水热法课件
合集下载
第三章水热法

水热法的工艺参数控制
温度
水热反应温度是影响产物质量和产量的重要因素 ,需要精确控制。
时间
水热反应时间也是影响产物的重要因素,需要根 据实际反应情况确定。
压力
水热反应压力对产物的结构和形貌有影响,需要 合理控制。
浓度
原料的浓度对水热反应速度和产物也有影响,需 要适当控制。
04
水热法的应用实例
水热法在陶瓷行业的应用实例
第三章 水热法
xx年xx月xx日
目录
• 水热法的简介 • 水热法的原理和特点 • 水热法的工艺流程和设备 • 水热法的应用实例 • 水热法的未来发展趋势和挑战
01
水热法的简介
水热法的定义
定义
水热法是指在密闭的容器中,将水加热到 高温高压状态,形成高温高压水溶液,使 反应物质在这样的水溶液中完成化学反应 并形成结晶的一种方法。
水热法与计算化学结合
计算化学可以模拟和预测水热反应过程中物质的物理化学性质和演变规律, 有助于深入了解水热反应过程和优化制备工艺。
THANKS
感谢观看
2
水热法还具有环保性,因为它是在密闭的反应 器中进行的,避免了环境污染,同时也可以实 现工业废渣的资源化利用。
3
水热法可以制备出常规固相法难以制备的特殊 性能材料,如高熔点氧化物、高活性催化剂等 。
水热法与其他方法的比较
与固相法相比,水热法的制备温度和压力较低,制备周期 短,粉体材料粒度细且分布均匀,晶体发育完整。
05
水热法的未来发展趋势和挑战
水热法的未来发展趋势
应用领域的扩展
水热法有望在更多领域得到应用,如能源、环保、材料科学等领域。特别是在能源领域, 水热法可以用来制备太阳能电池、燃料电池等高性能能源材料。
给水加热ppt课件

第三单元 冷与热
01
猜想假设
02
阅读
03
事实证据
பைடு நூலகம்
04
得出结论
给常温的水加热,会发生什么 现象?
姓名 探探 妙妙
69%
我们的假设
假设 水的温度会不断上升 我认为一直加热的话水会烧干
91%
测量水温的方法
★铁架台
★温度计
★烧杯
★水
关键词
★陶土网
★酒精灯
实验要求:
1.做好小组分工(计时、观察水温、观察水的变化、记录)。 2.给烧杯加入30毫升的水。 3.安装好铁架台、陶土网、烧杯、温度计。 4.点燃酒精灯给烧杯中的水加热。
时间(分) 0 2 4 6 8 10
给水加热实验表
温度(℃) 18 40 70 90 100 100
现象 无 烧杯底部有小气泡产生 小气泡变多并上升 小气泡变大变多 水开始上下翻滚 沸腾
水沸腾后,继续加热, 温度不再上升。
水被加热到一定的温度(标准大气压 下通常是100℃)时,一部分水会迅 速变成水蒸气,内部产生大量气泡并 冲出水面,这种现象称为沸腾。
01
猜想假设
02
阅读
03
事实证据
பைடு நூலகம்
04
得出结论
给常温的水加热,会发生什么 现象?
姓名 探探 妙妙
69%
我们的假设
假设 水的温度会不断上升 我认为一直加热的话水会烧干
91%
测量水温的方法
★铁架台
★温度计
★烧杯
★水
关键词
★陶土网
★酒精灯
实验要求:
1.做好小组分工(计时、观察水温、观察水的变化、记录)。 2.给烧杯加入30毫升的水。 3.安装好铁架台、陶土网、烧杯、温度计。 4.点燃酒精灯给烧杯中的水加热。
时间(分) 0 2 4 6 8 10
给水加热实验表
温度(℃) 18 40 70 90 100 100
现象 无 烧杯底部有小气泡产生 小气泡变多并上升 小气泡变大变多 水开始上下翻滚 沸腾
水沸腾后,继续加热, 温度不再上升。
水被加热到一定的温度(标准大气压 下通常是100℃)时,一部分水会迅 速变成水蒸气,内部产生大量气泡并 冲出水面,这种现象称为沸腾。
水热法ppt课件

8
Zr(OH)2为前驱体,水热反应制备 ZrO2粉体
9
TiO2与Ba(OH)2· H2O水热反应制备 钛酸钡粉体
10
3 晶粒的聚集生长 水热条件下晶粒的聚集生长分为两种类型: 第一类聚集生长和第二类聚集生长。 第一类聚集生长:物料从小尺寸晶粒向大 尺寸晶粒运输的重结晶过程; 第二类聚集生长:聚集的小晶粒之间由于 暴露的晶面结构相容而在一定条件下配向 生长的过程。 它们的热力学驱动力都是晶粒平均粒度的 增大降低了体系的总表面自由能。
2 为什么要采用水热法?
• 中低温实现晶体的形成和生长,避免高温处理带 来的种种缺陷; • 应用一些溶解度低的原料,也降低了原料成本; • 具有比其他液相方法更快的晶体生长速率; • 可以生长产生各种不同的晶体形貌; • 反应温度相对较低,可以得到一些低温同质异构 体; • 可以方便地控制反应器内的反应气氛。
水热法
1 什么是水热法? 2 为什么要采用水热法? 3 应用中出现的一些现象的解释 4 水热法应用 5 水热法的缺陷 6 几个例子
2
1 什么是水热法
• 在特制的密闭反应容器里,采用水溶液作 为反应介质,通过对反应容器加热,创造 出一个高温、高压反应环境,使通常难溶 或不溶的物质溶解并且重结晶。
3
11
12
13
2.2 前驱体的溶解
化合物在水热溶液里的溶解度的温度特性分 三种情况: 1 正温度系数 2 负温度系数 3 部分温度范围内正温度系数,部分温度范 围内负温度系数。
14
负温度系数化合物
磷酸铝在磷酸 水溶液中的溶 解: 随着温度升高, 和压力降低, 溶解度降低。
15
变温度系数化合物
17
一般的矿化剂可以分为下面5类: 1 金属及铵的卤化物 2 碱金属的氢氧化物 3 弱酸与碱金属形成的盐类 4 强酸的盐类 5 酸类(一般为无机酸)
Zr(OH)2为前驱体,水热反应制备 ZrO2粉体
9
TiO2与Ba(OH)2· H2O水热反应制备 钛酸钡粉体
10
3 晶粒的聚集生长 水热条件下晶粒的聚集生长分为两种类型: 第一类聚集生长和第二类聚集生长。 第一类聚集生长:物料从小尺寸晶粒向大 尺寸晶粒运输的重结晶过程; 第二类聚集生长:聚集的小晶粒之间由于 暴露的晶面结构相容而在一定条件下配向 生长的过程。 它们的热力学驱动力都是晶粒平均粒度的 增大降低了体系的总表面自由能。
2 为什么要采用水热法?
• 中低温实现晶体的形成和生长,避免高温处理带 来的种种缺陷; • 应用一些溶解度低的原料,也降低了原料成本; • 具有比其他液相方法更快的晶体生长速率; • 可以生长产生各种不同的晶体形貌; • 反应温度相对较低,可以得到一些低温同质异构 体; • 可以方便地控制反应器内的反应气氛。
水热法
1 什么是水热法? 2 为什么要采用水热法? 3 应用中出现的一些现象的解释 4 水热法应用 5 水热法的缺陷 6 几个例子
2
1 什么是水热法
• 在特制的密闭反应容器里,采用水溶液作 为反应介质,通过对反应容器加热,创造 出一个高温、高压反应环境,使通常难溶 或不溶的物质溶解并且重结晶。
3
11
12
13
2.2 前驱体的溶解
化合物在水热溶液里的溶解度的温度特性分 三种情况: 1 正温度系数 2 负温度系数 3 部分温度范围内正温度系数,部分温度范 围内负温度系数。
14
负温度系数化合物
磷酸铝在磷酸 水溶液中的溶 解: 随着温度升高, 和压力降低, 溶解度降低。
15
变温度系数化合物
17
一般的矿化剂可以分为下面5类: 1 金属及铵的卤化物 2 碱金属的氢氧化物 3 弱酸与碱金属形成的盐类 4 强酸的盐类 5 酸类(一般为无机酸)
水热与溶剂热合成方法的概念水热法ppt课件

15
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应
课件:水热法

的无色绿柱石或祖母 绿生成板状晶体。 挂于高压釜中部。 温度:6000C 工作压力:830×105Pa 生长速度:每天0.1-0.8mm。 高压釜内衬铂金(或黄金)衬里;
水热法生长祖母绿的鉴别
(1)折射率、双折射率和相对密度:水热法合成祖母 绿与天然祖母绿相同。
(2)查尔斯滤色镜:通常显强红色,但也有些变色效 应较弱,如俄罗斯的呈弱红色。
水热法合成祖母绿
水热法生长红色绿柱石的鉴别 吸收光谱
合成红色绿柱石为钴(Co²+)谱与天然红色绿 柱石明显不同,即530-590nm之间几个模糊到清晰 的吸收带。而天然红色绿柱石是Mn致色,为 450nm以下和540-580nm之间的宽的吸收。
强红色荧光,滤色镜下强红色 黑色底衬下,强光照射会出现红色
如何鉴别? 4. 水热法生长宝石晶体的鉴定特征? 5. 影响水热法生长宝石晶体的因素是什么?
水热法
水热法是利用高温高压的水溶液溶解矿物质, 控制高压釜内溶液的温差产生对流和形成过 饱和状态,使溶解在溶液中的矿物质在种晶 上析出,生长成较大的晶体。 自然界热液成矿就是在一定的温度和压力下, 成矿热液中成矿物质从溶液中析出的过程。 水热法合成宝石就是模拟自然界热液成矿过 程中晶体的生长。
⑤ 面包屑状包裹体:在暗域下呈白色,形态上 与面包屑相似的包裹体,较小而且通常数量不 多。 ⑥ 尘埃状包裹体和种晶残余:尘埃状包裹体成 片地分布在无色种晶片与橙红色部分的交界面 上。
§5 水热法生长祖母绿晶体与鉴别
1960年澳大利亚人约翰.莱奇特纳首次获得 成功,后被林德公司购买了销售权
1969-1970年达高峰期,年产量2万克拉 我国1987年开始研究,1989年获得成功,
色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 因此,水热法合成的宝石品种有:
水热法生长祖母绿的鉴别
(1)折射率、双折射率和相对密度:水热法合成祖母 绿与天然祖母绿相同。
(2)查尔斯滤色镜:通常显强红色,但也有些变色效 应较弱,如俄罗斯的呈弱红色。
水热法合成祖母绿
水热法生长红色绿柱石的鉴别 吸收光谱
合成红色绿柱石为钴(Co²+)谱与天然红色绿 柱石明显不同,即530-590nm之间几个模糊到清晰 的吸收带。而天然红色绿柱石是Mn致色,为 450nm以下和540-580nm之间的宽的吸收。
强红色荧光,滤色镜下强红色 黑色底衬下,强光照射会出现红色
如何鉴别? 4. 水热法生长宝石晶体的鉴定特征? 5. 影响水热法生长宝石晶体的因素是什么?
水热法
水热法是利用高温高压的水溶液溶解矿物质, 控制高压釜内溶液的温差产生对流和形成过 饱和状态,使溶解在溶液中的矿物质在种晶 上析出,生长成较大的晶体。 自然界热液成矿就是在一定的温度和压力下, 成矿热液中成矿物质从溶液中析出的过程。 水热法合成宝石就是模拟自然界热液成矿过 程中晶体的生长。
⑤ 面包屑状包裹体:在暗域下呈白色,形态上 与面包屑相似的包裹体,较小而且通常数量不 多。 ⑥ 尘埃状包裹体和种晶残余:尘埃状包裹体成 片地分布在无色种晶片与橙红色部分的交界面 上。
§5 水热法生长祖母绿晶体与鉴别
1960年澳大利亚人约翰.莱奇特纳首次获得 成功,后被林德公司购买了销售权
1969-1970年达高峰期,年产量2万克拉 我国1987年开始研究,1989年获得成功,
色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 因此,水热法合成的宝石品种有:
第三章-水热法ppt课件

页面 15
完整版课件
2021/4/11
P 固
B 超临界 流体
液
C
A 气
O
T
图 2.2 超临界流体相图
页面 16
完整版课件
2021/4/11
超临界水(SCW)是指温度和压力分别高于其临 界温度(647K)和临界压力(22.1MPa),而密度 高于其临界密度(0.32g/cm3)的水。
页面 14
完整版课件
2021/4/11
超临界流体拥有一般溶剂所不具备的很多重要 特性。SCF的密度、溶剂化能力、粘度、介电常数 、扩散系数等物理化学性质随温度和压力的变化 十分敏感,即在不改变化学组成的情况下,其性 质可由压力来连续调节。能被用作SCF溶剂的物质 很多,如二氧化碳、水、一氧化氮、乙烷、庚烷 、氨等。超临界流体相图,如图2.2。
• 复 合 氧 化 物 : BaFe12O19 、 BaZrO3 、 CaSiO3 、 PbTiO3、LaFeO3、LaCrO3、NaZrP3O12等;
页面 5
完整版课件
2021/4/11
• 羟基化合物、羟基金属粉:Ca10(PO4)6(OH)2、 羟基铁、羟基镍;
• 复合材料粉体:ZrO2-C、ZrO2-CaSiO3、TiO2C、TiO2-Al2O3等。
的物理化学性质极大地扩大了所能制备的目
标产物的范围;
页面 10
完整版课件
2021/4/11
✓ 由于有机溶剂的低沸点,在同样的条件下, 它们可以达到比水热合成更高的气压,从而 有利于产物的结晶;
✓ 由于较低的反应温度,反应物中结构单元可 以保留到产物中,且不受破坏,同时,有机 溶剂官能团和反应物或产物作用,生成某些 新型在催化和储能方面有潜在应用的材料;
3.4.1水热法

沉淀过程:一般是指向溶液中加入化学试剂使
其中某种组分形成难溶化合物析出的过程。例如在 锌冶金中利用焙砂主要为(ZnO),将含Fe3+的 (ZnSO4)溶液中和,使Fe3+成Fe(OH)3沉淀: Fe2(SO4)3 + 3ZnO + 3H2O = 2Fe(OH)3 + 3Zn(SO)4
6
结晶过程:则是指改变溶液的物理化学条件,
2.3. 较快的晶体生长速率
高温高压下水的特性: 水分子为四面体结构缔合方式, 结构排列紧凑,组成聚合式时, 犹如紧密排列的固体晶相。 其堆积密度随着温度和压力的 变化而不同。
50
水粘度的降低
液态水状态下,随着温度 提高,水的粘度大幅度下 降。
假设反应器内液态水的填 充率为100%,此时水热溶 液的密度范围为0.7-0.9 kg/m3,那么在300-500℃ 时,水热溶液的粘度约为 9~14×10-5Pa.S,而室温 下水的粘度为10-3Pa.S。
62
4、以镀金属钛的硅片为衬底,以Ba(OH)2为 反应介质,在水热条件下制备钛酸钡薄膜。 图中给出了反应温度和时间对产物物相的 影响关系。经扫描电镜分析,发现A,B区的 晶体形貌与C区完全不同(如下图7、8所 示)。当继续延长反应时间,发现形成的 钛酸钡的膜厚度不再增加,请分析以上现 象。
46
一般的矿化剂可以分为下面5类: 1)金属及铵的卤化物 2)碱金属的氢氧化物 3)弱酸与碱金属形成的盐类 4)强酸的盐类 5)酸类(一般为无机酸)
47
有机物的溶解 有些有机物在常温下不溶于水,但是在水热条件下 迅速溶解或者分解。可用于对有毒物质的去除。
48
备注:多氯联苯(6种PCB化合物), Polychlorinated biphenyls 一直以来,PCBs在所有可行的溶液中都难以分解成无害的物质。 49
其中某种组分形成难溶化合物析出的过程。例如在 锌冶金中利用焙砂主要为(ZnO),将含Fe3+的 (ZnSO4)溶液中和,使Fe3+成Fe(OH)3沉淀: Fe2(SO4)3 + 3ZnO + 3H2O = 2Fe(OH)3 + 3Zn(SO)4
6
结晶过程:则是指改变溶液的物理化学条件,
2.3. 较快的晶体生长速率
高温高压下水的特性: 水分子为四面体结构缔合方式, 结构排列紧凑,组成聚合式时, 犹如紧密排列的固体晶相。 其堆积密度随着温度和压力的 变化而不同。
50
水粘度的降低
液态水状态下,随着温度 提高,水的粘度大幅度下 降。
假设反应器内液态水的填 充率为100%,此时水热溶 液的密度范围为0.7-0.9 kg/m3,那么在300-500℃ 时,水热溶液的粘度约为 9~14×10-5Pa.S,而室温 下水的粘度为10-3Pa.S。
62
4、以镀金属钛的硅片为衬底,以Ba(OH)2为 反应介质,在水热条件下制备钛酸钡薄膜。 图中给出了反应温度和时间对产物物相的 影响关系。经扫描电镜分析,发现A,B区的 晶体形貌与C区完全不同(如下图7、8所 示)。当继续延长反应时间,发现形成的 钛酸钡的膜厚度不再增加,请分析以上现 象。
46
一般的矿化剂可以分为下面5类: 1)金属及铵的卤化物 2)碱金属的氢氧化物 3)弱酸与碱金属形成的盐类 4)强酸的盐类 5)酸类(一般为无机酸)
47
有机物的溶解 有些有机物在常温下不溶于水,但是在水热条件下 迅速溶解或者分解。可用于对有毒物质的去除。
48
备注:多氯联苯(6种PCB化合物), Polychlorinated biphenyls 一直以来,PCBs在所有可行的溶液中都难以分解成无害的物质。 49
第三章水热法

反应时间
原料浓度可以影响反应速率和生成物的性质,进而影响材料的性能。
原料浓度
水热法的工艺流程和技术参数
03
水热法的工艺流程
选择合适的原材料,进行破碎、磨细等预处理
准备阶段
合成阶段
分离和洗涤阶段
干燥和包装阶段
将原料按一定比例混合,加入适量的水,放入高压反应釜中,在一定温度和压力下进行合成反应
反应结束后,将产物从反应釜中取出,进行分离和洗涤,得到最终产物
水热法在陶瓷行业的应用
水热法可以用来制备各种有色的金属,如铜、镍、钴等。通过水热还原反应,可以将金属氧化物还原成金属单质,并分离出来。
有色金属制备
水热法可以用来制备钢铁材料,通过将铁矿石和碳混合,再加入水蒸气,在高温高压下反应,可制备出优质的钢铁材料。
钢铁工业
水热法在冶金行业的应用
废水处理
水热法可以用来处理工业废水,通过将废水中的有害物质在密封的压力容器中加热到一定温度,并进行压力分解,可将其中的有害物质分解成无害物质,达到废水处理的目的。
材料合成
水热法可以用来合成各种无机非金属材料,如水晶、宝石等。通过控制反应条件,可以得到不同颜色、不同形状、不同光学性能的材料。
ห้องสมุดไป่ตู้
水热法在其他领域的应用
THANKS
感谢观看
水热法是合成新型功能材料和无机晶体材料的重要手段之一。例如,水热法可以合成各种类型的氧化物、硫化物、碳化物等材料,这些材料在光学、电子、催化等领域具有广泛的应用前景。
水热法的应用领域
水热法在处理环境污染和废弃物资源化方面也有广泛应用。例如,利用水热法可以将含重金属离子的废水转化为沉淀物,从而达到废水处理的目的。同时,水热法可以将废弃物资源转化为具有使用价值的材料,如将废玻璃转化为陶瓷材料等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在一般情况下,水是极性溶剂,可以很好的 溶解包括盐在内的大多数电解质,对气体和大多 数有机物则微溶或不溶。但是到达超临界状态时, 这些性质都发生极大的变化:
➢ 1944~1960年间, 化学家致力于低 温水热合成,美 国联合碳化物林 德分公司开发了 林德A型沸石 (图2.1)。
图2.1 林德A型沸石的结构
2020/6/20
页面 4
水热法制备出的粉体
简单的氧化物: ZrO2、Al2O3、SiO2、CrO2、Fe2O3 、MnO2、MoO3、TiO2、HfO2、UO2、Nb2O5、CeO2 等;
混合氧化物:ZrO2-SiO2、ZrO2-HfO2、UO2-ThO2 等 ;
复合氧化物:BaFe12O19、BaZrO3、CaSiO3、PbTiO3 、LaFeO3、LaCrO3、NaZrP3O12等;
2020/6/20
页面 5
羟基化合物、羟基金属粉:Ca10(PO4)6(OH)2、 羟基铁、羟基镍;
庚烷、氨等。超临界流体相图,如图2.2。
2020/6/20
页面 15
2020/6/20
P 固
B 超临界 流体
液
C
A 气
O
T
图 2.2 超临界流体相图
页面 16
超临界水(SCW)是指温度和压力分别高于其临界 温度(647K)和临界压力(22.1MPa),而密度高于
其临界密度(0.32g/cm3)的水。
复合材料粉体:ZrO2-C、ZrO2-CaSiO3、TiO2C、TiO2-Al2O3等。
某些种类的粉体的水热法制备已实现工业化生 产 :日本 Showa Denko K.K 生产的Al2O3粉, Chichibu Cement Co. Ltd生产的 ZrO2粉体和 Sakai Chemical Co.Ltd生产的BaTiO3粉体,美 国Cabot Corp生产的介电陶瓷粉体,日本Sakai Chem.Corp和NEC生产的PZT粉体等。
2020/6/20
页面 6
溶剂热合成方法的发展
➢ 1985年,Bindy首次在“Nature”杂志上发表文章 报道了高压釜中利用非水溶剂合成沸石的方 法,拉开了溶剂热合成的序幕。
➢ 到目前为止,溶剂热合成法已得到很快的发 展,并在纳米材料制备中具有越来越重要的作 用。在溶剂热条件下,溶剂的物理化学性质如 密度、介电常数、粘度、分散作用等相互影 响,与通常条件下相差很大。
标产物的范围;
2020/6/20
页面 10
✓ 由于有机溶剂的低沸点,在同样的条件下, 它们可以达到比水热合成更高的气压,从而 有利于产物的结晶;
✓ 由于较低的反应温度,反应物中结构单元可 以保留到产物中,且不受破坏,同时,有机 溶剂官能团和反应物或产物作用,生成某些 新型在催化和储能方面有潜在应用的材料;
2020/6/20
页面 8
➢ 另外,物相的形成,粒径的大小、形态也能够有效 控制,而且产物的分散性好。
➢ 更重要的是通过溶剂热合成出的纳米粉末,能够有 效的避免表面羟基的存在,使得产物能稳定存在。
➢ 作为反应物的盐的结晶水和反应生成的水,相对于 大大过量的有机溶剂,水的量小得可以忽略。
2020/6/20
页面 9
与水热法相比,溶剂热法具有以下优点:
✓ 在有机溶剂中进行的反应能够有效地抑制产 物的氧化过程或水中氧的污染;
✓ 非水溶剂的采用使得溶剂热法可选择原料的
范围大大扩大,比如氟化物,氮化物,硫化
合物等均可作为溶剂热反应的原材料;同
时,非水溶剂在亚临界或超临界状态下独特
的物理化学性质极大地扩大了所能制备的目
第二章 水热与溶剂热合成
主要内容
2.1 水热与溶剂热合成方法的发展 2.2 水热与溶剂热合成方法原理 2.3 水热与溶剂热合成工艺 2.4 水热与溶剂热合成方法应用实例
2020/6/20
பைடு நூலகம்
页面 2
水热合成方法的发展
➢ 最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F. Eschafhautl以硅酸为原料在水热条件下制备石英晶 体
2020/6/20
页面 11
✓ 非水溶剂的种类繁多,其本身的一些特性, 如极性与非极性、配位络合作用、热稳定性 等,为我们从反应热力学和动力学的角度去 认识化学反应的实质与晶体生长的特性,提 供了研究线索。
2020/6/20
页面 12
尽管水热合成的技术优势很显著,国内 外也取得了很多研究成果,但它的缺陷也 比较明显的,其中最为突出的是反应周期 长。故近年来在水热合成技术上发展了几
➢密度比常压气体大102~103倍。
2020/6/20
页面 14
超临界流体拥有一般溶剂所不具备的很多重要 特性。SCF的密度、溶剂化能力、粘度、介电常 数、扩散系数等物理化学性质随温度和压力的变 化十分敏感,即在不改变化学组成的情况下,其 性质可由压力来连续调节。能被用作SCF溶剂的 物质很多,如二氧化碳、水、一氧化氮、乙烷、
2020/6/20
页面 7
➢ 相应的,它不但使反应物(通常是固体)的溶 解、分散过程及化学反应活性大大增强,使得 反应能够在较低的温度下发生,而且由于体系 化学环境的特殊性,可能形成以前在常规条件 下无法得到的亚稳相。
➢ 该过程相对简单、易于控制,并且在密闭体系 中可以有效地防止有毒物质的挥发和制备对空 气敏感的前驱体和目标产物;
种新技术。 ➢超临界水热合成法
➢微波水热法
2020/6/20
页面 13
1.超临界水热合成
超临界流体(SCF)是指温度及压力都处于临界 温度和临界压力之上的流体。
在超临界状态下,物质有近于液体的溶解特性以 及气体的传递特性:
➢粘度约为普通液体的0.1~0.01;
➢扩散系数约为普通液体的10~100倍;
➢ 一些地质学家采用水热法制备得到了许多矿物,到 1900年已制备出约80种矿物,其中经鉴定确定有石 英,长石,硅灰石等
➢ 1900年以后,G.W. Morey和他的同事在华盛顿地球 物理实验室开始进行相平衡研究,建立了水热合成 理论,并研究了众多矿物系统。
2020/6/20
页面 3
水热法一直主要用于地球科学研究,二战以后 才逐渐用于单晶生长等材料的制备领域,此后,随 着材料科学技术的发展,水热法在制备超细颗粒, 无机薄膜,微孔材料等方面都得到了广泛应用。
➢ 1944~1960年间, 化学家致力于低 温水热合成,美 国联合碳化物林 德分公司开发了 林德A型沸石 (图2.1)。
图2.1 林德A型沸石的结构
2020/6/20
页面 4
水热法制备出的粉体
简单的氧化物: ZrO2、Al2O3、SiO2、CrO2、Fe2O3 、MnO2、MoO3、TiO2、HfO2、UO2、Nb2O5、CeO2 等;
混合氧化物:ZrO2-SiO2、ZrO2-HfO2、UO2-ThO2 等 ;
复合氧化物:BaFe12O19、BaZrO3、CaSiO3、PbTiO3 、LaFeO3、LaCrO3、NaZrP3O12等;
2020/6/20
页面 5
羟基化合物、羟基金属粉:Ca10(PO4)6(OH)2、 羟基铁、羟基镍;
庚烷、氨等。超临界流体相图,如图2.2。
2020/6/20
页面 15
2020/6/20
P 固
B 超临界 流体
液
C
A 气
O
T
图 2.2 超临界流体相图
页面 16
超临界水(SCW)是指温度和压力分别高于其临界 温度(647K)和临界压力(22.1MPa),而密度高于
其临界密度(0.32g/cm3)的水。
复合材料粉体:ZrO2-C、ZrO2-CaSiO3、TiO2C、TiO2-Al2O3等。
某些种类的粉体的水热法制备已实现工业化生 产 :日本 Showa Denko K.K 生产的Al2O3粉, Chichibu Cement Co. Ltd生产的 ZrO2粉体和 Sakai Chemical Co.Ltd生产的BaTiO3粉体,美 国Cabot Corp生产的介电陶瓷粉体,日本Sakai Chem.Corp和NEC生产的PZT粉体等。
2020/6/20
页面 6
溶剂热合成方法的发展
➢ 1985年,Bindy首次在“Nature”杂志上发表文章 报道了高压釜中利用非水溶剂合成沸石的方 法,拉开了溶剂热合成的序幕。
➢ 到目前为止,溶剂热合成法已得到很快的发 展,并在纳米材料制备中具有越来越重要的作 用。在溶剂热条件下,溶剂的物理化学性质如 密度、介电常数、粘度、分散作用等相互影 响,与通常条件下相差很大。
标产物的范围;
2020/6/20
页面 10
✓ 由于有机溶剂的低沸点,在同样的条件下, 它们可以达到比水热合成更高的气压,从而 有利于产物的结晶;
✓ 由于较低的反应温度,反应物中结构单元可 以保留到产物中,且不受破坏,同时,有机 溶剂官能团和反应物或产物作用,生成某些 新型在催化和储能方面有潜在应用的材料;
2020/6/20
页面 8
➢ 另外,物相的形成,粒径的大小、形态也能够有效 控制,而且产物的分散性好。
➢ 更重要的是通过溶剂热合成出的纳米粉末,能够有 效的避免表面羟基的存在,使得产物能稳定存在。
➢ 作为反应物的盐的结晶水和反应生成的水,相对于 大大过量的有机溶剂,水的量小得可以忽略。
2020/6/20
页面 9
与水热法相比,溶剂热法具有以下优点:
✓ 在有机溶剂中进行的反应能够有效地抑制产 物的氧化过程或水中氧的污染;
✓ 非水溶剂的采用使得溶剂热法可选择原料的
范围大大扩大,比如氟化物,氮化物,硫化
合物等均可作为溶剂热反应的原材料;同
时,非水溶剂在亚临界或超临界状态下独特
的物理化学性质极大地扩大了所能制备的目
第二章 水热与溶剂热合成
主要内容
2.1 水热与溶剂热合成方法的发展 2.2 水热与溶剂热合成方法原理 2.3 水热与溶剂热合成工艺 2.4 水热与溶剂热合成方法应用实例
2020/6/20
பைடு நூலகம்
页面 2
水热合成方法的发展
➢ 最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F. Eschafhautl以硅酸为原料在水热条件下制备石英晶 体
2020/6/20
页面 11
✓ 非水溶剂的种类繁多,其本身的一些特性, 如极性与非极性、配位络合作用、热稳定性 等,为我们从反应热力学和动力学的角度去 认识化学反应的实质与晶体生长的特性,提 供了研究线索。
2020/6/20
页面 12
尽管水热合成的技术优势很显著,国内 外也取得了很多研究成果,但它的缺陷也 比较明显的,其中最为突出的是反应周期 长。故近年来在水热合成技术上发展了几
➢密度比常压气体大102~103倍。
2020/6/20
页面 14
超临界流体拥有一般溶剂所不具备的很多重要 特性。SCF的密度、溶剂化能力、粘度、介电常 数、扩散系数等物理化学性质随温度和压力的变 化十分敏感,即在不改变化学组成的情况下,其 性质可由压力来连续调节。能被用作SCF溶剂的 物质很多,如二氧化碳、水、一氧化氮、乙烷、
2020/6/20
页面 7
➢ 相应的,它不但使反应物(通常是固体)的溶 解、分散过程及化学反应活性大大增强,使得 反应能够在较低的温度下发生,而且由于体系 化学环境的特殊性,可能形成以前在常规条件 下无法得到的亚稳相。
➢ 该过程相对简单、易于控制,并且在密闭体系 中可以有效地防止有毒物质的挥发和制备对空 气敏感的前驱体和目标产物;
种新技术。 ➢超临界水热合成法
➢微波水热法
2020/6/20
页面 13
1.超临界水热合成
超临界流体(SCF)是指温度及压力都处于临界 温度和临界压力之上的流体。
在超临界状态下,物质有近于液体的溶解特性以 及气体的传递特性:
➢粘度约为普通液体的0.1~0.01;
➢扩散系数约为普通液体的10~100倍;
➢ 一些地质学家采用水热法制备得到了许多矿物,到 1900年已制备出约80种矿物,其中经鉴定确定有石 英,长石,硅灰石等
➢ 1900年以后,G.W. Morey和他的同事在华盛顿地球 物理实验室开始进行相平衡研究,建立了水热合成 理论,并研究了众多矿物系统。
2020/6/20
页面 3
水热法一直主要用于地球科学研究,二战以后 才逐渐用于单晶生长等材料的制备领域,此后,随 着材料科学技术的发展,水热法在制备超细颗粒, 无机薄膜,微孔材料等方面都得到了广泛应用。