【中考模拟】陕西省西安市西北2016年中考数学四模试卷(含解析)

合集下载

陕西省西安市碑林区2016年中考数学四模试卷(含解析)

陕西省西安市碑林区2016年中考数学四模试卷(含解析)

2016年陕西省西安市碑林区中考数学四模试卷一、选择题1.在1、﹣、、四个实数中,绝对值最小的数是()A.1 B.C.D.2.一个正方体的平面展开图如图,每一个面都有一个汉字,则在该正方体中和“实”字相对的汉字是()A.我B.的C.梦D.想3.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°4.已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1 B.m>1 C.m<2 D.m>05.已知关于x的方程x2﹣3mx+5m﹣2=0的一个根为x=2,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为()A.8 B.10 C.8或10 D.6或106.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC 的解析式为()A.y=﹣B.y=﹣x+ C.y=﹣D.y=﹣2x+7.如图,如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A.64 B.60 C.56 D.328.如图所示,将△ABC的三边分别扩大一倍得到△A1B1C1,(顶点均在格点上),它们是以P 点为位似中心的位似图形,则P点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣3)C.(﹣4,﹣4)D.(﹣3,﹣4)9.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A. B.7 C.4+3D.3+410.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,其中错误的结论为()A.方程ax2+bx+c=0的根为﹣1 B.b2﹣4ac>0C.a=c﹣2 D.a+b+c<0二、填空题11.已知x2+x﹣1=0,则代数式x3+2x2+2016= .12.如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是.13.如图,正方形ABCD的边AD、CD上两个动点E,F,且满足AF=BE,BE交AF于点H.若正方形的边长为4,线段DH最大值为x,最小值为y,则﹣y的值是.三、填空题(共2小题,每小题3分,满分6分)14.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是.15.在一次数学课外实践活动中,小明想测树AB的高度.若小明在树底端B在同一水平面上的C点测得树的顶端A的仰角为24°,BC=37.2m,则树高AB约m(用科学计算器计算,使结果精确到0.1).三、解答题16.计算:|﹣2|+(﹣)﹣3﹣tan60°﹣+(π﹣3.14).17.解分式方程:.18.如图,若将△ABC沿一条与BC边平行的直线折叠,使顶点A落在边BC上,请用尺规作出此条直线(保留作图痕迹).19.为活跃校园生活,某校开展了“我歌唱我快乐”海选比赛活动,抽取海选中部分参赛同学的成绩分别绘制成频数分布表和频数分布直方图(均不完整)如下:(1)请在图中补全频数分布直方图;(2)抽取的这部分参赛同学成绩的中位数落在哪个分数段?(3)如果该校参加人数1000人,请估计分数在95≤x<100段的人数约为多少?20.如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:(1)△ABF≌△DEA;(2)DF是∠EDC的平分线.21.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)22.荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下问题:(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式;(2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.23.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).记s=|x﹣y|.(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:当s<3时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?24.如图,四边形ABDC内接于⊙O,AB=AC,且AB∥CD、过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.(1)求证:四边形ABCE是平行四边形;(2)若AE=12,CD=10,求⊙O半径的长.25.如图,已知抛物线C1经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线C1的函数表达式.(2)抛物线C2与抛物线C1关于原点成中心对称,求抛物线C2的函数表达式.(3)P是抛物线C2上的第四象限内的动点,过点P作PM⊥x轴,垂足是M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.26.小明的数学探究小组进行了系列探究活动.类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA、DC,使四边形ABCD为邻等四边形;尝试体验:(2)如图2,邻等四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.解决应用:(3)如图3,邻等四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,BD=4.小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.2016年陕西省西安市碑林区交大附中中考数学四模试卷参考答案与试题解析一、选择题1.在1、﹣、、四个实数中,绝对值最小的数是()A.1 B.C.D.【考点】实数大小比较.【分析】先求出各数的绝对值,再比较出大小即可.【解答】解:|1|=1,|﹣|=,||=,||=,∵1>>>,∴绝对值最小的数是﹣.故选B.2.一个正方体的平面展开图如图,每一个面都有一个汉字,则在该正方体中和“实”字相对的汉字是()A.我B.的C.梦D.想【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“实”与“的”是相对面,“现”与“想”是相对面,“我”与“梦”是相对面.故选B.3.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【考点】平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.4.已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<1 B.m>1 C.m<2 D.m>0【考点】正比例函数的性质.【分析】据正比例函数的增减性可得出(m﹣1)的范围,继而可得出m的取值范围.【解答】解:根据题意,知:y随x的增大而减小,则m﹣1<0,即m<1.故选A.5.已知关于x的方程x2﹣3mx+5m﹣2=0的一个根为x=2,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为()A.8 B.10 C.8或10 D.6或10【考点】一元二次方程的解;三角形三边关系;等腰三角形的性质.【分析】把x=2代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x=2代入方程得4﹣6m+5m﹣2=0,解得m=2,则原方程为x2﹣6x+8=0,解得x1=2,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为2,则△ABC的周长为4+4+2=10;②当△ABC的腰为2,底边为4时,不能构成三角形.综上所述,该三角形的周长的10.故选:B.6.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC 的解析式为()A.y=﹣B.y=﹣x+ C.y=﹣D.y=﹣2x+【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】由点A(0,4)、B(3,0),可求得AB的长,然后由折叠的性质,求得OA′的长,且△A′OC∽△AOB,再由相似三角形的性质,求得OC的长,继而利用待定系数法求得直线BC的解析式.【解答】解:∵点A(0,4)、B(3,0),∴OA=4,OB=3,∴AB==5,由折叠的性质可得:A′B=A B=5,∠OA′C=∠OAB,∴OA′=A′B﹣OB=2,∵∠A′OC=∠AOB=90°,∴△A′OC∽△AOB,∴,即,解得:OC=,∴点C的坐标为:(0,),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+.故选C.7.如图,如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A.64 B.60 C.56 D.32【考点】规律型:图形的变化类.【分析】通过观察已知图形可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,以此类推可得:A6比图A2多出“树枝”4+8+16+32=60个,由此得出答案即可.【解答】解:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,A6比图A2多出“树枝”4+8+16+32=60个.故选:B.8.如图所示,将△ABC的三边分别扩大一倍得到△A1B1C1,(顶点均在格点上),它们是以P 点为位似中心的位似图形,则P点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣3)C.(﹣4,﹣4)D.(﹣3,﹣4)【考点】位似变换.【分析】作直线AA1、BB1,这两条直线的交点即为位似中心.【解答】解:由图中可知,点P的坐标为(﹣4,﹣3),故选A.9.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A. B.7 C.4+3D.3+4【考点】解直角三角形;圆周角定理.【分析】在Rt△CDB和Rt△CBE中,通过解直角三角形易求得BD、BE的长.过B作BF⊥DE于F,由圆周角定理知∠BCE=∠BDE,∠BED=∠BCD.根据这些角的三角函数值以及BD、BE的长,即可求得DF、EF的值,从而得到DE的长.【解答】解:过B作BF⊥DE于F.在Rt△CBD中,BC=10,cos∠BCD=,∴BD=8.在Rt△BCE中,BC=10,∠BCE=30°,∴BE=5.在Rt△BDF中,∠BDF=∠BCE=30°,BD=8,∴DF=BD•cos30°=4.在Rt△BEF中,∠BEF=∠BCD,即cos∠BEF=cos∠BCD=,BE=5,∴EF=BE•cos∠BEF=3.∴DE=DF+EF=3+4,故选D.10.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,其中错误的结论为()A.方程ax2+bx+c=0的根为﹣1 B.b2﹣4ac>0C.a=c﹣2 D.a+b+c<0【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据x=﹣1时,y≠0,所以方程ax2+bx+c=0的根为﹣1这种说法不正确,据此判断A.首先根据x=﹣,可得b=2a,所以顶点的纵坐标是=2,据此判断C.根据二次函数y=ax2+bc+c的图象与x轴有两个交点,可得△>0,即b2﹣4ac>0,据此判断B.根据二次函数y=ax2+bc+c的图象的对称轴是x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,可得与x轴的另一个交点A在点(0,0)和(1,0)之间,所以x=1时,y<0,据此判断D.【解答】解:∵x=﹣1时,y≠0,∴方程ax2+bx+c=0的根为﹣1这种说法不正确,∴结论A不正确;∵二次函数y=ax2+bc+c的图象与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴结论B正确;∵x=﹣,∴b=2a,∴顶点的纵坐标是=2,∴a=c﹣2,∴结论C正确;∵二次函数y=ax2+bc+c的图象的对称轴是x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a+b+c<0,∴结论D正确;∴不正确的结论为:A.故选:A.二、填空题11.已知x2+x﹣1=0,则代数式x3+2x2+2016= 2017 .【考点】因式分解的应用.【分析】先根据已知得:x2+x=1,再将原式变形并把x2+x=1整体代入即可.【解答】解:∵x2+x﹣1=0,∴x2+x=1,∴x3+2x2+2016,=x3+x2+x2+2016,=x(x2+x)+x2+2016,=x+x2+2016,=1+2016,=2017,故答案为:2017.12.如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是y2=.【考点】反比例函数与一次函数的交点问题.【分析】过A作AC⊥x轴于C,过B作BD⊥x轴于D,由于点A在反比例函数y1=上,设A(a,),求得点B的坐标代入反比例函数的解析式即可求出结果.【解答】解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1=上,∴设A(a,),∴OC=a,AC=,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△OBD,∴,∵A为OB的中点,∴=,∴BD=2AC=,OD=2OC=2a,∴B(2a,),设y2=,∴k=2a•=4,∴y2与x的函数表达式是:y2=.故答案为:y2=.13.如图,正方形ABCD的边AD、CD上两个动点E,F,且满足AF=BE,BE交AF于点H.若正方形的边长为4,线段DH最大值为x,最小值为y,则﹣y的值是4﹣2.【考点】正方形的性质;全等三角形的判定与性质.【分析】先证明△BAE≌△ADF,得出对应角相等∠ABE=∠DAF,再根据角的互余关系求出∠AHB=90°,根据直角三角形斜边上的中线等于斜边的一半,取AB的中点O,连接OH、OD,然后求出OH=AB=2,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小;当E与A重合、F与D重合时,DH最大,此时DH=AD=4,即可得出结果.【解答】解:取AB的中点O,连接OH、OD,如图所示:∵四边形ABCD是正方形,∴AB=DA,∠BAE=∠ADF=90°,在Rt△BAE和Rt△ADF中,,∴Rt△BAE≌Rt△ADF(SAS),∴∠ABE=∠DAF,∵∠DAF+∠BAF=90°∴∠ABE+∠BAF=90°∴∠AHB=90°,∴OH=AB=2,∵OD==2,当O、D、H三点重合时,在一条直线上时,DH长度最小,线段DH长度的最小值是:2﹣2;∴y=2﹣2,当E与A重合、F与D重合时,DH最大,此时DH=AD=,4,∴x=4,∴﹣y=2﹣2+2=4﹣2,故答案为:4﹣2.三、填空题(共2小题,每小题3分,满分6分)14.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是 2 .【考点】多边形内角与外角.【分析】先判断出多边形的边数,再求多边形的半径.【解答】解:设多边形的边数为n.因为正多边形内角和为(n﹣2)•180°,正多边形外角和为360°,根据题意得:(n﹣2)•180°=360°×2,n﹣2=2×2,n=6.故正多边形为6边形.边长为2的正六边形可以分成六个边长为2的正三角形,所以正多边形的半径等于2,故答案为:2.15.在一次数学课外实践活动中,小明想测树AB的高度.若小明在树底端B在同一水平面上的C点测得树的顶端A的仰角为24°,BC=37.2m,则树高AB约16.6 m(用科学计算器计算,使结果精确到0.1).【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意画出图形,构造Rt△ABC,根据正切的定义列出关系式,代入已知数据计算即可.【解答】解:如图所示,∠C=24°,BC=37.2m,∠ABC=90°,∵Rt△ABC中,tan∠ACB=,∴tan24°=,∴AB=tan24°×37.2≈16.6m,故答案为:16.6三、解答题16.计算:|﹣2|+(﹣)﹣3﹣tan60°﹣+(π﹣3.14).【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,负整数指数幂法则,算术平方根定义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣﹣8﹣﹣4+π﹣3.14=π﹣13.14﹣2.17.解分式方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣4﹣x2﹣2x=2x,解得:x=﹣1,经检验x=﹣1是分式方程的解.18.如图,若将△ABC沿一条与BC边平行的直线折叠,使顶点A落在边BC上,请用尺规作出此条直线(保留作图痕迹).【考点】作图﹣轴对称变换;线段垂直平分线的性质.【分析】先过点A作BC的垂线,垂足为D,再作线段AD的中垂线EF,则直线EF是所求作的直线.【解答】解:如图所示,直线EF即为所求.19.为活跃校园生活,某校开展了“我歌唱我快乐”海选比赛活动,抽取海选中部分参赛同学的成绩分别绘制成频数分布表和频数分布直方图(均不完整)如下:(1)请在图中补全频数分布直方图;(2)抽取的这部分参赛同学成绩的中位数落在哪个分数段?(3)如果该校参加人数1000人,请估计分数在95≤x<100段的人数约为多少?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据统计表中,频数与频率的比值相等,可得关于m、n的关系式;进而计算可得m、n的值;进一步补全直方图;(2)根据中位数的定义判断;(3)根据频数=数据总和×频率,列式计算即可求解.【解答】解:(1)根据统计表中,频数与频率的比值相等,即有==,解得:m=27,n=0.1;如图所示:(2)根据中位数的求法,先将数据按从小到大的顺序排列,读图可得:共60人,第30、31名都在85分~90分,故抽取的这部分参赛同学成绩的中位数落在85分~90分的分数段.(3)1000×0.1=100(人).答:分数在95≤x<100段的人数约为100人.20.如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:(1)△ABF≌△DEA;(2)DF是∠EDC的平分线.【考点】矩形的性质;全等三角形的判定与性质;角平分线的性质.【分析】(1)根据矩形性质得出∠B=90°,AD=BC,AD∥BC,推出∠DAE=∠AFB,求出AF=AD,根据AAS证出即可;(2)有全等推出DE=AB=DC,根据HL证△DEF≌△DCF,根据全等三角形的性质推出即可.【解答】证明:(1)∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠DEA=∠B=90°,∵AF=BC,∴AF=AD,在△DEA和△ABF中∵,∴△DEA≌△ABF(AAS);(2)证明:∵由(1)知△ABF≌△DEA,∴DE=AB,∵四边形ABCD是矩形,∴∠C=90°,DC=AB,∴DC=DE.∵∠C=∠DEF=90°∴在Rt△DEF和Rt△DCF中∴Rt△DEF≌Rt△DCF(HL)∴∠EDF=∠CDF,∴DF是∠EDC的平分线.21.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【考点】解直角三角形的应用.【分析】设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO和DO,再利用DC=DO﹣CO,得出x的值即可.【解答】解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=≈=13.5.因此,B处距离码头O大约13.5km.22.荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下问题:(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式;(2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.【考点】一次函数的应用.【分析】(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,则由(20﹣x﹣y)辆汽车装运青鱼,由20辆汽车的总运输量为120吨建立等式就可以求出结论;(2)根据建立不等装运每种鱼的车辆都不少于2辆,列出不等式组求出x的范围,设此次销售所获利润为w元,w=0.25x×8+0.3(﹣3x+20)×6+0.2(20﹣x+3x﹣20)×5=﹣1.4x+36,再利用一次函数的性质即可解答.【解答】解:(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,则由(20﹣x﹣y)辆汽车装运青鱼,由题意,得8x+6y+5(20﹣x﹣y)=120,∴y=﹣3x+20.答:y与x的函数关系式为y=﹣3x+20;(2),根据题意,得∴,解得:2≤x≤6,设此次销售所获利润为w元,w=0.25x×8+0.3(﹣3x+20)×6+0.2(20﹣x+3x﹣20)×5=﹣1.4x+36∵k=﹣1.4<0,∴w随x的增大而减小.∴当x=2时,w取最大值,最大值为:﹣1.4×2+36=33.2(万元).∴装运鲢鱼的车辆为2辆,装运草鱼的车辆为14辆,装运青鱼的车辆为4辆时获利最大,最大利润为33.2万元.23.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).记s=|x﹣y|.(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:当s<3时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?【考点】游戏公平性;列表法与树状图法.【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【解答】解:(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;解法一:画树状图法:解法二:列表法:(2)这个游戏不公平.如图,其中S <3的可能性为,意味着甲获胜的可能性为,同样乙获胜的可能性为,对甲有利.24.如图,四边形ABDC 内接于⊙O ,AB=AC ,且AB ∥CD 、过点A 作⊙O 的切线AE 与DC 的延长线交于点E ,AD 与BC 交于点F .(1)求证:四边形ABCE 是平行四边形;(2)若AE=12,CD=10,求⊙O 半径的长.【考点】切线的性质;平行四边形的判定与性质.【分析】(1)根据切线的性质证明∠EAC=∠ABC ,根据等腰三角形等边对等角的性质和等量代得到∠EAC=∠ACB ,从而根据内错角相等两直线平行的判定得到AE ∥BC ,结合已知AB ∥CD 即可判定四边形ABCD 是平行四边形;(2)根据切割线定理求得EC=8,根据对称性得AO 垂直平分BC ,再用勾股定理列式求解即可.【解答】(1)证明:∵AE 与⊙O 相切于点A ,∴∠EAC=∠ABC,∵AB=AC∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,∵AB∥CD,∴四边形ABCE是平行四边形;(2)解:如图,连接AO,交BC于点G,连接OC,∵AE是⊙O的切线,由切割线定理得,AE2=EC•DE,∵AE=12,CD=10,∴122=CE(CE+10),解得:CE=8,(已舍去负数),由(1)知,四边形ABCE是平行四边形,∴AC=AB=CE=8,BC=AE=12,又根据对称性和垂径定理,得AO垂直平分BC,∴CG=BC=6,在Rt△ACG中,AC=8,CG=6,∴AG==2,在Rt△OCG中,OC2﹣(OC﹣AG)2=CG2,∴OC2﹣(OC﹣2)2=36,∴OC=.∴⊙O半径的长为.25.如图,已知抛物线C1经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线C1的函数表达式.(2)抛物线C2与抛物线C1关于原点成中心对称,求抛物线C2的函数表达式.(3)P是抛物线C2上的第四象限内的动点,过点P作PM⊥x轴,垂足是M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线C1的解析式;(2)先确定出抛物线C1的顶点坐标,利用关于原点对称得出抛物线C2的顶点C'的坐标,再利用待定系数法即可;(3)先确定出∠BOC=90°,再分两种情况用相似三角形得出的比例式建立方程求解即可.【解答】解:(1)∵抛物线C1经过原点O,∴设抛物线C1的函数表达式为y=ax2+bx,∵抛物线C1经过A(﹣2,0),B(﹣3,3),∴,∴,∴抛物线C1的函数表达式为y=x2+2x,(2)如图1,由(1)知,抛物线C1的函数表达式为y=x2+2x=(x+1)2﹣1,∴抛物线C1的顶点C(﹣1,﹣1),∴点C关于原点的对称点C'(1,1),∵抛物线C2与抛物线C1关于原点成中心对称,∴抛物线C2的顶点坐标C'(1,1),设抛物线C2的函数表达式为y=a'(x﹣1)2+1,∵抛物线C1经过原点O,∴抛物线C2也经过原点O,∴a'(1﹣0)2+1=0,∴a'=﹣1,∴抛物线C2的函数表达式为y=﹣(x﹣1)2+1=﹣x2+2x;(3)存在,如图2,由(2)知,抛物线C1的顶点C(﹣1,﹣1),∵B(﹣3,3),O(0,0),∴OB2=18,OC2=2,BC2=20,∴OB2+OC2=BC2,∴△BOC是直角三角形,∴∠BOC=90°,∵PM⊥x轴,垂足是M,∴∠PMA=90°,由(2)知,y=﹣x2+2x;∵P是抛物线C2上的第四象限内的动点,∴P(m,﹣m2+2m),∵A(﹣2,0),∴M(2,0),∴m>2,∵PM⊥x轴于M,∴M(m,0),PM=﹣(﹣m2+2m)=m2﹣2m,∴AM=m+2,∵以P、M、A为顶点的三角形与△BOC相似,∴①当△PMA∽△BOC时,∴,∴,∴m=﹣1(舍)或m=6,∴P(6,﹣24);②当△AMP∽△BOC时,∴,∴,∴m=(舍)或m=,∴P(,),即:存在点P,使得以P、M、A为顶点的三角形与△BOC相似,点P的坐标为(6,﹣24)或(,).26.小明的数学探究小组进行了系列探究活动.类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA、DC,使四边形ABCD为邻等四边形;尝试体验:(2)如图2,邻等四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.解决应用:(3)如图3,邻等四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,BD=4.小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.【考点】四边形综合题.【分析】(1)如图1所示;根据邻等四边形的定义作出图形即可.(2)如图2中,连接AC,作CH⊥AB于H.在Rt△BCH中,求出BH=BC=,HC=BH=,在Rt△ACH中,AC2=AH2+CH2=(2+)2+()2=7,分别求出△ABC,△ADC的面积即可解决问题.(3)能.因为△ADC是等边三角形,所以可以将△BDC绕点D顺时针旋转60°得到△HDA,连接BH.由S四边形ABCD=S△ADH+S△ABD=S△DBH﹣S△ABH,可知当△ABH面积最大时,四边形ABCD的面积最小,只要求出△ABH的面积的最大值即可解决问题.【解答】解:(1)如图1,邻等四边形ABCD即为所求.(2)如图2中,连接AC,作CH⊥AB于H.在Rt△BCH中,∵BC=1,∠CBH=180°﹣∠ABC=180°﹣120°=60°,∴BH=BC=,HC=BH=,在Rt△ACH中,AC2=AH2+CH2=(2+)2+()2=7,∴S△ABC=•AB•CH=,∴AD=DC,∠ADC=60°,∴△ADC是等边三角形,∴S△ACD=AC2=,∴S四边形ABCD=S△ACB+S△ADC=.(3)能.如图3中,∵AD=DC,∠ADC=60°,∴△ADC是等边三角形,将△BDC绕点D顺时针旋转60°得到△HDA,连接BH.∵DB=DH,∠HDB=60°,∴△HDB是等边三角形,∴S四边形ABCD=S△ADH+S△ABD=S△DBH﹣S△ABH,∴当△ABH面积最大时,四边形ABCD的面积最小,∵∠ABC=75°,∠ADC=60°,∴∠BAD+∠BCD=∠BAD+∠DAH=360°﹣75°﹣60°=225°,∴∠BAH=135°,∵BH=DB=4,∴点A在定圆⊙O上运动,当O、A、D共线时,△ABH的面积最大,此时OD⊥BH,设OA交BH于K,则HK=KB=2,∵AH=AB,∴∠AHB=∠ABH=22.5°,在HK上取一点F,使得FH=FA,则△AKF是等腰直角三角形,设AK=FK=x,则FH=AF=x,∴2=x+x,∴x=2﹣2,∴△ABH的面积最大值=•4•(2﹣2)=4﹣4,∴四边形ABCD的面积的最小值=×42﹣(4﹣4)=4﹣4+4.。

2016年陕西中考数学试卷(解析版)

2016年陕西中考数学试卷(解析版)

2016年陕西省中考数学试卷(满分120分,考试时间120分钟)一、选择题(共10小题,每小题3分,满分30分)1)×2=()1.计算:(-2A.-1 B.1 C.4 D.-4考点:有理数的乘法.专题:计算题;实数.分析:原式利用乘法法则计算即可得到结果.解答:解:原式=-1,故选A点评:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A. B. C. D.考点:简单组合体的三视图.分析:根据已知几何体,确定出左视图即可.解答:解:根据题意得到几何体的左视图为,故选C点评:此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.下列计算正确的是()A.x2+3x2=4x4 B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2 D.(-3x)2=9x2考点:整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.专题:计算题;整式.分析:A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.解答:解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D点评:此题考查了整式的除法,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°考点:平行线的性质.分析:根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.解答:解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°-50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°-65°=115°,故选B.点评:本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.5.设点A(a,b)是正比例函数y=-3x图象上的任意一点,则下列等式一定成立的是2()A.2a+3b=0 B.2a-3b=0 C.3a-2b=0 D.3a+2b=0考点:一次函数图象上点的坐标特征.分析:直接把点A(a,b)代入正比例函数y=-3x,求出a,b的关系即可.2解答:解:把点A(a,b)代入正比例函数y=-3x,2可得:-3a=2b,可得:3a+2b=0,故选D点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10考点:三角形中位线定理;等腰三角形的判定与性质;勾股定理.分析:根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=1AC,由此即可解2决问题.解答:解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC=22622+BCAB =10,8+∵DE是△ABC的中位线,∴DF∥BM,DE=1BC=3,2∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=1AC=5,2∴DF=DE+EF=3+5=8.故选B.点评:本题考查三角形中位线定理、等腰三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用三角形中位线定理,掌握等腰三角形的判定和性质,属于中考常考题型.7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:两条直线相交或平行问题.分析:根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.解答:解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.点评:本题主要考查两直线相交问题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y 轴负半轴相交.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对考点:正方形的性质;全等三角形的判定.分析:可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.解答:解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,AB=BC∠A=∠CAD=CD∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,∠MDO=∠M′BO∠MOD=∠M′OBDM=BM′∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.点评:本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.9.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC .若∠BAC 与∠BOC 互补,则弦BC 的长为( )A .33B .43C .53D .63考点:垂径定理;圆周角定理;解直角三角形.分析:首先过点O 作OD ⊥BC 于D ,由垂径定理可得BC=2BD ,又由圆周角定理,可求得∠BOC 的度数,然后根据等腰三角形的性质,求得∠OBC 的度数,利用余弦函数,即可求得答案.解答:解:过点O 作OD ⊥BC 于D ,则BC=2BD ,∵△ABC 内接于⊙O ,∠BAC 与∠BOC 互补,∴∠BOC=2∠A ,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC ,∴∠OBC=∠OCB=21(180°-∠BOC )=30°, ∵⊙O 的半径为4,∴BD=OB •cos ∠OBC=4×3223 , ∴BC=43. 故选:B .点评:此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.10.已知抛物线y=-x 2-2x+3与x 轴交于A 、B 两点,将这条抛物线的顶点记为C ,连接AC 、BC ,则tan ∠CAB 的值为( )A .21B .55C .552 D .2 考点:抛物线与x 轴的交点;锐角三角函数的定义.分析:先求出A 、B 、C 坐标,作CD ⊥AB 于D ,根据tan ∠ACD=ADCD 即可计算.解答:解:令y=0,则-x 2-2x+3=0,解得x=-3或1,不妨设A (-3,0),B (1,0), ∵y=-x 2-2x+3=-(x+1)2+4,∴顶点C (-1,4),如图所示,作CD ⊥AB 于D .在RT △ACD 中,tan ∠CAD=ADCD =2,故答案为D .点评:本题考查二次函数与x 轴交点坐标,锐角三角函数的定义,解题的关键是熟练掌握求抛物线与x 轴交点坐标的方法,记住锐角三角函数的定义,属于中考常考题型.二、填空题(共4小题,每小题3分,满分12分)11.不等式-21x+3<0的解集是 _______.考点:解一元一次不等式.分析:移项、系数化成1即可求解.解答:解:移项,得-1x<-3,2系数化为1得x>6.故答案是:x>6.点评:本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是 _______.B.运用科学计算器计算:317sin73°52′≈ _______.(结果精确到0.1)考点:计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.分析:(1)根据多边形内角和为360°进行计算即可;(2)先分别求得317和sin73°52′的近似值,再相乘求得计算结果.解答:解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)317sin73°52′≈12.369×0.961≈11.9故答案为:8,11.9点评:本题主要考查了多边形的外角和以及近似数,解决问题的关键是掌握多边形的外角和定理以及近似数的概念.在取近似值时,需要需要运用四舍五入法求解.13.已知一次函数y=2x+4的图象分别交x 轴、y 轴于A 、B 两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C ,且AB=2BC ,则这个反比例函数的表达式为 _______.考点:反比例函数与一次函数的交点问题.分析:根据已知条件得到A (-2,0),B (0,4),过C 作CD ⊥x 轴于D ,根据相似三角形的性质得到32AC AB AD AO CD OB ===,求得C (1,6),即可得到结论.解答:解:∵一次函数y=2x+4的图象分别交x 轴、y 轴于A 、B 两点,∴A (-2,0),B (0,4),过C 作CD ⊥x 轴于D ,∴OB ∥CD ,∴△ABO ∽△ACD , ∴32AC AB AD AO CD OB ===,∴CD=6,AD=3,∴OD=1,∴C (1,6),设反比例函数的解析式为y=xk , ∴k=6,∴反比例函数的解析式为y=x6. 故答案为:y=x6.点评:本题考查了反比例函数与一次函数的交点,相似三角形的判定和性质,求函数的解析式,正确的作出图形是解题的关键.14.如图,在菱形ABCD 中,∠ABC=60°,AB=2,点P 是这个菱形内部或边上的一点,若以点P 、B 、C 为顶点的三角形是等腰三角形,则P 、D (P 、D 两点不重合)两点间的最短距离为 _______.考点:菱形的性质;等腰三角形的判定;等边三角形的性质.分析:如图连接AC 、BD 交于点O ,以B 为圆心BC 为半径画圆交BD 于P .此时△PBC 是等腰三角形,线段PD 最短,求出BD 即可解决问题.解答:解:如图菁优网连接AC 、BD 交于点O ,以B 为圆心BC 为半径画圆交BD 于P . 此时△PBC 是等腰三角形,线段PD 最短,∵四边形ABCD 是菱形,∠ABC=60°,∴AB=BC=CD=AD ,∠ABC=∠ADC=60°,∴△ABC ,△ADC 是等边三角形,∴BO=DO=3223=⨯,∴BD=2BO=23,∴PD 最小值=BD-BP=23-2.故答案为23-2.点评:本题考查菱形的性质、等边三角形的性质等知识,解题的关键是找到点P 的位置,属于中考常考题型.三、解答题(共11小题,满分78分)15.计算:12-|1-3|+(7+π)0 .考点:实数的运算;零指数幂.分析:直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案. 解答:解:原式=()23233211332+=+-=+--. 点评:此题主要考查了实数运算,正确利用绝对值的性质去掉绝对值是解题关键.16.化简:(x-5+3+x 16)÷9-x 3-x 2. 考点:分式的混合运算.分析:根据分式的除法,可得答案.解答:解:原式=1-x 3)-3)(x +(x 3)+(x 1)-(x 2∙=(x-1)(x-3)=x 2-4x+3.点评:本题考查了分式混合运算,利用分式的除法转化成分式的乘法是解题关键.17.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)考点:作图—相似变换.专题:作图题.分析:过点A 作AD ⊥BC 于D ,利用等角的余角相等可得到∠BAD=∠C ,则可判断△ABD 与△CAD 相似.解答:解:如图,AD 为所作.点评:本题考查了作图-相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.解决本题的关键是利用有一组锐角相等的两直角三角形相似.18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A-非常喜欢”、“B-比较喜欢”、“C-不太喜欢”、“D-很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是 _______;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?考点:众数;用样本估计总体;扇形统计图;条形统计图.专题:统计与概率.分析:(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.解答:解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120-18-30-6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.点评:本题考查众数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,AD=BC∠1=∠2DF=BE∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.点评:本题考查了平行四边形的性质,全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C ,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D 点沿DM 方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG 的影长FH=2.5米,FG=1.65米.如图,已知AB ⊥BM ,ED ⊥BM ,GF ⊥BM ,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB 的长度.考点:相似三角形的应用.分析:根据镜面反射原理结合相似三角形的判定方法得出△ABC ∽△EDC ,△ABF ∽△GFH ,进而利用相似三角形的性质得出AB 的长.解答:解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD ,∠AFB=∠GHF ,故△ABC ∽△EDC ,△ABF ∽△GFH , 则DC BC ED AB =,FHBF GF AB =, 即2BC 1.5AB =, 2.518+BC 1.65AB =,解得:AB=99,答:“望月阁”的高AB的长度为99m.点评:此题主要考查了相似三角形的判定与性质,正确利用已知得出相似三角形是解题关键.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?考点:一次函数的应用.分析:(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.解答:解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有 b=1922k+b=0解得 k=−96b=192故线段AB所表示的函数关系式为:y=-96x+192(0≤x≤2);(2)12+3-(7+6.6)=15-13.6=1.4(小时),112÷1.4=80(千米/时),(192-112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.点评:本题主要考查一次函数的应用,解决本题的关键是利用待定系数法求一次函数的解析式.同时考查了速度、路程和时间之间的关系.22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.考点:列表法与树状图法;概率公式.分析:(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.解答:解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;1;∴一次“有效随机转动”可获得“乐”字的概率为:5(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,2.∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:25点评:此题考查了列表法或树状图法求概率.注意此题是放回实验;用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.考点:相似三角形的判定与性质;垂径定理;切线的性质.专题:证明题.分析:(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.解答:证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB ⊥AB ,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G ,∵∠DCB=∠GCF ,∴∠GCF=∠G,∴FC=FG ;(2)连接AC ,如图所示:∵AB ⊥BG ,∴AC 是⊙O 的直径,∵FD 是⊙O 的切线,切点为C ,∴∠DCB=∠CAB ,∵∠DCB=∠G ,∴∠CAB=∠G ,∵∠CBA=∠GBA=90°,∴△ABC ∽△GBA , ∴ABBC GB AB ,∴AB 2 =BC •BG .点评:本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(-2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.考点:二次函数综合题.分析:(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.解答:解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得:a+b+5=39a+3b+5=5解得: a =1b =−3∴抛物线解析式为y=x 2-3x+5,令y=0可得x 2-3x+5=0,该方程的判别式为△=(-3)2-4×1×5=9-20=-11<0,∴抛物线与x 轴没有交点;(2)∵△AOB 是等腰直角三角形,A (-2,0),点B 在y 轴上,∴B 点坐标为(0,2)或(0,-2),可设平移后的抛物线解析式为y=x 2+mx+n ,①当抛物线过点A (-2,0),B (0,2)时,代入可得n =24−2m+n =0解得: m =3n =2∴平移后的抛物线为y=x 2+3x+2, ∴该抛物线的顶点坐标为(23-,41-),而原抛物线顶点坐标为(23,411), ∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线; ②当抛物线过A (-2,0),B (0,-2)时,代入可得:n =−24−2m+n =0解得: m =1n =−2∴平移后的抛物线为y=x 2+x-2, ∴该抛物线的顶点坐标为(21-,49-),而原抛物线顶点坐标为(23,411),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.点评:本题为二次函数的综合应用,涉及知识点有待定系数法、函数与方程的关系、等腰三角形的性质、坐标平移和分类讨论等.在(1)中注意方程与函数的关系,在(2)中确定出B点的坐标是解题的关键,注意抛物线顶点坐标的求法.本题属于基础题,难度不大.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=5米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.考点:四边形综合题.分析:(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=25即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3-x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.解答:解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=25,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为25+10;(3)能裁得,理由:∵EF=FG=5,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,∠1=∠2∠A=∠BEF=FG∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3-x,∴x2+(3-x)2=(5)2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以OE为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′、GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F ,O ,H ′,C 在一条直线上,菁优网∵EG=10,∴OF=EG=10, ∵CF=210, ∴OC=10,∵OH ′=OE=FG=5,∴OH ′<OC ,∴点H ′在矩形ABCD 的内部,∴可以在矩形ABCD 中,裁得符合条件的面积最大的四边形EFGH ′部件,这个部件的面积=21EG •FH ′=()22555101021+=+⨯⨯,∴当所裁得的四边形部件为四边形EFGH ′时,裁得了符合条件的最大部件,这个部件的面积为(5+225)m 2.点评:本题考查了全等三角形的判定和性质,矩形的性质,勾股定理,轴对称的性质,存在性问题,掌握的作出辅助线利用对称的性质解决问题是解题的关键.。

2016年陕西省西安市XX中学中考数学一模试卷附答案解析

2016年陕西省西安市XX中学中考数学一模试卷附答案解析

2016年陕西省西安市XX中学中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O 逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a=.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A 考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC 的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M 到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市XX中学中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O 逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到R tOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB ⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,==,∴S△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15.【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68.(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+, =2﹣﹣1+4+, =5.17.解分式方程:﹣=1. 【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:x 2﹣5x +6﹣3x ﹣9=x 2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A 、B 、C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC 的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC 的外接圆圆心,再以此点为圆心,以此点到点A 的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC 中点,得出DE=BF,进而证明出两三角形全等;=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得出结果.(2)首先求出DE和CE的长度,再根据S△AEF【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A 考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴,解得,∴y=﹣90x+900.函数的定义域为5≤x≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC 得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O 的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC 的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M 到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC 于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴C N=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.2017年3月19日。

2016年陕西省中考数学模拟试卷.pdf

2016年陕西省中考数学模拟试卷.pdf

Байду номын сангаас,其中

17.(5 分)如图,有一块三角形材料(△ABC),请你画出一个圆,使其 与△ABC 的各边都相切(保留作图痕迹,不要求写作法).
18.(6 分)已知:如图,AB⊥BC,AD⊥DC,AB=AD,若 E 是 AC 上的一点,求证:EB=ED.
19.(7 分)我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个 品种的树苗共 500 株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得 知:丙种树苗的成活率为 89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出). (1)实验所用的乙种树苗的数量是 _________ 株. (2)求出丙种树苗的成活数,并把图 2 补充完整. (3)你认为应选哪种树苗进行推广?请通 过计算说明理由.
元销售,售出了 200 副.十月份如果销售单价不变,预计仍可售出 200 副,鑫都小商品市场
为增加销售量,决定降价销售,根据市场调查,销售单价每降低 5 元,可多售出 10 副,但
最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,
清仓时销售单价为 50 元.设十月份销售单价降低 x 元.
23.(8 分)如图,四边形 ABCD 是平行四边形,以 AB 为直径的圆 O 经过点 D,E 是⊙O 上一点,且∠AED=45°. (1)判断 CD 与⊙O 的位置关系,并说明理由; (2)若⊙O 半径为 6cm,AE=10cm,求∠ADE 的正弦值.
学海无涯
24.(8 分)如图,已知抛物线与 x 轴交于点 A(﹣2,0),B(4,0),与 y 轴交于点 C(0, 8). (1)求抛物线的解析式及其顶点 D 的坐标; (2)设直线 CD 交 x 轴于点 E.在线段 OB 的垂直平分线上是否存在点 P,使得点 P 到直线 CD 的距离等于点 P 到原点 O 的距离?如果存在,求出点 P 的坐标;如果不存在,请说明理 由; (3)过点 B 作 x 轴的垂线,交直线 CD 于点 F,将抛物线沿其对称轴平移,使抛物线与线 段 EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长 度?向下最多可平移多少个单位长度?

近年年中考数学四模试卷(含解析)(1)(2021年整理)

近年年中考数学四模试卷(含解析)(1)(2021年整理)

陕西省西安市2016年中考数学四模试卷(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省西安市2016年中考数学四模试卷(含解析)(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省西安市2016年中考数学四模试卷(含解析)(1)的全部内容。

2016年陕西省西安市西北工大附中中考数学四模试卷一。

选择题1.实数1,﹣1,﹣,0,四个数中,最小的数是()A.0 B.1 C.﹣1 D.﹣2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B.C.D.3.下列运算正确的是( )A. +=B.3x2y﹣x2y=3C. =a+b D.(a2b)3=a6b34.如图,AB∥CD,DB⊥BC,∠BDC=50°,则∠FBE的度数是( )A.50°B.45°C.40°D.30°5.若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是() A.B.﹣C.1 D.﹣16.如图,在平行四边形ABCD中,AE=EB,AF=2,则FC的值为()A.5 B.4 C.3 D.27.不等式组的所有整数解的和是( )A.2 B.3 C.5 D.68.如图,AD、AC分别为⊙O的直径和弦,∠CAD=30°,B是AC上一点,BO⊥AD,垂足为O,BO=5,则CD的长为( )A.2B.3C.4D.59.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF=( )A.B.5 C. +2 D.310.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是( )A. B.C. D.二.填空题11.分解因式:x2y﹣6xy+9y= .请从12,13两小题中任选一个作答,若多选,则按第一题计分。

2016年陕西省西安市XX中学中考数学一模试卷附答案解析

2016年陕西省西安市XX中学中考数学一模试卷附答案解析

2016年陕西省西安市XX中学中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a=.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市XX中学中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA 的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF 的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a ﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,==,∴S△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15.【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68.(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得出结果.(2)首先求出DE和CE的长度,再根据S△AEF【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y 与x 之间的函数解析式y=kx +b , ∵图象过(5,450),(10,0)两点, ∴, 解得,∴y=﹣90x +900.函数的定义域为5≤x ≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标; (2)求点P (x ,y )在函数y=﹣x +5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征. 【分析】(1)首先根据题意画出表格,即可得到P 的所以坐标;(2)然后由表格求得所有等可能的结果与数字x 、y 满足y=﹣x +5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.2017年3月19日。

2016年陕西省中考数学试卷(含答案解析)

2016年陕西省中考数学试卷(含答案解析)

“望月阁”及环阁公园. 小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的
高度,来检验自己掌握知识和运用知识的能力. 他们经过观察发现, 观测点与“望月阁”底部间的
距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,
小芳在小亮和“望月阁”之间的直线 BM上平放一平面镜,在镜面上做了一个标记,这个标记在直
①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有
“可”、“绿”、“乐”、“茶”、“红”字样; ② 参与一次抽奖活动的顾客可进行两次“有效随
机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样, 我们称这次转动为一次“有效
随机转动”);③ 假设顾客转动转盘, 转盘停止后, 指针指向两区域的边界, 顾客可以再转动转盘,
A.2a+3b=0 B.2a﹣ 3b=0 C.3a﹣ 2b=0 D.3a+2b=0 【分析】 直接把点 A(a,b)代入正比例函数 y=﹣ x,求出 a,b 的关系即可.
【解答】 解:把点 A(a,b)代入正比例函数 y=﹣ x,
可得:﹣ 3a=2b, 可得: 3a+2b=0, 故选 D 【点评】本题考查的是一次函数图象上点的坐标特点, 熟知一次函数图象上各点的坐标一定适合此 函数的解析式是解答此题的关键. 6.( 3 分)如图,在 △ABC中, ∠ABC=9°0 , AB=8, BC=6.若 DE是△ ABC的中位线,延长 DE交 △ ABC的外角 ∠ ACM的平分线于点 F,则线段 DF的长为( ) A.7 B. 8 C.9 D.10 【分析】 根据三角形中位线定理求出 DE,得到 DF∥BM,再证明 EC=EF精心整理 (2)AB2=BC?BG. 24.(10 分)在平面直角坐标系中, 点 O为坐标原点, 抛物线 y=ax2+bx+5 经过点 M(1,3)和 N(3, 5) (1)试判断该抛物线与 x 轴交点的情况; (2)平移这条抛物线,使平移后的抛物线经过点 A(﹣ 2,0),且与 y 轴交于点 B,同时满足以 A、 O、B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由. 25.(12 分)问题提出 (1)如图 ①,已知 △ ABC,请画出 △ABC关于直线 AC对称的三角形. 问题探究 (2)如图 ②,在矩形 ABCD中, AB=4, AD=6,AE=4,AF=2,是否在边 BC、 CD上分别存在点 G、 H, 使得四边形 EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由. 问题解决 (3)如图 ③,有一矩形板材 ABCD,AB=3米, AD=6米,现想从此板材中裁出一个面积尽可能大的 四边形 EFGH部件,使 ∠EFG=9°0 , EF=FG= 米,∠ EHG=4°5 ,经研究,只有当点 E、F、G分别在 边 AD、AB、BC上,且 AF< BF,并满足点 H 在矩形 ABCD内部或边上时,才有可能裁出符合要求的 部件,试问能否裁得符合要求的面积尽可能大的四边形 EFGH部件?若能,求出裁得的四边形 EFGH 部件的面积;若不能,请说明理由.

2016年陕西省中考数学试卷及解析答案

2016年陕西省中考数学试卷及解析答案

2016年陕西省中考数学试卷及解析答案2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算:(-)×2=()A。

-1 B。

1 C。

4 D。

-42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A。

B。

C。

D.3.下列计算正确的是()A。

x^2+3x^2=4x^4 B。

x^2y·2x^3=2x^4y C。

(6x^2y^2)÷(3x)=2x^2 D。

(-3x)^2=9x^24.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A。

65° B。

115° C。

125° D。

130°5.设点A(a,-a)是正比例函数y=-x图象上的任意一点,则下列等式一定成立的是()A。

2a+3b=0 B。

2a-3b=0 C。

3a-2b=0 D。

3a+2b=06.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A。

7 B。

8 C。

9 D。

107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A。

2对 B。

3对 C。

4对 D。

5对9.OC.⊙O的半径为4,△ABC是⊙O的内接三角形,如图,连接OB,若∠BAC与∠BOC互补,则弦BC的长为()A。

3 B。

4 C。

5 D。

610.已知抛物线y=-x^2-2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年陕西省西安市中考数学四模试卷一、选择题1.的倒数是()A.B.8 C.﹣8 D.﹣12.如图所示的几何图形的左视图是()A.B.C.D.3.下列运算正确的是()A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2D.a2•4a4=4a84.如图,EF∥BC,AC平分∠BAF,∠B=80°,∠C=()度.A.40 B.45 C.50 D.555.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.86.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A.B.C.2D.7.若关于x的一元一次不等式组有解,则m的取值范围为()A.B.m≤C.D.m≤8.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<49.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.11或1310.已知二次函数y=ax2+bx+1(a<0)的图象过点(1,0)和(x1,0),且﹣2<x1<1,下列5个判断中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣;⑤2a<b+,正确的是()A.①③ B.①②③C.①②③⑤ D.①③④⑤二、填空题11.分解因式:x2y﹣2xy+y= .12.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为.13.等腰△ABC,顶角∠A=40°,AD⊥BC,BC=8,求AB= (结果精确到0.1)14.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x 轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.15.如图四边形ABCD中,AD=DC,∠DAB=∠ACB=90°,过点D作DF⊥AC,垂足为F.DF与AB相交于E.设AB=15,BC=9,P是射线DF上的动点.当△BCP的周长最小时,DP的长为.三、解答题16.计算:()﹣2﹣6sin30°﹣()0++|﹣|17.化简:,然后请自选一个你喜欢的x值,再求原式的值.18.如图,线段AB绕某一点逆时针旋转一定的角度得到线段A'B',利用尺规确定旋转中心.(不写作法,保留作图痕迹)19.兰州市某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时,该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图(如图)的一部分.(1)在图表中,a= ,b= ;(2)补全频数分布直方图;(3)请估计该校1400名初中学生中,约有多少学生在1.5小时以内完成了家庭作业.20.如图,在正方形ABCD和正方形ECGF中,连接BE,DG.求证:BE=DG.21.如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC的距离是6km,仰角是43°,1s后,火箭到达B点,此时测得仰角为45.5°,这枚火箭从点A到点B的平均速度是多少?(结果精确到0.01)22.我市某工艺品厂生产一款工艺品、已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.(利润=(售价﹣成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000元?23.如图,抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),顶点D的坐标为(﹣1,4).(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,请直接写出点F的坐标.24.如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?2016年陕西省西安市西北大学附中中考数学四模试卷参考答案与试题解析一、选择题1.的倒数是()A.B.8 C.﹣8 D.﹣1【考点】倒数.【分析】依据倒数的定义解答即可.【解答】解:的倒数是﹣8.故选:C.2.如图所示的几何图形的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看上下两个矩形,两矩形的公共边是虚线,故选:B.3.下列运算正确的是()A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2D.a2•4a4=4a8【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】A、原式合并得到结果,即可做出判断;B、原式利用积的乘方运算法则计算得到结果,即可做出判断;C、原式合并得到结果,即可做出判断;D、原式利用单项式乘单项式运算法则计算得到结果,即可做出判断.【解答】解:A、4a2﹣4a2=0,故选项错误;B、(﹣a3b)2=a6b2,故选项正确;C、a+a=2a,故选项错误;D、a2•4a4=4a6,故选项错误.故选:B.4.如图,EF∥BC,AC平分∠BAF,∠B=80°,∠C=()度.A.40 B.45 C.50 D.55【考点】平行线的性质.【分析】先根据平行线的性质得出∠BAF的度数,再由AC平分∠BAF求出∠CAF的度数,根据平行线的性质即可得出结论.【解答】解:∵EF∥BC,∴∠BAF=180°﹣∠B=100°.∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.故选C.5.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).6.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A.B.C.2D.【考点】正多边形和圆;扇形面积的计算.【分析】由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴=S△OAB﹣S扇形OMN,进而可得出结论.影【解答】解:∵六边形ABCDEF是正六边形,∴∠AOB=60°,∴△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,∴OG=OA•sin60°=2×=,∴S阴影=S△OAB﹣S扇形OMN=×2×﹣=﹣.故选A.7.若关于x的一元一次不等式组有解,则m的取值范围为()A.B.m≤C.D.m≤【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.8.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<4【考点】一次函数图象与几何变换.【分析】直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.【解答】解:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.故选C.9.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.11或13【考点】解一元二次方程﹣因式分解法;三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣6x+8=0得,x=2或4,则第三边长为2或4.边长为2,3,6不能构成三角形;而3,4,6能构成三角形,所以三角形的周长为3+4+6=13,故选:C.10.已知二次函数y=ax2+bx+1(a<0)的图象过点(1,0)和(x1,0),且﹣2<x1<1,下列5个判断中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣;⑤2a<b+,正确的是()A.①③ B.①②③C.①②③⑤ D.①③④⑤【考点】二次函数图象与系数的关系.【分析】求得与y轴的交点坐标,根据与坐标轴的交点判断出a<0,根据与x轴的交点判定﹣<﹣<0,从而得出a、b的关系,把(﹣1,0),(﹣2,0)代入函数解析式求出a、b、c的关系式,然后对各小题分析判断即可得解.【解答】解:∵抛物线与x轴的交点为(1,0)和(x1,0),﹣2<x1<﹣1,与y轴交于正半轴,∴a<0,∵﹣2<x1<﹣1,∴﹣<﹣<0,∴b<0,b>a,故①正确,②错误;∵当x=﹣1时,y>0,∴a﹣b+1>0,∴a>b﹣1故③正确;∵由一元二次方程根与系数的关系知x1•x2=,∴x1=,∵﹣2<x1<﹣1,∴﹣2<<﹣1,∴a<﹣,故④正确;∵当x=﹣2时,y<0,∴4a﹣2b+1<0,∴2a<b+,故⑤正确,综上所述,正确的结论有①③④⑤,故选:D.二、填空题11.分解因式:x2y﹣2xy+y= y(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:x2y﹣2xy+y,=y(x2﹣2x+1),=y(x﹣1)2.故答案为:y(x﹣1)2.12.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为20cm .【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.13.等腰△ABC,顶角∠A=40°,AD⊥BC,BC=8,求AB= 12.3 (结果精确到0.1)【考点】等腰三角形的性质;近似数和有效数字.【分析】根据等腰三角形的性质得到BD=CD=BC=4,∠BAC=20°,解直角三角形即可得到结论.【解答】解:如图,∵AB=AC,∠BAC=40°,AD⊥BC,BC=8,∴BD=CD=BC=4,∠BAC=20°,在Rt△ABD中,sin∠BAD=,即ain20°=≈0.342,∴AB=≈12.3,故答案为:12.3.14.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x 轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为6+2.【考点】反比例函数图象上点的坐标特征.【分析】设E(x,x),则B(2,x+2),根据反比例函数系数的几何意义得出x2=2(x+2),求得E的坐标,从而求得k的值.【解答】解:设E(x,x),∴B(2,x+2),∵反比例函数y=(k≠0,x>0)的图象过点B、E.∴x2=2(x+2),解得x1=1+,x2=1﹣(舍去),∴k=x2=6+2,故答案为6+2.15.如图四边形ABCD中,AD=DC,∠DAB=∠ACB=90°,过点D作DF⊥AC,垂足为F.DF与AB相交于E.设AB=15,BC=9,P是射线DF上的动点.当△BCP的周长最小时,DP的长为12.5 .【考点】轴对称﹣最短路线问题.【分析】先根据△ABC是直角三角形可求出AC的长,再根据AD=DC,DF⊥AC可求出AF=CF= AC,故点C关于DE的对称点是A,故E点与P点重合时△BCP的周长最小,再根据DE⊥AC,BC⊥AC可知,DE∥BC,由相似三角形的判定定理可知△AEF∽△ABC,利用相似三角形的对应边成比例可得出AE的长,同理,利用△AED∽△CBA即可求出DE的长.【解答】解:∵∠ACB=90°,AB=15,BC=9,∴AC===12,∵AD=DC,DF⊥AC,∴AF=CF=AC=6,∴点C关于DE的对称点是A,故E点与P点重合时△BCP的周长最小,∴DP=DE,∵DE⊥AC,BC⊥AC,∴DE∥BC,∴△AEF∽△ABC,∴,即=,解得AE=,∵DE∥BC,∴∠AED=∠ABC,∵∠DAB=∠ACB=90°,∴Rt△AED∽Rt△CBA,∴=,即=,解得DE=12.5,即DP=12.5.故答案为:12.5.三、解答题16.计算:()﹣2﹣6sin30°﹣()0++|﹣|【考点】二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】先算负指数幂,特殊角的三角函数值,0指数幂,以及绝对值,再算乘法,最后算加减,由此顺序计算即可.【解答】解:原式=4﹣6×﹣1+﹣+=4﹣3﹣1+=.17.化简:,然后请自选一个你喜欢的x值,再求原式的值.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=,当x=1时,原式=1.18.如图,线段AB绕某一点逆时针旋转一定的角度得到线段A'B',利用尺规确定旋转中心.(不写作法,保留作图痕迹)【考点】作图﹣旋转变换.【分析】根据旋转的性质可知,旋转中心在对应点连线段的垂直平分线上.【解答】解:点O为所求作,19.兰州市某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时,该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图(如图)的一部分.(1)在图表中,a= 12 ,b= 0.2 ;(2)补全频数分布直方图;(3)请估计该校1400名初中学生中,约有多少学生在1.5小时以内完成了家庭作业.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据每天完成家庭作业的时间在0≤t<0.5的频数和频率,求出抽查的总人数,再用总人数乘以每天完成家庭作业的时间在0.5≤t<1的频率,求出a,再用每天完成家庭作业的时间在1.5≤t<2的频率乘以总人数,求出b即可;(2)根据(1)求出a的值,可直接补全统计图;(3)用每天完成家庭作业时间在1.5小时以内的人数所占的百分比乘以该校的总人数,即可得出答案.【解答】解:(1)抽查的总的人数是: =40(人),a=40×0.3=12(人),b==0.2;故答案为:12,0.2;(2)根据(1)可得:每天完成家庭作业的时间在0.5≤t<1的人数是12,补图如下:(3)根据题意得:×1400=910(名),答:约有多少910名学生在1.5小时以内完成了家庭作业.20.如图,在正方形ABCD和正方形ECGF中,连接BE,DG.求证:BE=DG.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质得出BC=CD,CE=CG,∠BCD=∠ECG=90°,求出∠BCE=∠DCG,根据全等三角形的判定得出△EBC≌△GDC,根据全等三角形的性质得出即可.【解答】证明:∵在正方形ABCD和正方形ECGF中,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE=∠DCG=90°﹣∠ECD,在△EBC和△GDC中,∴△EBC≌△GDC(SAS),∴BE=DG.21.如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC的距离是6km,仰角是43°,1s后,火箭到达B点,此时测得仰角为45.5°,这枚火箭从点A到点B的平均速度是多少?(结果精确到0.01)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△AOC中,求出OA、OC,在Rt△BOC中求出OB,即可解决问题.【解答】解:在Rt△OCA中,OA=AC•tan43°≈4.092,OC=AC•cos43°在Rt△OCA中,OB=OC•tan45.5°≈4.375,v=(OB﹣OA)÷t=(4.375﹣4.092)÷1≈0.28(km/s)答:火箭从A点到B点的平均速度约为0.28km/s.22.我市某工艺品厂生产一款工艺品、已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.(利润=(售价﹣成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000元?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)设一次函数的一般式y=kx+b,将(70,3000)(90,1000)代入即可求得;(2)按照等量关系“利润=(定价﹣成本)×销售量”列出利润关于定价的函数方程,求解即可.【解答】解:(1)设一次函数关系式为y=kx+b,根据题意得解之得k=﹣100,b=10000所以所求一次函数关系式为y=﹣100x+10000(x>0)(2)由题意得(x﹣60)(﹣100x+10000)=40000即x2﹣160x+6400=0,所以(x﹣80)2=0所以x1=x2=80答:当定价为80元时才能使工艺品厂每天获得的利润为40000元.23.如图,抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),顶点D的坐标为(﹣1,4).(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,请直接写出点F的坐标.【考点】二次函数综合题.【分析】(1)设出二次函数顶点式,将C(0,3)代入解析式得到a=﹣1,从而求出抛物线解析式.(2)设M点横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周长d=﹣2m2﹣8m+2,将﹣2m2﹣8m+2配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积.(3)设F(n,﹣n2﹣2n+3),根据已知若FG=2DQ,即可求得.【解答】解:(1)设函数解析式为y=a(x+1)2+4,将C(0,3)代入解析式得,a(0+1)2+4=3,a=﹣1,可得,抛物线解析式为y=﹣x2﹣2x+3;(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=×1×1=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FG=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方,∴(n+3)﹣(﹣n2﹣2n+3)=4,解得:n=﹣4或n=1.∴F(﹣4,﹣5)或(1,0).24.如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?【考点】二次函数综合题.【分析】(1)由于DE∥BC,可得出三角形ADE和ABC相似,那么可根据面积比等于相似比的平方用三角形ABC的面积表示出三角形ADE的面积.(2)由于DE在三角形ABC的中位线上方时,重合部分的面积就是三角形ADE的面积,而DE在三角形ABC中位线下方时,重合部分就变成了梯形,因此要先看0<x≤5时,DE的位置,根据BC的长可得出三角形的中位线是5,因此自变量这个范围的取值说明了A′的落点应该在三角形ABC之内,因此y就是(1)中求出的三角形ADE的面积.(3)根据(2)可知5<x<10时,A′的落点在三角形ABC外面,可连接AA1,交DE于H,交BC于F,那么AH就是三角形ADE的高,A′F就是三角形A′DE的高,A′F就是三角形A′MN 的高,那么可先求出三角形A′MN的面积,然后用三角形ADE的面积减去三角形A′MN的面积就可得出重合部分的面积.求三角形A′MN的面积时,可参照(1)的方法进行求解.(4)根据(2)(3)两个不同自变量取值范围的函数关系式,分别得出各自的函数最大值以及对应的自变量的值,然后找出最大的y的值即可.【解答】解:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,即S△ADE=x2;(2)∵BC=10,∴BC边所对的三角形的中位线长为5,∴当0<x≤5时,y=S△ADE=x2;(3)5<x<10时,点A′落在三角形的外部,其重叠部分为梯形,∵S△A′DE=S△ADE=x2,∴DE边上的高AH=A'H=x,由已知求得AF=5,∴A′F=AA′﹣AF=x﹣5,由△A′MN∽△A′DE知=()2,S△A′MN=(x﹣5)2.∴y=x2﹣(x﹣5)2=﹣x2+10x﹣25.(4)在函数y=x2中,∵0<x≤5,∴当x=5时y最大为:,在函数y=﹣x2+10x﹣25中,当x=﹣=时y最大为:,∵<,∴当x=时,y最大为:.。

相关文档
最新文档