初一下册几何练习题(包括动点复习题)

合集下载

(七年级)初一动点解答题专项练习试题第1卷_附答案_北师大,人教版等通用版本

(七年级)初一动点解答题专项练习试题第1卷_附答案_北师大,人教版等通用版本

初一动点解答题专项1一、解答题1.在《丰富的图形世界》一章中,我们认识了三棱柱、四棱柱、五棱柱和六棱柱,这些棱柱是由点、线和面构成.(1)请使用合适的方式统计上述四种棱柱顶点的个数、棱的条数和面的个数;(2)若棱柱顶点的个数用V表示、棱的条数用E表示、面的个数用F表示,观察你的统计数据,写出V,E,F三者间的数量关系;(3)若某几何体满足(2)的数量关系,且有24条棱和10个面,则几何体有多少个顶点?2.如图,在数轴上有三个点A.B.C,完成系列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E到A.C两点的距离相等.并在数轴上标出点E表示的数.(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是__________.3.已知:a是最大的负整数,b是最小的正整数,且c=a+b,请回答下列问题:(1)请直接写出a,b,c的值:a=;b=;c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,请在如图的数轴上表示出A,B,C三点;(3)在(2)的情况下.点A,B,C开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB ﹣BC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出AB﹣BC的值.4.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?5.如图,数轴的单位长度为1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M 所表示的数是____.6.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?7.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示-3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离是;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A,B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A,B两点间的距离为多少?8.如果A、B两点在数轴上分别表示有理数a、b,那么它们之间的距离AB=|a﹣b|.如图1,已知数轴上两点A、B对应的数分别为﹣3和8,数轴上另有一个点P对应的数为x(1)点P、B之间的距离PB=.(2)若点P在A、B之间,则|x+3|+|x﹣8|=.(3)①如图2,若点P在点B右侧,且x=12,取BP的中点M,试求2AM﹣AP的值.②若点P为点B右侧的一个动点,取BP的中点M,那么2AM﹣AP是定值吗?如果是,请求出这个定值;如果不是,请说明理由.9.已知数轴上有A、B、C三点,点A和点B间距20个单位长度且点A、B表示的有理数互为相反数,AC=36,数轴上有一动点P从点A出发,以每秒1个单位长度的速度沿数轴向终点C移动,设移动时间为t秒.(1)点A表示的有理数是,点B表示的有理数是,点C表示的有理数是.(2)当点P运动到点B时,点Q从点O出发,以每秒6个单位长度的速度沿数轴在点O和点C之间往复运动.①求t为何值时,点Q第一次与点P重合?②当点P运动到点C时,点Q的运动停止,求此时点Q一共运动了多少个单位长度,并求出此时点Q在数轴上所表示的有理数.10.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+ (c-7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC .则AB = ,AC = ,BC = .(用含t 的代数式表示)(4)请问:3BC -2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.11.数轴上的点A ,B 所表示的数如图所示,回答下列问题:(1)求出A ,B 两点间的距离;(2)若点A 在数轴上移动了m 个单位长度到点C ,且B ,C 两点间的距离是3,求m 的值.12.如图,已知在纸面上有一条数轴.操作一:(1)折叠纸面,使表示1的点与表示1-的点重合,则表示2-的点与表示______的点重合. 操作二:(2)折叠纸面,使表示1-的点与表示3的点重合,回答下列问题:①表示5的点与表示______的点重合;②若数轴上A ,B 两点之间的距离为9(A 在B 的左侧),且折叠后A ,B 两点重合,求A ,B 两点表示的数.13.蜗牛从某点O 开始沿东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬行的各段路程依次为(单位:厘米):53,10,8,6,12,10+-+--+-,.问:(1)蜗牛最后是否回到出发点O ?(2)蜗牛离开出发点O 最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则蜗牛可得到多少粒芝麻? 14.如图,点A 、B 和线段MN 都在数轴上,点A 、M 、N 、B 对应的数字分别为﹣1、0、2、11.线段MN 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒. (1)用含有t 的代数式表示AM 的长为(2)当t= 秒时,AM+BN=11.(3)若点A 、B 与线段MN 同时移动,点A 以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.15.根据下面给出的数轴,解答下列问题:(1)A、B两点之间的距离是多少?(2)画出与点A的距离为2的点(用不同于A、B的字母在所给的数轴上表示).(3)数轴上,线段AB的中点表示的数是多少?16.为了迎接全国文明城市创建,市交警队的一辆警车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆警车的司机如何向队长描述他的位置?(2)如果此时距离出发点东侧2千米处出现交通事故,队长命令他马上赶往现场处置,则警车在此次巡逻和处理事故中共耗油多少升?(已知每千米耗油0.2升)17.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.18.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)19.如图,已知A,B分别为数轴上的两点,点A表示的数是﹣30,点B表示的数是50.(1)请写出A、B两点间的距离是.(2)现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只蚂蚁Q恰好从点A出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C相遇.求两只蚂蚁在数轴上的点C相遇时所用的时间.20.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是。

(七年级)初一动点解答题专项练习试题第2卷_附答案_北师大,人教版等通用版本

(七年级)初一动点解答题专项练习试题第2卷_附答案_北师大,人教版等通用版本

初一动点解答题专项2一、解答题1.在数轴上,标出表示下列各数的点:5,-3.5,212,423,-5. 2.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.(1)如果现在是北京时间下午3:00,那么现在的纽约时间是多少?(2)此时(北京时间9:00)小明想给远在巴黎的姑妈打电话,你认为合适吗?为什么?3.如图所示:A ,B ,C ,D 四点表示的数分别为a ,b ,c ,d ,且|c|<|b|<|a|<|d|. (1)比较大小:﹣b c ,d ﹣a c ﹣b ;(2)化简:|a ﹣c|﹣|﹣a ﹣b|+|d ﹣c|.4.同学们都知道,|4-(-2)|表示4与-2的差的绝对值,实际上也可理解为4与-2两数在数轴上所对应的两点之间的距离;同理|x -3|也可理解为x 与3两数在数轴上所对应的两点之间的距离,试探索并完成填空.(1)求|4-(-2)|=______,|-3-5|=______;(2)若|x -2|=5,则x =______.5.数轴上点A 对应的数为a ,点B 对应的数为b ,且多项式3625x y xy -+的二次项系数为a ,常数项为b .(1)直接写出:____________a b ,==;(2)数轴上点A 、B 之间有一动点P ,若点P 对应的数为x ,试化简24256x x x ++---;(3)若点M 从点A 出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N 从点B出发,沿数轴每秒2个单位长度的速度向左移动,到达A 点后立即返回并向右继续移动,求经过多少秒后,M 、N 两点相距1个单位长度?6.小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬行的路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10. (1)小虫是否回到原点O ?(2)在爬行过程中,如果每爬行1厘米奖励2粒芝麻,则小虫共可得到多少粒芝麻? 7.如图,己知数轴上点A 表示的数为8, B 是数轴上—点(B 在A 点左边),且AB=10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 所表示的数 ;(2)点P 所表示的数 ;(用含t 的代数式表示);(3)C 是AP 的中点,D 是PB 的中点,点P 在运动的过程中,线段CD 的长度是否发生化?若变化,说明理由,若不变,请你画出图形,并求出线段CD 的长.8.阅读下列材料:我们知道||x 的几何意义是在数轴上数x 对应的点与原点的距离;即0x x =-;这个结论可以推广为12||x x -表示在数轴上数1x ,2x 对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程4x ||=.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x =±4; 例2:解方程125x x ++-=.由绝对值的几何意义可知,该方程表示求在数轴上与-1和2的距离之和为5的点对应的x 的值.在数轴上,-1和2的距离为3,满足方程的x 对应的点在2的右边或在-1的左边.若x 对应的点在2的右边,如图可以看出3x =;同理,若x 对应点在-1的左边,可得2x =-.所以原方程的解是3x =或2x =-.例3:解不等式13x ->. 在数轴上找出13x -=的解,即到1的距离为3的点对应的数为-2,4,如图,在-2的左边或在4的右边的x 值就满足13x ->,所以13x ->的解为2x <-或4x >.参考阅读材料,解答下列问题:(1)方程35x +=的解为 ;(2)方程201712020x x -++=的解为 ;(3)若4311x x ++-≥,求x 的取值范围.9.流花河的警戒水位是33.5米,下表记录的是今年某一周内的水位变化情况,取河流的警戒水位作为0点,并且上周末(星期六)的水位达到警戒水位,(正号表示水位比前一天上升,负号表示水位比前一天下降.)(1)本周哪一天河流的水位最高?哪一天河流的水位最低?(2)与上周末相比,本周末河流的水位是上升了还是下降了?(3)以警戒水位作为零点,用折线统计图表示本周的水位情况.10.已知点A 在数轴上对应的数为a ,点B 对应的数为b ,且24(3)0a b ++-=.()1则a =________,b =________;并将这两个数在数轴上所对应的点A ,B 表示出来;()2数轴上在B 点右边有一点C 到A 、B 两点的距离和为11,若点C 的数轴上所对应的数为x ,求x 的值;()3若点A ,点B 同时沿数轴向正方向运动,点A 运动的速度为2单位/秒,点B 运动的速度为1单位/秒,若4AB =,求运动时间t 的值.(温馨提示:M 、N 之间距离记作MN ,点M 、N 在数轴上对应的数分别为m 、n ,则MN m n =-.)11.如图A 在数轴上对应的数为-2.(1)点B 在点A 右边距离A 点4个单位长度,则点B 所对应的数是_____.(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A 运动到-6的点处时,求A 、B 两点间的距离.(3)在(2)的条件下,现A 点静止不动,B 点以原速沿数轴向左运动,经过多长时间A 、B 两点相距4个单位长度.12.有理数a ,b ,c 在数轴上的位置如下图所示:(1)若|||1|||m a b b a c =+----,求201312013()m c -+的值.(2)若2a =-,3b =-,23c =,且a ,b ,c 对应的点分别为A ,B ,C ,问在数轴上是否存在一点P ,使P 与A 的距离是P 与C 的距离的3倍.若存在,请求出P 点对应的有理数;若不存在,请说明理由.13.如图,已知点O 是原点,点A 在数轴上,点A 表示的数为-6,点B 在原点的右侧,且OB =43OA ,(1)点B 对应的数是_________,在数轴上标出点B 。

初一下数学几何试题及答案

初一下数学几何试题及答案

七年级下学期数学几何阶段测试题一、选择题:(每题3分,共30分)1.下面有4个汽车标志图案,其中是轴对称图形的是()A.②③④B.①③④C.①②④D.①②③2.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A. B. C.D.3.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.4、在△ABC所在的平面内存在一点P,它到A、B、C三点的距离都相等,那么点P一定是()A.△ABC三边中垂线的交点B.△ABC三边上高线的交点7题图 C .△ABC 三内角平分线的交点 D .△ABC 三条中线的中点5.△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A .1<AB <29 B .9<AB <19C .5<AB <19D .4<AB <246.已知:如图,下列三角形中,AB=AC ,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是( )A .①③④B .①②③④C .①②④D .①③7.如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A ,B .若击打小球A ,经过球台边的反弹后,恰 好击中小球B ,那么小球A 击出时,应瞄准球台边上的点 ( )A .P 1B .P 2C .P 3D .P 48.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,连接AE ,则∠CEA 是( )A .15°B .20°C .30°D.35°8题图9.如图,已知∠AOB=40°,点P关于OA、OB的对称点分别为C、D,CD交OA、OB于M、N两点,则∠MPN的度数是()A.70°B.80°C.90°D.100°10.如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ、OC,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOE=120°;⑥OC平分∠AOE。

初一下册几何练习题[精选五篇]

初一下册几何练习题[精选五篇]

初一下册几何练习题[精选五篇]第一篇:初一下册几何练习题初一下册几何练习题1.如图1,推理填空:(1)∵∠A =∠(已知),A∴AC∥ED();(2)∵∠2 =∠(已知),2∴AC∥ED();(3)∵∠A +∠= 180°(已知),B D C∴AB∥FD();图1(4)∵∠2 +∠= 180°(已知),∴AC∥ED ();2.如图9,∠D =∠A,∠B=∠FCB,求证:ED∥CF.DFB图23.如图3,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.3C图24.如图4,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.EBPDQ F图45.如图5,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.A CFD图5(第1页,共3页)6.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.EB C图67.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)BEC D图78.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.B AD C F9.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。

求证:GH∥MN。

图9 10.已知:如图,求证:EC∥DF.(第2页,共3页)图8,且.11.如图,∠B=∠E,AB=EF,BD=EC,那么△ABC与△FED全等吗?为什么?.12.如图, 已知点A、C、B、D在同一直线上, AM=CN, BM=DN, ∠M=∠N, 试说明: AC=BD.13.如图所示, 已知AB=DC, AE=DF, CE=BF, 试说明: AF=DE.14.11、如图,在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任一点。

初一下册几何练习题(包括动点复习题).doc

初一下册几何练习题(包括动点复习题).doc

3 . 如图5,已知ZABE +ZDEB = 180° , Z1 =Z2,求证:ZF =ZG.4 . 初一下册几何练习题1.如图,Z1 : Z2 : Z3 = 2 : 3 : 4, ZAFE = 60° , ZBDE =120°,写出图中平行的直线,并说明理由.2.如图4,直线AB、CD 被EF 所截,Z1 =Z2, ZCNF =ZBME O求证:AB〃CD, MP〃NQ.如图12, ZABD和ZBDC的平分线交于E, BE交CD于点F, Z1 +Z2 = 90° .a)求证:(1) AB〃CD;(2) Z2 +Z3 = 90° .5.已知:如图:ZAHF+ ZFMD=180° , GH 平分ZAHM, MN 平分ZDMHo 求证:GH〃MN 。

Fr z7 .9 . 如图:AB=DC,BE=DF,AF=DEo求证:AABE竺ADCF。

(竺:即周长、面积、边长、腰长以及所有对应角、对应边、的11.如图:AD=BC, DE丄AC 于E, BF丄AC 于F, DE=BF O 求证:(1)AF=CE,6.如图,在AABC 和ADBC 中,Z1=Z2, Z3=Z4, P 是BC 上任一点。

a)求证:PA=PDo如图(12) AB/7CD, OA=OD,点F、D、0、A、E 在同一直线上,AE=DFo a)求证:EB〃CF。

如图(13) AABC^AEDCo求证:BE=ADo (竺:即周长、面积、边长、腰长以及所有对应角、对应边、的角度与长度完全相同。

)10.如图;AB=AC, BF=CFo 求证:ZB=ZCoD(2) AB〃CD。

D.. .... . ... ........ .....................f ....... ..... .......... ......... ......................................................................................................涝眾芈建里里尊方程或通过分类讨鲁程问题;另外涉及到数轴上两点之间距离的问題,常常)陰 ------------------------------------------------------------------------------------- -- --------------------- - ---- ;如图18-2,在数轴上有A,B,C三个点“和幺一的速度向终点O移动,设移动时间为;秒八、'分如表亦為理数一24,-10,10,点戸从A出发,以每秒1个单位夕匚B C-24 -10 0 10图18-2⑴用含I白勺代数武表乐P到点A和点C的距离:PA = __________________ _ , PC= ,(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P,Q两点之间的距离能否为2个单位?如果能,诵求岀此时点P表示的数;如果不能,请说明理由.【解答】''动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到第3秒时,两点相距15个单位长度.已知动点A,B的运动速度比之是3:2(速度单位:1个单位长度/秒).(1) 求两个动点运动的速度;(2) A,B两点运动到第3秒时停止运动,请在数轴上标出此时A,B两点的位實」(3〉若两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限, 问:运动到第几秒时,A,B两点之间相距4个单位长度?・・・』,* ' ・」L-12 -9 -6 -3 0 3 6 9 12图18-4。

七年级下册数学期末考试几何大题证明必考题

七年级下册数学期末考试几何大题证明必考题

图①DA EC BFl图②ABE F ClD七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。

如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。

A E B 图1D CG FA BD CG FE图2(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。

练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE(1)BD 与CE 相等吗?请说明理由.A BCFDE GP32B(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DGF例3、正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN 的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.图 2FG DA图 1FDA类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?ABC DEPM(3)ABCDE (2)ABCD EM (P )(1)练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.CBAPDE2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)ABCDEP M(5)FC B E 例2、已知△ABC 是等边三角形,将一块含30o 角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立C图1吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。

七年级下册数学动点问题及压轴题(带答案)

七年级下册数学动点问题及压轴题(带答案)

七年级下册动点问题及压轴题1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.3.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象,(1)参照图②,求a、b及图②中的c值;(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.(3)当点P出发多少秒后,△APD的面积是矩形ABCD面积的.4.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.5.(本题12分)已知:在平面直角坐标系中,直线AB 分别与x 轴负半轴、y 轴正半轴交于点B (b ,0)、点A (0,a ),且a 、b 满足0|32|34=++++--b a b a ,点D (h ,m )是直线AB 上且不与A 、B 两点重合的动点(1) 求△AOB 的面积;(2) 如图1,点P 、点T 分别是线段OA 、x 轴正半轴上的动点,过T 作TE ∥AB ,连接TP .若∠ABO =n °,请探究∠APT 与∠PTE 之间的数量关系?(注:可用含n 的式子表达并说明理由)(3) 若32S △BOD ≥S △AOD ,求出m 的取值范围.。

七年级下册数学动点问题及压轴题(带答案)

七年级下册数学动点问题及压轴题(带答案)

七年级下册动点问题及压轴题1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.3.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象,(1)参照图②,求a、b及图②中的c值;(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.(3)当点P出发多少秒后,△APD的面积是矩形ABCD面积的.4.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.5.(本题12分)已知:在平面直角坐标系中,直线AB 分别与x 轴负半轴、y 轴正半轴交于点B (b ,0)、点A (0,a ),且a 、b 满足0|32|34=++++--b a b a ,点D (h ,m )是直线AB 上且不与A 、B 两点重合的动点(1) 求△AOB 的面积;(2) 如图1,点P 、点T 分别是线段OA 、x 轴正半轴上的动点,过T 作TE ∥AB ,连接TP .若∠ABO =n °,请探究∠APT 与∠PTE 之间的数量关系?(注:可用含n 的式子表达并说明理由)(3) 若32S △BOD ≥S △AOD ,求出m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一下册几何练习题
1. 如图,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直
线,并说明理由.
2. 如图4,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.
3. 如图5,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.
4. 如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.
a) 求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.
1 3 2
A E C
D B
F
F
2 A B C
D Q E
1 P M
N
1
2 A
C B F G E
D
C
1 2 3
A
B D
F
5. 已知:如图:∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。

求证:GH
∥MN 。

6. 如图,在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。

a) 求证:PA=PD 。

7. 如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。

a) 求证:EB ∥CF 。

如图(13)△ABC ≌△EDC 。

求证:BE=AD 。

(≌:即周长、面积、边长、腰长以及所有对应角、对
应边、的角度与长度完全相同。


8.
9. 如图:AB=DC ,BE=DF ,AF=DE 。

求证:△ABE ≌△DCF 。

(≌:即周长、面积、边长、腰长以及所有对应角、对应边、的角度与长度完全相
同。


P
4321(图11)
D B A
O
F
E
(图12)
D C
B
A E
D
C
B
A
10. 如图;AB=AC ,BF=CF 。

求证:∠B=∠C 。

11. 如图:AD=BC ,DE ⊥AC 于E ,BF ⊥AC 于F ,DE=BF 。

求证:(1)AF=CE ,(2)AB
∥CD 。

F (图19)
E
D
C
B
A
F
E
D
C
B
A
F (图24)
E D
C
B A
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档