m.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(10分)(2017•德州)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E 离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【解答】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【点评】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.24.(12分)(2017•德州)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B 点的坐标为(k,1);(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得﹣1∴直线PA的解析式为y=x+﹣1请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB的面积.【分析】(1)根据正、反比例函数图象的对称性结合点A的坐标即可得出点B的坐标;(2)①设P(m,),根据点P、A的坐标利用待定系数法可求出直线PA的解析式,利用一次函数图象上点的坐标特征可求出点M的坐标,过点P作PH⊥x轴于H,由点P的坐标可得出点H 的坐标,进而即可求出MH的长度,同理可得出HN的长度,再根据等腰三角形的三线合一即可证出PM=PN;②根据①结合PH、MH、NH的长度,可得出△PAB为直角三角形,分k>1和0<k<1两种情况,利用分割图形求面积法即可求出△PAB的面积.【解答】解:(1)由正、反比例函数图象的对称性可知,点A、B关于原点O对称,∵A点的坐标为(﹣k,﹣1),。

山东省德州市2017年中考数学试题解析

山东省德州市2017年中考数学试题解析

2017年山东德州市中考试卷满分:120分 版本:第Ⅰ卷 (选择题 共36分)一、选择题(共12小题,每小题3分,合计36分)1.(2017山东德州,1,3分)-2的倒数是( )A .21- B .21 C .-2 D .2 答案:A ,解析:乘积为1的两个数互为倒数,故-2的倒数为1÷(-2)= 21-. 2.(2017山东德州,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是( )答案:D ,解析:图形A 、B 是中心对称图形但不是轴对称图形;图形C 是轴对称图形但不是中心对称图形,图形D 既是轴对称图形又是中心对称图形,符合题意.3.(2017山东德州,3,3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是( )A .4.77×105B .47.7×105C .4.77×106D .0.477×106答案:C ,解析:477万=4 770 000=4.77×106.4.(2017山东德州,4,3分)如图,两个等直径圆柱构成如图所示的T 型管道,则其俯视图正确的是( )答案:B ,解析:俯视图是从上往下看得到的图形,图中竖直圆柱的俯视图是圆形,横放的圆柱的俯视图是长方形,又它们等直径,故该T 型管道的俯视图是选项B 中图形.5.(2017山东德州,5,3分)下列运算正确的是( )A .(a 2)m =a 2mB .(2a )3=2a 3C .a 3·5-a =15-aD .a 3÷5-a =2-a 答案:A 解析:(a 2)m =a 2m ,故A 正确;(2a )3=23a 3=8a 3,故B 错误;a 3·5-a =)15(3-+a =12-a ,故C 错误;a 3÷5-a =)5(3--a =8a ,故D 错误.6.(2017山东德州,6,3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:)A .平均数B .方差C .众数D .中位数答案:C ,解析:由于41尺码的衬衫销售的数量最多,因此该店主本周进货时,增加一些41码的衬衫,一组数据中出现次数最多的数即为这组数据的众数,所以影响该店主决策的统计量是众数.7.(2017山东德州,7,3分)下列函数中,对于任意实数x 1,x 2,当x 1>x2时,满足y 1<y 2的是( )A .y =-3x +2B .y =2x +1C .y =2x 2+1D .y =x1- 答案:A ,解析:一次函数y =-3x +2中,由于k =-3<0,所以y 随着x 的增大而减小,即对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2.8.(2017山东德州,8,3分)不等式组⎪⎩⎪⎨⎧->+≥+1321,392x x x 的解集是( ) A .x ≥-3 B .-3≤x <4 C .-3≤x <2 D .x >4答案:B ,解析:解不等式2x +9≥3,得2x ≥-6,x ≥-3;解不等式321x +>x -1,得1+2x >3x -3,4>x ,即x <4;所以原不等式组的解是-3≤x <4.9.(2017山东德州,8,3分)公式L =L 0+KP 表示当重力为P 时的物体作用在弹簧上时弹簧的长度.L 0代表弹簧的初始长度,用厘米(cm)表示,K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是( )A .L =10+0.5PB .L =10+5PC .L =80+0.5PD .L =80+5P答案:A ,解析:公式L =L 0+KP 中,L 0代表弹簧的初始长度,故四个选项中选项A 与B 的L 0=10cm ,为较短的弹簧;K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,选项A 中K =0.5cm ,选项B 中K =5cm ,显然选项A 中的弹簧更硬,综上可知,应选A .10.(2017山东德州,10,3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A .412020240=--x xB .412020240=-+xx C .420240120=--x x D .420240120=+-x x 答案:D 解析:根据题意可知,第一次购买的资料的单价为x120元,第二次购买的资料的单价为20240+x 元,因比第一次购买时的单价少4元,故有420240120=+-x x . 11.(2017山东德州,11,3分)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG边长为b (a >b ),M 在BC 边上,且BM =b ,连接AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF .给出以下五个结论: ①∠MAD =∠AND ;②CP =b -ab 2;③△ABM ≌△NGF ;④S 四边形AMFN =a 2+b 2;⑤A ,M ,P ,D 四点共圆.其中正确的个数是( )A .2B .3C .4D .5 答案:D ,解析:由△ABM 绕点A 旋转至△ADN ,可得∠AND =∠AMB ,在正方形ABCD 中,AD ∥BC ,∴∠AMB =∠MAD ,∴∠MAD =∠AND ,即①正确;由FG ∥CM ,易得△MCP ∽△FGP ,∴GP CP FG MC =,即cPb CP b b a -=-,解得CP =b -a b 2,故②正确; C A B DNE FG P∵BM =CE =b ,∴BM +CM =CE +CM ,即BC =EM ,∴AB =EM .又∵∠B =∠E ,BM =EF ,∴△ABM ≌△MEF .又△NGF 是由△MEF 旋转所得,∴△ABM ≌△NGF ,③正确;由旋转条件及已证△ABM ≌△MEF ,得AN =AM =MF =NF ,∠MAN =∠MAD +∠DAN =∠AND+∠DAN =90°,∴四边形AMFN 是正方形,∴S 四边形AMFN =AM 2=AB 2+BM 2=a 2+b 2,④正确;由∠AMP =∠ADP =90°,可得Rt △AMP 与Rt △AMP 的外接圆的圆心均为斜边AP 的中点,半径均为斜边AP 长的一半,即A ,M ,P ,D 四点共圆,故⑤正确.12.(2017山东德州,12,3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,……将这种做法继续下去(如图2、图3……),则图6中挖去三角形的个数为( )A .121B .362C .364D .729答案:C ,解析:图1挖去三角形的个数为1;图2挖去三角形的个数为1+3;图3挖去三角形的个数为32+3+1;图4挖去三角形的个数为33+32+3+1;图5挖去三角形的个数为34+33+32+3+1;图6挖去三角形的个数为35+34+33+32+3+1=364.二、填空题(共5小题,每小题4分,合计20分)13.(2017山东德州,13,4分)计算:8-2= . 答案:2,解析:8-2=22-2=2.14.(2017山东德州,14,4分)如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是 .答案:同位角相等,两直线平行,解析:由作平行线的过程可知,三角板移动前后的60°角为同位角,根据“同位角相等,两直线平行”的判定条件,可得过点P 的直线与直线l 平行.15.(2017山东德州,15,4分)方程3x (x -1)=2(x -1)的根为 .答案:x =1或x =32 解析:当x -1=0时,即x =1,方程两边均为0,即x =1是原方程的根;当x -1≠0时,方程两边同除以x -1,得3x =2,解得x =32.综上可知,原方程的根为x =1或x =32. 16.(2017山东德州,16,4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是 . 答案:91,解析:画树状图如下:图1 图2 图3。

2017年山东省德州市中考数学试卷

2017年山东省德州市中考数学试卷

2017年山东省德州市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)﹣2的倒数是()A .﹣B .C.﹣2 D.22.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.(3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×1064.(3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A .B .C .D .5.(3分)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣26.(3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数7.(3分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣8.(3分)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>49.(3分)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P10.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=411.(3分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG 边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结=a2+b2;论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN⑤A,M,P,D四点共圆,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)计算:﹣=.14.(4分)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是.15.(4分)方程3x(x﹣1)=2(x﹣1)的解为.16.(4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.17.(4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)先化简,再求值:÷﹣3,其中a=.19.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.20.(8分)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(10分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)22.(10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?23.(10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B 点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.24.(12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得∴直线PA的解析式为请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB 的面积.2017年山东省德州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)(2017•德州)﹣2的倒数是()A.﹣ B.C.﹣2 D.2【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2017•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•德州)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:477万用科学记数法表示4.77×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•德州)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形.【解答】解:两个等直径圆柱构成如图所示的T型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•德州)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣2【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=8a3,故B不正确;(C)原式=a﹣2,故C不正确;(D)原式=a8,故D不正确;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A .平均数B.方差C.众数D.中位数【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.(3分)(2017•德州)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣【分析】A、由k=﹣3可得知y随x值的增大而减小;B、由k=2可得知y随x值的增大而增大;C、由a=2可得知:当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大;D、由k=﹣1可得知:当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大.此题得解.【解答】解:A、y=﹣3x+2中k=﹣3,∴y随x值的增大而减小,∴A选项符合题意;B、y=2x+1中k=2,∴y随x值的增大而增大,∴B选项不符合题意;C、y=2x2+1中a=2,∴当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大,∴C选项不符合题意;D、y=﹣中k=﹣1,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大,∴D选项不符合题意.故选A.【点评】本题考查了一次函数的性质、二次函数的性质以及反比例函数的性质,根据一次(二次、反比例)函数的性质,逐一分析四个选项中y与x之间的增减性是解题的关键.8.(3分)(2017•德州)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>4【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+9≥3,得:x≥﹣3,解不等式>x﹣1,得:x<4,∴不等式组的解集为﹣3≤x<4,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)(2017•德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论.【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选A.【点评】本题考查了一次函数的应用,比较L0和K的值,找出短而硬的弹簧是解题的关键.10.(3分)(2017•德州)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=4【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选D.【点评】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.(3分)(2017•德州)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()AMFNA.2 B.3 C.4 D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是=AM2=a2+b2;故④正确;正方形,于是得到S四边形AMFN⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,=AM2=a2+b2;故④正确;∴S四边形AMFN⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠ABP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选D.【点评】本题考查了四点共圆,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质旋转的性质,勾股定理,正确的理解题意是解题的关键.12.(3分)(2017•德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729【分析】根据题意找出图形的变化规律,根据规律计算即可.【解答】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,故选:C.【点评】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)(2017•德州)计算:﹣=.【分析】原式化简后,合并即可得到结果.【解答】解:原式=2﹣=,故答案为:【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2017•德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.(4分)(2017•德州)方程3x(x﹣1)=2(x﹣1)的解为x=1或x=.【分析】移项后分解因式得到(x﹣1)(3x﹣2)=0,推出方程x﹣1=0,3x﹣2=0,求出方程的解即可.【解答】解:3x(x﹣1)=2(x﹣1),移项得:3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,∴x﹣1=0,3x﹣2=0,解方程得:x1=1,x2=.故答案为:x=1或x=.【点评】本题主要考查对解一元一次方程,等式的性质,解一元二次方程等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.16.(4分)(2017•德州)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.【分析】先画树状图展示所有9种等可能的结果数,再找出淘淘与丽丽同学同时抽到物理的结果数,然后根据概率公式求解即可.【解答】解:画树状图为:因为共有9种等可能的结果数,其中淘淘与丽丽同学同时抽到物理物的结果数为1,所以他们两人都抽到物理实验的概率是.故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.(4分)(2017•德州)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.【分析】把透光部分看作是两个直角三角形与四个45°的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果.【解答】解:设⊙O与矩形ABCD的另一个交点为M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=1,=+2××1×1=+1,∴S透明区域过O作ON⊥AD于N,∴ON=FG=,∴AB=2ON=2×=,=2×=2,∴S矩形∴==.故答案为:.【点评】本题考查了矩形的性质、扇形的面积、直角三角形的面积,将透光部分化分为几个熟知图形的面积是关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)(2017•德州)先化简,再求值:÷﹣3,其中a=.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣3==a﹣3,当a=时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)(2017•德州)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.【分析】(1)根据C的人数除以C所占的百分比,可得答案;(2)根据人数比抽查人数,所占的百分比乘以抽查人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)从C可看出5÷0.1=50人,答:次被调查的学生有50人;(2)m==0.2,n=0.2×50=10,p=0.4×50=20,,(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(8分)(2017•德州)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴=,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x•3x,解得:x=,即AE=.【点评】本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解此题的关键.21.(10分)(2017•德州)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)【分析】(1)如图作AD⊥BC于D.则AD=10m,求出CD、BD即可解决问题.(2)求出汽车的速度,即可解决问题,注意统一单位;【解答】解:(1)如图作AD⊥BC于D.则AD=10m,在Rt△ACD中,∵∠C=45°,∴AD=CD=10m,在Rt△ABD中,∵∠B=30°,∴tan30°=,∴BD=AD=10m,∴BC=BD+DC=(10+10)m.(2)结论:这辆汽车超速.理由:∵BC=10+1027m,∴汽车速度==30m/s=108km/h,∵108>80,∴这辆汽车超速.【点评】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(10分)(2017•德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?【分析】(1)以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为y=a(x﹣1)2+h,代入(0,2)和(3,0)得出方程组,解方程组即可,(2)求出当x=1时,y=即可.【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为:y=a(x﹣1)2+h,代入(0,2)和(3,0)得:,解得:,∴抛物线的解析式为:y=﹣(x﹣1)2+;即y=﹣x2+x+2(0≤x≤3);(2)y=﹣x2+x+2(0≤x≤3),当x=1时,y=,即水柱的最大高度为m.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(10分)(2017•德州)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【解答】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【点评】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.24.(12分)(2017•德州)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为(k,1);(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得﹣1∴直线PA的解析式为y=x+﹣1请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB 的面积.【分析】(1)根据正、反比例函数图象的对称性结合点A的坐标即可得出点B 的坐标;(2)①设P(m,),根据点P、A的坐标利用待定系数法可求出直线PA的解析式,利用一次函数图象上点的坐标特征可求出点M的坐标,过点P作PH⊥x 轴于H,由点P的坐标可得出点H的坐标,进而即可求出MH的长度,同理可得出HN的长度,再根据等腰三角形的三线合一即可证出PM=PN;②根据①结合PH、MH、NH的长度,可得出△PAB为直角三角形,分k>1和0<k<1两种情况,利用分割图形求面积法即可求出△PAB的面积.【解答】解:(1)由正、反比例函数图象的对称性可知,点A、B关于原点O对。

【教学山东省德州市2017年中考试题(数学 解析版)

【教学山东省德州市2017年中考试题(数学 解析版)

一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×1064.如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A.B.C.D.5.下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣26.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:)A.平均数B.方差 C.众数 D.中位数7.下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣8.不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>49.公式L=L0+P表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P10.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=411.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D 四点共圆,其中正确的个数是()A.2 B.3 C.4 D.512.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729二、填空题(本大题共5小题,每小题4分,共20分)13.计算:﹣= .14.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是.15.方程3x(x﹣1)=2(x﹣1)的解为.16.淘淘和丽丽是非常要好的九年级学生,在5月分进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.17.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.三、解答题(本大题共7小题,共64分)18.先化简,再求值:÷﹣3,其中a=.19.随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.20.如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A 处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)22.随着新农村的建设和旧城的改造,我们的家园越越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.24.有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k ≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得∴直线PA的解析式为请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB的面积.答案一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】17:倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.3.2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:477万用科学记数法表示4.77×106,故选:C.4.如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】俯视图是从物体的上面看,所得到的图形.【解答】解:两个等直径圆柱构成如图所示的T型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:B.5.下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=8a3,故B不正确;(C)原式=a﹣2,故C不正确;(D)原式=a8,故D不正确;故选(A)6.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:)A.平均数B.方差 C.众数 D.中位数【考点】WA:统计量的选择;VA:统计表.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.7.下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣【考点】F5:一次函数的性质;G4:反比例函数的性质;G6:反比例函数图象上点的坐标特征;H3:二次函数的性质.【分析】A、由k=﹣3可得知y随x值的增大而减小;B、由k=2可得知y随x值的增大而增大;C、由a=﹣2可得知:当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而减小;D、由k=﹣1可得知:当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大.此题得解.【解答】解:A、y=﹣3x+2中k=﹣3,∴y随x值的增大而减小,∴A选项符合题意;[xxk]B、y=2x+1中k=2,∴y随x值的增大而增大,∴B选项不符合题意;C、y=﹣2x2+1中a=﹣2,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而减小,∴C选项不符合题意;D、y=﹣中k=﹣1,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大,∴D选项不符合题意.故选A.8.不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>4【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+9≥3,得:x≥﹣3,解不等式>x﹣1,得:x<4,∴不等式组的解集为﹣3≤x<4,故选:B.9.公式L=L0+P表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【考点】FH:一次函数的应用.【分析】A和B中,L0=10,表示弹簧短;A和C中,=0.5,表示弹簧硬,由此即可得出结论.【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选A.10.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=4【考点】B6:由实际问题抽象出分式方程.【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选D.11.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2 B.3 C.4 D.5【考点】@4:四点共圆.【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM2=a2+b2;故④正确;⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,∴S四边形AMFN=AM2=a2+b2;故④正确;⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠ABP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选D.12.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729【考点】:三角形中位线定理;38:规律型:图形的变化类.【分析】根据题意找出图形的变化规律,根据规律计算即可.【解答】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,故选:C.二、填空题(本大题共5小题,每小题4分,共20分)13.计算:﹣= .【考点】78:二次根式的加减法.【分析】原式化简后,合并即可得到结果.【解答】解:原式=2﹣=,故答案为:14.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.【考点】N3:作图—复杂作图;J9:平行线的判定.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.15.方程3x(x﹣1)=2(x﹣1)的解为1或.【考点】A8:解一元二次方程﹣因式分解法;83:等式的性质;86:解一元一次方程.【分析】移项后分解因式得到(x﹣1)(3x﹣2)=0,推出方程x﹣1=0,3x﹣2=0,求出方程的解即可.【解答】解:3x(x﹣1)=2(x﹣1),移项得:3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,∴x﹣1=0,3x﹣2=0,解方程得:x1=1,x2=.故答案为:1或.16.淘淘和丽丽是非常要好的九年级学生,在5月分进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.【考点】6:列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再找出淘淘与丽丽同学同时抽到物理的结果数,然后根据概率公式求解即可.【解答】解:画树状图为:因为共有9种等可能的结果数,其中淘淘与丽丽同学同时抽到物理物的结果数为1,所以他们两人都抽到物理实验的概率是.故答案为:.17.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.【考点】MO:扇形面积的计算.【分析】把透光部分看作是两个直角三角形与四个45°的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果.【解答】解:设⊙O与矩形ABCD的另一个交点为M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=1,∴S透明区域=+2××1×1=+1,过O作ON⊥AD于N,∴ON=FG=,∴AB=2ON=2×=,∴S矩形=2×=2,∴==.故答案为:.三、解答题(本大题共7小题,共64分)18.先化简,再求值:÷﹣3,其中a=.【考点】6D:分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣3==a﹣3,当a=时,原式=.19.随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B .学习;C .购物;D .游戏;E .其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):(1)这次被调查的学生有多少人?(2)求表中m ,n ,p 的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.【考点】VC :条形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据C 的人数除以C 所占的百分比,可得答案;(2)根据人数比抽查人数,所占的百分比乘以抽查人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)从C 可看出5÷0.1=50人,答:次被调查的学生有50人;(2)m==0.2,n=0.2×50=10,p=0.4×50=20,,(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.20.如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质.【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴=,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x•3x,解得:x=,即AE=.21.如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A 处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)【考点】T8:解直角三角形的应用.【分析】(1)如图作AD⊥BC于D.则AD=10m,汽车CD、BD即可解决问题.(2)汽车汽车的速度,即可解决问题,注意统一单位;【解答】解:(1)如图作AD⊥BC于D.则AD=10m,在Rt△ACD中,∵∠C=45°,∴AD=CD=10m,在Rt△ABD中,∵∠B=30°,∴tan30°=,∴BD=AD=10m,∴BC=BD+DC=(10+10)m.(2)结论:这辆汽车超速.理由:∵BC=10+1027m,∴汽车速度==30m/s=108km/h,∵108>80,∴这辆汽车超速.22.随着新农村的建设和旧城的改造,我们的家园越越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?【考点】HE:二次函数的应用.【分析】(1)以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为y=a(x﹣1)2+h,代入(0,2)和(3,0)得出方程组,解方程组即可,(2)求出当x=1时,y=即可.【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为:y=a(x﹣1)2+h,代入(0,2)和(3,0)得:,解得:,∴抛物线的解析式为:y=﹣(x﹣1)2+;即y=﹣x2+x+2(0≤x≤3);(2)y=﹣x2+x+2(0≤x≤3),当x=1时,y=,即水柱的最大高度为m.23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.【考点】LO:四边形综合题.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【解答】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;[](2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.24.有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为(k,1);(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得﹣1∴直线PA的解析式为y=x+﹣1请你把上面的解答过程补充完整,并完成剩余的证明.[]②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB的面积.【考点】GB:反比例函数综合题.【分析】(1)根据正、反比例函数图象的对称性结合点A的坐标即可得出点B的坐标;(2)①设P(m,),根据点P、A的坐标利用待定系数法可求出直线PA的解析式,利用一次函数图象上点的坐标特征可求出点M的坐标,过点P作PH⊥x轴于H,由点P的坐标可得出点H的坐标,进而即可求出MH的长度,同理可得出HN的长度,再根据等腰三角形的三线合一即可证出PM=PN;②根据①结合PH、MH、NH的长度,可得出△PAB为直角三角形,分k>1和0<k<1两种情况,利用分割图形求面积法即可求出△PAB的面积.【解答】解:(1)由正、反比例函数图象的对称性可知,点A、B关于原点O对称,∵A点的坐标为(﹣k,﹣1),∴B点的坐标为(k,1).故答案为:(k,1).(2)①证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得:,∴直线PA的解析式为y=x+﹣1.当y=0时,x=m﹣k,∴M点的坐标为(m﹣k,0).过点P作PH⊥x轴于H,如图1所示,∵P点坐标为(m,),∴H点的坐标为(m,0),∴MH=x H﹣x M=m﹣(m﹣k)=k.同理可得:HN=k.∴MH=HN,[xxk]∴PM=PN.故答案为:;y=x+﹣1.②由①可知,在△PMN中,PM=PN,∴△PMN为等腰三角形,且MH=HN=k.当P点坐标为(1,k)时,PH=k,∴MH=HN=PH,∴∠PMH=∠MPH=45°,∠PNH=∠NPH=45°,∴∠MPN=90°,即∠APB=90°,∴△PAB为直角三角形.当k>1时,如图1,S△PAB=S△PMN﹣S△OBN+S△OAM,=MN•PH﹣ON•y B+OM•|y A|,=×2k×k﹣(k+1)×1+(k﹣1)×1,=k2﹣1;当0<k<1时,如图2,S△PAB=S△OBN﹣S△PMN+S△OAM,=ON•y B﹣k2+OM•|y A|,=(k+1)×1﹣k2+(1﹣k)×1,=1﹣k2.。

2017年山东省德州市中考数学试卷

2017年山东省德州市中考数学试卷

2017年山东省德州市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)﹣2的倒数是()A .﹣B .C.﹣2 D.22.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.(3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×1064.(3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A .B .C .D .5.(3分)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣26.(3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数7.(3分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣8.(3分)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>49.(3分)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P10.(3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=411.(3分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG 边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结=a2+b2;论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN⑤A,M,P,D四点共圆,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)计算:﹣=.14.(4分)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是.15.(4分)方程3x(x﹣1)=2(x﹣1)的解为.16.(4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.17.(4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)先化简,再求值:÷﹣3,其中a=.19.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.20.(8分)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(10分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)22.(10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?23.(10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B 点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.24.(12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得∴直线PA的解析式为请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB 的面积.2017年山东省德州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确答案选出来,每小题选对得3分,选错、不选、或选出的答案超过一个均记零分)1.(3分)(2017•德州)﹣2的倒数是()A.﹣ B.C.﹣2 D.2【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2017•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•德州)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列,477万用科学记数法表示正确的是()A.4.77×105B.47.7×105C.4.77×106D.0.477×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:477万用科学记数法表示4.77×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•德州)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形.【解答】解:两个等直径圆柱构成如图所示的T型管道的俯视图是矩形和圆的组合图,且圆位于矩形的中心位置,故选:B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•德州)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3•a﹣5=a﹣15D.a3÷a﹣5=a﹣2【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=8a3,故B不正确;(C)原式=a﹣2,故C不正确;(D)原式=a8,故D不正确;故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.(3分)(2017•德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A .平均数B.方差C.众数D.中位数【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.(3分)(2017•德州)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣【分析】A、由k=﹣3可得知y随x值的增大而减小;B、由k=2可得知y随x值的增大而增大;C、由a=2可得知:当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大;D、由k=﹣1可得知:当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大.此题得解.【解答】解:A、y=﹣3x+2中k=﹣3,∴y随x值的增大而减小,∴A选项符合题意;B、y=2x+1中k=2,∴y随x值的增大而增大,∴B选项不符合题意;C、y=2x2+1中a=2,∴当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大,∴C选项不符合题意;D、y=﹣中k=﹣1,∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大,∴D选项不符合题意.故选A.【点评】本题考查了一次函数的性质、二次函数的性质以及反比例函数的性质,根据一次(二次、反比例)函数的性质,逐一分析四个选项中y与x之间的增减性是解题的关键.8.(3分)(2017•德州)不等式组的解集是()A.x≥﹣3 B.﹣3≤x<4 C.﹣3≤x<2 D.x>4【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+9≥3,得:x≥﹣3,解不等式>x﹣1,得:x<4,∴不等式组的解集为﹣3≤x<4,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)(2017•德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论.【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选A.【点评】本题考查了一次函数的应用,比较L0和K的值,找出短而硬的弹簧是解题的关键.10.(3分)(2017•德州)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=4【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选D.【点评】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.(3分)(2017•德州)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()AMFNA.2 B.3 C.4 D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是=AM2=a2+b2;故④正确;正方形,于是得到S四边形AMFN⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,=AM2=a2+b2;故④正确;∴S四边形AMFN⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠ABP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选D.【点评】本题考查了四点共圆,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质旋转的性质,勾股定理,正确的理解题意是解题的关键.12.(3分)(2017•德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121 B.362 C.364 D.729【分析】根据题意找出图形的变化规律,根据规律计算即可.【解答】解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,故选:C.【点评】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.二、填空题(本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分)13.(4分)(2017•德州)计算:﹣=.【分析】原式化简后,合并即可得到结果.【解答】解:原式=2﹣=,故答案为:【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2017•德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是同位角相等,两直线平行.【分析】过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.【解答】解:由图形得,有两个相等的同位角存在,所以依据:同位角相等,两直线平行,即可得到所得的直线与已知直线平行.故答案为:同位角相等,两直线平行.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.(4分)(2017•德州)方程3x(x﹣1)=2(x﹣1)的解为x=1或x=.【分析】移项后分解因式得到(x﹣1)(3x﹣2)=0,推出方程x﹣1=0,3x﹣2=0,求出方程的解即可.【解答】解:3x(x﹣1)=2(x﹣1),移项得:3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,∴x﹣1=0,3x﹣2=0,解方程得:x1=1,x2=.故答案为:x=1或x=.【点评】本题主要考查对解一元一次方程,等式的性质,解一元二次方程等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.16.(4分)(2017•德州)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.【分析】先画树状图展示所有9种等可能的结果数,再找出淘淘与丽丽同学同时抽到物理的结果数,然后根据概率公式求解即可.【解答】解:画树状图为:因为共有9种等可能的结果数,其中淘淘与丽丽同学同时抽到物理物的结果数为1,所以他们两人都抽到物理实验的概率是.故答案为:.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.(4分)(2017•德州)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.【分析】把透光部分看作是两个直角三角形与四个45°的扇形的组合体,其和就是透光的面积,再计算矩形的面积,相比可得结果.【解答】解:设⊙O与矩形ABCD的另一个交点为M,连接OM、OG,则M、O、E共线,由题意得:∠MOG=∠EOF=45°,∴∠FOG=90°,且OF=OG=1,=+2××1×1=+1,∴S透明区域过O作ON⊥AD于N,∴ON=FG=,∴AB=2ON=2×=,=2×=2,∴S矩形∴==.故答案为:.【点评】本题考查了矩形的性质、扇形的面积、直角三角形的面积,将透光部分化分为几个熟知图形的面积是关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)(2017•德州)先化简,再求值:÷﹣3,其中a=.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣3==a﹣3,当a=时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)(2017•德州)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.【分析】(1)根据C的人数除以C所占的百分比,可得答案;(2)根据人数比抽查人数,所占的百分比乘以抽查人数,可得答案;(3)根据样本估计总体,可得答案.【解答】解:(1)从C可看出5÷0.1=50人,答:次被调查的学生有50人;(2)m==0.2,n=0.2×50=10,p=0.4×50=20,,(3)800×(0.1+0.4)=800×0.5=400人,答:全校学生中利用手机购物或玩游戏的共有400人,可利用手机学习.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(8分)(2017•德州)如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.【分析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.【解答】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)解:由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴=,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=6,∴62=2x•3x,解得:x=,即AE=.【点评】本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解此题的关键.21.(10分)(2017•德州)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9秒,已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:≈1.7,≈1.4)【分析】(1)如图作AD⊥BC于D.则AD=10m,求出CD、BD即可解决问题.(2)求出汽车的速度,即可解决问题,注意统一单位;【解答】解:(1)如图作AD⊥BC于D.则AD=10m,在Rt△ACD中,∵∠C=45°,∴AD=CD=10m,在Rt△ABD中,∵∠B=30°,∴tan30°=,∴BD=AD=10m,∴BC=BD+DC=(10+10)m.(2)结论:这辆汽车超速.理由:∵BC=10+1027m,∴汽车速度==30m/s=108km/h,∵108>80,∴这辆汽车超速.【点评】本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(10分)(2017•德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度的多少?【分析】(1)以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为y=a(x﹣1)2+h,代入(0,2)和(3,0)得出方程组,解方程组即可,(2)求出当x=1时,y=即可.【解答】解:(1)如图所示:以水管与地面交点为原点,原点与水柱落地点所在直线为x轴,水管所在直线为y轴,建立平面直角坐标系,设抛物线的解析式为:y=a(x﹣1)2+h,代入(0,2)和(3,0)得:,解得:,∴抛物线的解析式为:y=﹣(x﹣1)2+;即y=﹣x2+x+2(0≤x≤3);(2)y=﹣x2+x+2(0≤x≤3),当x=1时,y=,即水柱的最大高度为m.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(10分)(2017•德州)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.【解答】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)解:①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE==4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=cm,∴菱形BFEP的边长为cm;②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【点评】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.24.(12分)(2017•德州)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对函数y=x与y=,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y=x与y=图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为(k,1);(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得﹣1∴直线PA的解析式为y=x+﹣1请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB 的面积.【分析】(1)根据正、反比例函数图象的对称性结合点A的坐标即可得出点B 的坐标;(2)①设P(m,),根据点P、A的坐标利用待定系数法可求出直线PA的解析式,利用一次函数图象上点的坐标特征可求出点M的坐标,过点P作PH⊥x 轴于H,由点P的坐标可得出点H的坐标,进而即可求出MH的长度,同理可得出HN的长度,再根据等腰三角形的三线合一即可证出PM=PN;②根据①结合PH、MH、NH的长度,可得出△PAB为直角三角形,分k>1和0<k<1两种情况,利用分割图形求面积法即可求出△PAB的面积.【解答】解:(1)由正、反比例函数图象的对称性可知,点A、B关于原点O对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省德州市中考数学三模试卷一、选择题(共18小题,每小题2分,满分36分)1.(2分)下列运算,错误的是()A.(a2)3=a6B.(x+y)2=x2+y2C.(﹣1)0=1 D.61200=6.12×1042.(2分)矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是()A.60πB.56πC.32πD.24π3.(2分)下列函数中,自变量x的取值范围为x≥3的是()A.y=B.y=C.y=D.y=4.(2分)已知反比例函数y=的图象过一、三象限,则一次函数y=kx+k的图象经过()A.一、二、三象限 B.二、三、四象限 C.一、二、四象限 D.一、三、四象限5.(2分)不等式组的解集为()A.x<1 B.x>2 C.x<1或x>2 D.1<x<26.(2分)已知a>b,则下列不等式中正确的是()A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣37.(2分)下列运算中,正确的是()A.(x2)3=x5B.x3+x3=x6C.x3•x=x4D.x6÷x3=x28.(2分)若数据80,82,79,69,74,78,81,x的众数是82,则()A.x=79 B.x=80 C.x=81 D.x=829.(2分)已知某5个数的和是a,另6个数的和是b,则这11个数的平均数是()A. B. C.D.10.(2分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限11.(2分)下列方程中,无实数根的方程是()A.x2+1=0 B.x2+x=0 C.x2+x﹣1=0 D.x2﹣x=012.(2分)如图,若DE是△ABC的中位线,△ABC的周长为1,则△ADE的周长为()A.1 B.2 C.D.13.(2分)如图,在等腰梯形ABCD中,AB∥DC,AC和BD相交于点O,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对14.(2分)计算:tan45°+sin30°=()A.2 B.C.D.15.(2分)在△ABC中,∠C=90°,sinA=,则tanB=()A.1 B.C.D.16.(2分)底面半径为5,高为10的圆柱的侧面积为()A.50πB.100πC.125πD.250π17.(2分)如图,正方形ABCD内接于圆O,点P在上.则∠BPC=()A.35°B.40°C.45°D.50°18.(2分)若两圆有且只有两条公切线,则这两圆的位置关系是()A.外离B.外切C.相交D.内切二、填空题(共7小题,每小题2分,满分14分)19.(2分)0.000018用科学记数法表示为20.(2分)如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出个.21.(2分)用换元法解方程﹣2•+1=0时应设y=.22.(2分)化简得.23.(2分)半径为6cm,圆心角为60°的扇形面积为cm2(结果保留π).24.(2分)把x2﹣4x+1化为a(x+h)2+k(其中h、k是常数)的形式是.25.(2分)抛物线y=4x2﹣3的顶点坐标是.三、解答题(共1小题,满分6分)26.(6分)如图,已知线段a,b.求作:(1)Rt△ABC,使∠ACB=90°,BC=a,AC=b;(2)△ABC的角平分线CD和经过点A,C,D的⊙O.(作CD和⊙O不要求写作法,但要保留作图痕迹)四、解答题(共4小题,满分24分)27.(5分)计算()﹣2+()0×|﹣1|28.(6分)如图,∠ACB=90°,AB=13,AC=12,∠BCM=∠BAC,求sin∠BAC和点B到直线MC的距离.29.(6分)如图,已知正方形的边长是4cm,求它的内切圆与外接圆组成的圆环的面积.(答案保留π)30.(7分)某车间一月份生产零件7000个,三月份生产零件8470个,该车间这两个月生产零件平均每月增长的百分率是多少?五、解答题(共1小题,满分10分)31.(10分)解方程六、解答题(共1小题,满分10分)32.(10分)如图,已知AB是⊙O的直径,点D在弦AC上,DE⊥AB于E.求证:AD•AC=AE•AB.七、解答题(共4小题,满分28分)33.(6分)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1).求这个二次函数的解析式.34.(6分)某部队在灯塔A的周围进行爆炸作业,A的周围3千米内的水域为危险区域,有一渔船误入离A只有2千米的B处,为了尽快驶离危险区域,该船应沿什么方向航行?为什么?35.(8分)如图,等边△ABC的面积为S,⊙O是它的外接圆,点P是的中点.(1)试判断过点C所作⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线CP与AB相交于点D,过点B作BE⊥CD,垂足为E,证明BE是⊙O 的切线,并求△BDE的面积.36.(8分)如图:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.(1)试确定当CP=3时,点E的位置;(2)若设CP=x,BE=y,试写出y关于自变量x的函数关系式.2017年山东省德州市中考数学三模试卷参考答案与试题解析一、选择题(共18小题,每小题2分,满分36分)1.(2分)下列运算,错误的是()A.(a2)3=a6B.(x+y)2=x2+y2C.(﹣1)0=1 D.61200=6.12×104【解答】解:A、(a2)3=a6正确,故此选项不合题意;B、(x+y)2=x2+y2+2xy≠x2+y2,故此选项符合题意;C、(﹣1)0=1正确,故此选项不合题意;D、61200=6.12×104正确,故此选项不合题意;故选:B.2.(2分)矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是()A.60πB.56πC.32πD.24π【解答】解:∵以直线AB为轴旋转一周得到的圆柱体,得出底面半径为4cm,母线长为3cm,∴圆柱侧面积=2π•AB•BC=2π•3×4=24π(cm2),∴底面积=π•BC2=π•42=16π(cm2),∴圆柱的表面积=24π+2×16π=56π(cm2).故选B.3.(2分)下列函数中,自变量x的取值范围为x≥3的是()A.y=B.y=C.y=D.y=【解答】解:A、由x+3≥0得,x≥﹣3,故本选项不符合题意;B、由x﹣3≥0得,x≥3,故本选项符合题意;C、由x+3≠0得,x≠﹣3,故本选项不符合题意;D、由x﹣3≠0得,x≠3,故本选项不符合题意.故选B.4.(2分)已知反比例函数y=的图象过一、三象限,则一次函数y=kx+k的图象经过()A.一、二、三象限 B.二、三、四象限 C.一、二、四象限 D.一、三、四象限【解答】解:∵反比例函数的图象过一、三象限,∴k>0,∴一次函数y=kx+k中,k>0,∴此函数的图象过一、二、三象限.故选A.5.(2分)不等式组的解集为()A.x<1 B.x>2 C.x<1或x>2 D.1<x<2【解答】解:由①得,x<2;由②得,x>1;所以不等式组的解集为1<x<2.故选D.6.(2分)已知a>b,则下列不等式中正确的是()A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣3【解答】解:A、不等式两边都乘以﹣3,不等号的方向改变,﹣3a<﹣3b,故A 错误;B、不等式两边都除以﹣3,不等号的方向改变,﹣<﹣,故B错误;C、同一个数减去一个大数小于减去一个小数,3﹣a<3﹣b,故C错误;D、不等式两边都减3,不等号的方向不变,故D正确.故选:D.7.(2分)下列运算中,正确的是()A.(x2)3=x5B.x3+x3=x6C.x3•x=x4D.x6÷x3=x2【解答】解:A、应为(x2)3=x6,故选项错误;B、应为x3+x3=2x3,故选项错误;C、x3•x=x4,正确;D、应为x6÷x3=x3,故选项错误.故选C.8.(2分)若数据80,82,79,69,74,78,81,x的众数是82,则()A.x=79 B.x=80 C.x=81 D.x=82【解答】解:∵在这一组数据中除了数据x以外,其余每个数据都只出现了一次,如果众数是82,那么82出现的次数应该超过一次,∴x=82.故选D.9.(2分)已知某5个数的和是a,另6个数的和是b,则这11个数的平均数是()A. B. C.D.【解答】解:∵某5个数的和是a,另6个数的和是b,∴这11个数的平均数是.故选B.10.(2分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:根据题意得,解得:,∵点(﹣,)在第二象限,∴函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,故选B.11.(2分)下列方程中,无实数根的方程是()A.x2+1=0 B.x2+x=0 C.x2+x﹣1=0 D.x2﹣x=0【解答】解:A、△=b2﹣4ac=﹣4<0,方程无实数根;B、△=b2﹣4ac=1>0,方程有两个不相等的实数根;C、△=b2﹣4ac=1﹣4×(﹣1)=5>0,方程有两个不相等的实数根;D、△=b2﹣4ac=(﹣1)2=1>0,方程有两个不相等的实数根;方程无实数根的是A;故选A.12.(2分)如图,若DE是△ABC的中位线,△ABC的周长为1,则△ADE的周长为()A.1 B.2 C.D.【解答】解:∵DE是△ABC的中位线,△ABC的周长为1,∴DE=,AD=,AE=∴△ADE的周长为.故选C.13.(2分)如图,在等腰梯形ABCD中,AB∥DC,AC和BD相交于点O,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对【解答】解:∵四边形ABCD为等腰梯形,∴AD=BC、BD=AC,在△ABD和△BAC中∴△ABD≌△BAC(SSS),∴∠DAO=∠CBO,同理可证得△ACD≌△BDC,在△AOD和△BOC中∴△AOD≌△BOC(AAS),∴全等三角形共有3对,故选C.14.(2分)计算:tan45°+sin30°=()A.2 B.C.D.【解答】解:∵tan45°=1,sin30°=,∴tan45°+sin30°=1+=.故选C.15.(2分)在△ABC中,∠C=90°,sinA=,则tanB=()A.1 B.C.D.【解答】解:由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanB==.故选D.16.(2分)底面半径为5,高为10的圆柱的侧面积为()A.50πB.100πC.125πD.250π【解答】解:圆柱的侧面积=2π×5×10=100π,故选B.17.(2分)如图,正方形ABCD内接于圆O,点P在上.则∠BPC=()A.35°B.40°C.45°D.50°【解答】解:连接OB、OC;∵四边形ABCD是正方形,且内接于⊙O,∴∠BOC=90°;∴∠BPC=∠BOC=45°;故选C.18.(2分)若两圆有且只有两条公切线,则这两圆的位置关系是()A.外离B.外切C.相交D.内切【解答】解:根据两圆相交时才有2条公切线.故选C.二、填空题(共7小题,每小题2分,满分14分)19.(2分)0.000018用科学记数法表示为 1.8×10﹣5【解答】解:0.000 018=1.8×10﹣5.20.(2分)如图,以A,B两点为其中两个顶点作位置不同的等边三角形,最多可以作出2个.【解答】解:最多可作2个位置不同的等边三角形,如图.21.(2分)用换元法解方程﹣2•+1=0时应设y=.【解答】解:设y=,则原方程变为y﹣+1=0,故答案为:.22.(2分)化简得.【解答】解:原式==.故答案为.23.(2分)半径为6cm,圆心角为60°的扇形面积为6πcm2(结果保留π).【解答】解:=6πcm2.24.(2分)把x2﹣4x+1化为a(x+h)2+k(其中h、k是常数)的形式是(x ﹣2)2﹣3.【解答】解:x2﹣4x+1=x2﹣4x+4﹣3=(x﹣2)2﹣3,故答案为:(x﹣2)2﹣3.25.(2分)抛物线y=4x2﹣3的顶点坐标是(0,﹣3).【解答】解:∵y=4x2﹣3=4(x﹣0)2﹣3,∴抛物线顶点坐标为(0,﹣3).三、解答题(共1小题,满分6分)26.(6分)如图,已知线段a,b.求作:(1)Rt△ABC,使∠ACB=90°,BC=a,AC=b;(2)△ABC的角平分线CD和经过点A,C,D的⊙O.(作CD和⊙O不要求写作法,但要保留作图痕迹)【解答】解:(1)作法:①作直线m⊥l,垂足为C;②分别截取CB=a,CA=b;③连接AB,则△ABC为所求作的三角形;说明:正确写出作法得(2分),正确作出三角形得(1分),共(3分);(2)正确作出CD得(1分),正确作出⊙O得(2分).四、解答题(共4小题,满分24分)27.(5分)计算()﹣2+()0×|﹣1|【解答】解:原式=4+1×=4.28.(6分)如图,∠ACB=90°,AB=13,AC=12,∠BCM=∠BAC,求sin∠BAC和点B到直线MC的距离.【解答】解:如图:在Rt△ABC中,BC===5 (1分)sin∠BAC==(3分)作BE⊥MC,垂足是E,BE=BC•sin∠BCE (4分)∴BE=5×=(6分)29.(6分)如图,已知正方形的边长是4cm,求它的内切圆与外接圆组成的圆环的面积.(答案保留π)【解答】解:设正方形外接圆,内切圆的半径分别为R,r,如图,连接OE、OA,则OA2﹣OE2=AE2,即R2﹣r2=()2=()2=4,S圆环=S大圆﹣S小圆=πR2﹣πr2,(2分)=π(R2﹣r2),(3分)∵R2﹣r2=()2=4,(5分)∴S=4π(cm2).(6分)30.(7分)某车间一月份生产零件7000个,三月份生产零件8470个,该车间这两个月生产零件平均每月增长的百分率是多少?【解答】解:设平均每月增长的百分率为x,根据题意,得7000(1+x)2=8470,解得x1=0.1=10%,x2=﹣2.1(不合题意,舍去)答:平均每月增长的百分率为10%.五、解答题(共1小题,满分10分)31.(10分)解方程【解答】解:去分母,得(x﹣2)(x+1)+(x+3)(x﹣1)+2=x2﹣1,(3分)整理后,得x2+x﹣2=0,(5分)解这个方程,得x1=﹣2,x2=1,(7分)检验:把x=﹣2代入x2﹣1,它等于3≠0,所以x=﹣2是原方程的根;把x=1代入x2﹣1,它等于0,所以x=1是增根.∴原方程的根是x=﹣2.六、解答题(共1小题,满分10分)32.(10分)如图,已知AB是⊙O的直径,点D在弦AC上,DE⊥AB于E.求证:AD•AC=AE•AB.【解答】证明:连接BC,(2分)∵AB是⊙O的直径,∴∠ACB=90°,(4分)∵DE⊥AB,∴∠AED=90°,又∵∠DAE=∠BAC,∴△DAE∽△BAC,(8分)∴,(9分)∴AD•AC=AE•AB.(10分)七、解答题(共4小题,满分28分)33.(6分)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1).求这个二次函数的解析式.【解答】解:设所求函数的解析式为y=ax2+bx+c,(1分)把(﹣1,﹣5),(0,﹣4),(1,1)分别代入,得:(3分),解得;(5分)∴所求的函数的解析式为y=2x2+3x﹣4.(6分)34.(6分)某部队在灯塔A的周围进行爆炸作业,A的周围3千米内的水域为危险区域,有一渔船误入离A只有2千米的B处,为了尽快驶离危险区域,该船应沿什么方向航行?为什么?【解答】解:沿射线AB的方向航行,因为能最快脱离危险区域.证明:设射线AB与⊙A相交于点C.在⊙A上任取一点D(不包括C关于A的对称点),连接AD,BD(5分)在△ABD中,AB+BD>AD.(6分)∵AD=AC=AB+BC,∴AB+BD>AB+BC,∴BD>BC.35.(8分)如图,等边△ABC的面积为S,⊙O是它的外接圆,点P是的中点.(1)试判断过点C所作⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线CP与AB相交于点D,过点B作BE⊥CD,垂足为E,证明BE是⊙O的切线,并求△BDE的面积.【解答】解:(1)CF是⊙O的切线,(如图)CF与直线AB不相交.(1分)证明:∵CF是⊙O的切线,∴∠BCF=∠A,(3分)∵△ABC是等边三角形,∴∠ABC=∠A,∴∠BCF=∠ABC,∴CF∥AB,∴CF与直线AB不相交.(4分)(2)连接BO并延长交AC于H.∵⊙O是等边△ABC的外接圆,∴∠BHC=90°,(5分)∵点P是BC的中点,∴∠BCE=30°.(6分)又∵∠ACB=60°,∴∠HCE=90°.∵∠BEC=90°,∴∠HBE=90°.∴BE是⊙O的切线.(8分)在△ACD中,∵∠ACD=90°,∠A=60°,∴∠D=30°,(9分)∴BD=BC,∴DE=CE,∴S=S△BCE,(10分)△BDE在矩形BHCE中,S△BCE=S△BCH=S,(11分)=S,∴S△BCE=S.(12分)∴S△BDE36.(8分)如图:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.(1)试确定当CP=3时,点E的位置;(2)若设CP=x,BE=y,试写出y关于自变量x的函数关系式.【解答】解:(1)作DF⊥BC,F为垂足.当CP=3时,∵四边形ADP(F)B是矩形,则CF=3,∴点P与F重合.又BF⊥FD,∴此时点E与点B重合;(2)当点P在BF上时,∵∠EPB+∠DPF=90°,∠DPF+∠PDF=90°,∴∠EPB=∠PDF,又∠B=∠PFD=90°,∴△PEB∽△DPF,∴,∴,∴y==﹣;当点P在CF上时,同理可求得y=.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档