2013年辽宁省锦州市中考数学试卷(解析版)
辽宁省锦州市中考数学真题试题

辽宁省锦州市2013年中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面的表格中.每小题3分,共24分)1.(3分)﹣3的倒数是()A.B.﹣3 C.3D.2.(3分)下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x53.(3分)下列几何体中,主视图和左视图不同的是()A.圆柱B.正方体C.正三棱柱D.球4.(3分)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.45.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)如图,直线y=mx与双曲线y=交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△A BM=2,则k的值为()A.﹣2 B.2C.4D.﹣47.(3分)有如下四个命题:(1)三角形有且只有一个内切圆;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有()A.1个B.2个C.3个D.4个8.(3分)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是()A.B.C.D.=二、填空题(本大题共8个小题,每小题3分,共24分)9.(3分)分解因式x3﹣xy2的结果是x(x+y)(x﹣y).10.(3分)函数中,自变量x的取值范围是x≥2.11.(3分)据统计,2013锦州世界园林博览会6月1日共接待游客约154000人次,154000可用科学记数法表示为 1.54×105.12.(3分)为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2甲=1.22,S2乙=1.68,S2丙=0.44,则应该选丙参加全运会.13.(3分)计算:|1﹣|+﹣(3.14﹣π)0﹣(﹣)﹣1= 3.14.(3分)在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是.15.(3分)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE.已知AE=5,tan∠AED=,则BE+CE= 6或16 .16.(3分)二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n C n 都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n C n的周长为4n .三、解答题(本大题共2个小题,每小题8分,共16分)17.(8分)先将(1﹣)÷化简,然后请自选一个你喜欢的x值代入求值.18.(8分)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图中信息解答下列问题:(1)求2013年全国普通高校毕业生数年增长率约是多少?(精确到0.1%)(2)求2011年全国普通高校毕业生数约是多少万人?(精确到万位)(3)补全折线统计图和条形统计图.20.(10分)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.五、解答题(本大题共2个小题,每小题10分,共20分)21.(10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.22.(10分)如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)六、解答题(本大题共2个小题,每小题10分,共20分)23.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2,求由劣弧BC、线段CE和BE所围成的图形面积S.24.(10分)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?七、解答题(本题12分)25.(12分)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.八、解答题(本题14分)26.(14分)如图,抛物线y=﹣x2+mx+n经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式及点C的坐标;(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F 恰好落在线段AC上时,求线段OE的长;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG 所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S 有最大值,最大值是多少?。
锦州市2012~2013学年度第二学期九年级质量检测(一)

锦州市2012~2013学年度第二学期九年级质量检测(一)数学试题参考答案及评分标准(注:若有其他正确答案请参照此标准赋分)一、选择题(本大题共8个小题,每小题3分,共24分)二、填空题(本大题共8个小题,每小题3分,共24分) 9.2x ≤ 10.1 11.4R r =或14r R = 12. 47 13. (-2,2)14.2015 15.1802n - 16. 6 三、解答题(本大题共2个小题,每小题8分,共16分) 17.原式=(2)(2)5)22y y y y ⎡⎤+--⎢⎥--⎣⎦÷348y y -- =292y y --÷348y y --=(3)(3)2y y y +--×4(2)3y y --=4(y+3)或4y+12. ………………………… 6分当y=12-时,原式=4×(12-+3)=10. ………………………… 8分 18.(1)方法1:∵MN 垂直平分BD ,∴BO=DO. …………………………2分∵四边形ABCD 是矩形, ∴AD ∥BC ,即MD ∥BN.∴∠MDB=∠DBN, ∠DMN=∠BNM. ∴△BON ≌△DOM . ∴MD=BN . ∴四边形BMDN 是平行四边形. 又∵MN ⊥BD ,∴四边形BMDN 是菱形. …………………………6分方法2:∵MN 垂直平分BD ,∴MB=MD ,NB=ND .∴∠MBD=∠MDB, ∠NBD=∠NDB . …………………………2分 ∵四边形ABCD 是矩形, ∴AD ∥BC .∴∠MDB=∠DBN .∴∠MBD=∠MDB=∠NBD=∠NDB .∵BD=BD,∴△BMD≌△BND.∴BM=BN=DM=DN.∴四边形BMDN是菱形.…………………………6分方法3:∵MN垂直平分BD,∴MB=MD,NB=ND.∴∠MBD=∠MDB, ∠NBD=∠NDB.…………………………2分∵四边形ABCD是矩形,∴AB=DC, ∠A=∠ABC=∠C=∠ADC=90°.∴∠ABC―∠MBD―∠NBD=∠ADC―∠MDB―∠NDB, 即∠ABM=∠NDC.∴△ABM≌△CDN.∴BM=DN.∴BM=BN=DM=DN.∴四边形BMDN是菱形.(2)∵MN垂直平分BD,∴MB=MD.…………………………6分在Rt△ABM中, ∵BM2=AB2+AM2,∴MD2=1+(2―错误!链接无效。
2013辽宁省中考数学试题及答案

辽宁省大连市2013年中考数学试卷一、选择题(本题8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2013•大连)﹣2的相反数是()A.﹣2B.C.D.2﹣考点:相反数.分析:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣2的相反数是2.故选D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得三个横向排列的正方形.故选A.点评:本题考查了三视图的知识,要求同学们掌握俯视图是从物体的上面看得到的视图.3.(3分)(2013•大连)计算(x2)3的结果是()A.x B.3x2C.x5D.x6考点:幂的乘方与积的乘方.分析:根据幂的乘方法则进行解答即可.解答:解:(x2)3=x6,故选:D.点评:本题考查的是幂的乘方法则,即幂的乘方法则:底数不变,指数相乘.4.(3分)(2013•大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.B.C.D.考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解;袋子中球的总数为:2+3=5,取到黄球的概率为:.故选:B.点评:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.5.(3分)(2013•大连)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°考点:角平分线的定义.分析:首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD的度数.解答:解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.点评:此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.6.(3分)(2013•大连)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4B.m>﹣4C.m<4D.m>4考点:根的判别式.专题:计算题.分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.(3分)(2013•大连)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:金额/元56710人数2321这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元考点:加权平均数.分析:根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.解答:解:根据题意得:(5×2+6×3+7×2+10×1)÷8=6.59(元);故选C.点评:此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.8.(3分)(2013•大连)P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2考点:轴对称的性质.分析:作出图形,根据轴对称的性质求出OP1、OP2的数量与夹角即可得解.解答:解:如图,∵点P关于直线OA、OB的对称点P1、P2,∴OP1=OP2=OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,=2(∠AOP+∠BOP),=2∠AOB,∵∠AOB度数任意,∴OP1⊥OP2不一定成立.故选B.点评:本题考查了轴对称的性质,是基础题,熟练掌握性质是解题的关键,作出图形更形象直观.二、填空题(本题8小题,每小题3分,共24分)9.(3分)(2013•大连)因式分解:x2+x=x(x+1).考点:因式分解-提公因式法.分析:根据观察可知原式公因式为x,直接提取可得.解答:解:x2+x=x(x+1).点评:本题考查了提公因式法分解因式,通过观察可直接得出公因式,结合观察法是解此类题目的常用的方法.10.(3分)(2013•大连)在平面直角坐标系中,点(2,﹣4)在第四象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(2,﹣4)在第四象限.故答案为:四.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(3分)(2013•大连)把16000000用科学记数法表示为 1.6×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将16000000用科学记数法表示为:1.6×107.故答案为:1.6×107.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2013•大连)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:移植总数(n)400750150035007000900014000成活数(m)3696621335320363358073126280.9230.8830.8900.9150.9050.8970.902成活的频率根据表中数据,估计这种幼树移植成活率的概率为0.9(精确到0.1).考点:利用频率估计概率.分析:对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.解答:解:=(0.923+0.883+0.890+0.915+0.905+0.897+0.902)÷7≈0.9,∴这种幼树移植成活率的概率约为0.9.故本题答案为:0.9.点评:此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(3分)(2013•大连)化简:x+1﹣=.考点:分式的加减法.专题:计算题.分析:先通分,再把分子相加减即可.解答:解:原式=﹣==.故答案为:.点评:本题考查的是分式的加减法,异分母分式加减把分母不相同的几个分式化成分母相同的分式,再把分子相加减即可.14.(3分)(2013•大连)用一个圆心角为90°半径为32cm的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为8cm.考点:圆锥的计算.分析:半径为32cm,圆心角为90°的扇形的弧长是=16π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是16π,设圆锥的底面半径是r,则得到2πr=16π,求出r的值即可.解答:解:∵=16π,圆锥的底面周长等于侧面展开图的扇形弧长,∴圆锥的底面周长是16πcm,设圆锥的底面半径是r,则得到2πr=16π,解得:r=8(cm).故答案为:8.点评:本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.15.(3分)(2013•大连)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约为15.3m(精确到0.1m).(参考数据:≈1.41,,1.73)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ACD中求出AC,在Rt△BCD中求出BC,继而可得出AB.解答:解:在Rt△ACD中,CD=21m,∠DAC=30°,则AC=CD≈36.3m;在Rt△BCD中,∠DBC=45°,则BC=CD=21m,故AB=AC﹣BC=15.3m.故答案为:15.3.点评:本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,理解俯角的定义,能利用三角函数表示线段的长度.16.(3分)(2013•大连)如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为y=x2﹣x+.考点:二次函数图象与几何变换.分析:先求出点A的坐标,再根据抛物线的对称性可得顶点C的纵坐标,然后利用顶点坐标公式列式求出b的值,再求出点D的坐标,根据平移的性质设平移后的抛物线的解析式为y=x2+mx+n,把点A、D的坐标代入进行计算即可得解.解答:解:∵令x=0,则y=,∴点A(0,),根据题意,点A、B关于对称轴对称,∴顶点C的纵坐标为×=,即=,解得b1=3,b2=﹣3,由图可知,﹣>0,∴b<0,∴b=﹣3,∴对称轴为直线x=﹣=,∴点D的坐标为(,0),设平移后的抛物线的解析式为y=x2+mx+n,则,解得,所以,y=x2﹣x+.故答案为:y=x2﹣x+.点评:本题考查了二次函数图象与几何变换,根据二次函数图象的对称性确定出顶点C的纵坐标是解题的关键,根据平移变换不改变图形的形状与大小确定二次项系数不变也很重要.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)(2013•大连)计算:()﹣1+(1+)(1﹣)﹣.考点:二次根式的混合运算;负整数指数幂.分析:分别进行负整数指数幂、平方差公式、二次根式的化简等运算,然后合并即可.解答:解:原式=5+1﹣3﹣2=3﹣2.点评:本题考查了二次根式的混合运算,涉及了负整数指数幂、平方差公式、二次根式的化简等知识,属于基础题,解题的关键是掌握各知识点的运算法则.18.(9分)(2013•大连)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:先分别求出各不等式的解集,再求其公共解集即可.解答:解:解不等式①得:x>2解不等式②得:x>4在数轴上分别表示①②的解集为:∴不等式的解集为:x>4.点评:求不等式的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.19.(9分)(2013•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据平行四边形性质得出AD∥BC,AD=BC,求出DE=BF,DE∥BF,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.点评:本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等.20.(12分)(2013•大连)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年共366天).大连市2012年海水浴场环境质量监测结果统计表,监测时段:2012年7月至9月浴场名称优(%)良(%)差(%)浴场125750浴场230700浴场330700浴场440600浴场550500浴场630700浴场710900浴场8105040根据以上信息,解答下列问题:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是浴场5(填浴场名称),海水浴场环境质量为优的数据的众数为30%,海水浴场环境质量为良的数据的中位数为70%;(2)2012年大连市区空气质量达到优的天数为129天,占全年(366)天的百分比约为35.2%(精确到0.1%);(3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).考点:条形统计图;用样本估计总体;统计表;中位数;众数分析:(1)根据优所占的百分比越大,良的百分比越小,即可得出8个海水浴场环境质量最好的浴场;再根据众数的定义和中位数的定义即可得出答案;众数是一组数据中出现次数最多的数;中位数是中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).(2)根据图形所给的数可直接得出2012年大连市区空气质量达到优的天数,总用得出的天数除以366,即可得出所占的百分比;(3)根据污染的天数所占的百分比求出污染的天数,再用总天数减去优的天数和污染的天数,即可得出良的天数.解答:解:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是浴场5,海水浴场环境质量为优的数据30出现了3次,出现的次数最多,则海水浴场环境质量为优的数据的众数为30;把海水浴场环境质量为良的数据从小到大排列为:50,50,60,70,70,70,75,90,海水浴场环境质量为良的数据的中位数为(70+70)÷2=70;故答案为:浴场5,30,70;(2)从条形图中可以看出2012年大连市区空气质量达到优的天数为129天,所占的百分比是×100%=35.2%;故答案为:129,35.2%;(3)污染的天数是:366×3.8%≈14(天),良的天数是366﹣129﹣14=223(天),答:2012年大连市区空气质量为良的天数是223天.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;众数是一组数据中出现次数最多的数;中位数是中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(9分)(2013•大连)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1260元,A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B两种糖果各购进多少千克?考点:分式方程的应用分析:先设A种糖果购进x千克,则B种糖果购进3x千克,根据A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元,列出不等式,求出x的值,再进行检验即可得出答案.解答:解:设A种糖果购进x千克,则B种糖果购进3x千克,根据题意得:﹣=2,解得:x=30,经检验x=30是原方程的解,则B购进的糖果是:30×3=90(千克),答:A种糖果购进30千克,B种糖果购进90千克.点评:此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,等量关系为:价格=.22.(9分)(2013•大连)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(m,1)、B(﹣1,n),与x轴相交于点C(2,0),且AC=OC.(1)求该反比例函数和一次函数的解析式;(2)直接写出不等式ax+b≥的解集.考点:反比例函数与一次函数的交点问题专题:计算题.分析:(1)过A作AD垂直于x轴,如图所示,由C的坐标求出OC的长,根据AC=OC求出AC的长,由A的纵坐标为1,得到AD=1,利用勾股定理求出CD的长,有OC+CD求出OD的长,确定出m的值,将A于与C坐标代入一次函数解析式求出a于b的值,即可得出一次函数解析式;将A 坐标代入反比例函数解析式求出k的值,即可确定出反比例解析式;(2)将B坐标代入反比例解析式中求出n的值,确定出B坐标,利用图形即可得出所求不等式的解集.解答:解:(1)过A作AD⊥x轴,可得AD=1,∵C(2,0),即OC=2,∴OA=OC=,在Rt△ACD中,根据勾股定理得:CD=1,∴OD=OC+CD=2+1=3,∴A(3,1),将A与C坐标代入一次函数解析式得:,解得:a=1,b=﹣2,∴一次函数解析式为y=x﹣2;将A(3,1)代入反比例解析式得:k=3,则反比例解析式为y=;(2)将B(﹣1,n)代入反比例解析式得:n=﹣3,即B(﹣1,﹣3),根据图形得:不等式ax+b≥的解集为﹣1≤x<0或x≥3.点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,利用啦数形结合的思想,熟练掌握待定系数法是解本题的关键.23.(10分)(2013•大连)如图,AB是⊙O的直径,CD与⊙O相切于点C,DA⊥AB,DO及DO的延长线与⊙O分别相交于点E、F,EB与CF相交于点G.(1)求证:DA=DC;(2)⊙O的半径为3,DC=4,求CG的长.考点:切线的判定;勾股定理;垂径定理;相似三角形的判定与性质分析:(1)连接OC,∠DAO=∠DCO=90°,根据HL证Rt△DAO≌Rt△DCO,根据全等三角形的性质推出即可;(2)连接BF、CE、AC,由切线长定理求出DC=DA=4,求出DO=5,CM、AM的长,由勾股定理求出BC长,根据△BGC∽△EGF求出==,则CG=CF;利用勾股定理求出CF的长,则CG的长度可求得.解答:(1)证明:连接OC,∵DC是⊙O切线,∴OC⊥DC,∵OA⊥DA,∴∠DAO=∠DCO=90°,在Rt△DAO和Rt△DCO中∴Rt△DAO≌Rt△DCO(HL),∴DA=DC.(2)解:连接BF、CE、AC,由切线长定理得:DC=DA=4,DO⊥AC,∴DO平分AC,在Rt△DAO中,AO=3,AD=4,由勾股定理得:DO=5,∵由三角形面积公式得:DA•AO=DO•AM,则AM=,同理CM=AM=,AC=.∵AB是直径,∴∠ACB=90°,由勾股定理得:BC==.∵∠GCB=∠GEF,∠GFE=∠GBC,(圆周角定理)∴△BGC∽△EGF,∴===,在Rt△OMC中,CM=,OC=3,由勾股定理得:OM=,在Rt△EMC中,CM=,ME=OE﹣OM=3﹣=,由勾股定理得:CE=,在Rt△CEF中,EF=6,CE=,由勾股定理得:CF=.∵CF=CG+GF,=,∴CG=CF=×=.点评:本题考查了切线的判定和性质,切线长定理,勾股定理,全等三角形的性质和判定,相似三角形的性质和判定,圆周角定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力,综合性比较强,难度偏大.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)(2013•大连)如图,一次函数y=﹣x+4的图象与x轴、y轴分别相交于点A、B.P是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.(1)t为何值时,点D恰好与点A重合?(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.考点:一次函数综合题.分析:(1)首先求出点A、B的坐标,然后在Rt△BCP中,解直角三角形求出BC,CP的长度;进而利用关系式AB=BC+CD,列方程求出t的值;(2)点P运动的过程中,分为四个阶段,需要分类讨论:①当0<t≤时,如题图所示,重合部分为△PCD;②当<t≤4时,如答图1所示,重合部分为四边形ACPE;③当4<t≤时,如答图2所示,重合部分为△ACE;④当t>时,无重合部分.解答:解:(1)在一次函数解析式y=﹣x+4中,令x=0,得y=4;令y=0,得x=3,∴A(3,0),B(0,4).在Rt△AOB中,OA=3,OB=4,由勾股定理得:AB=5.在Rt△BCP中,CP=PB•sin∠ABO=t,BC=PB•cos∠ABO=t,∴CD=CP=t.若点D恰好与点A重合,则BC+CD=AB,即t+t=5,解得:t=,∴当t=时,点D恰好与点A重合.(2)当点P与点O重合时,t=4;当点C与点A重合时,由BC=BA,即t=5,得t=.点P在射线BO上运动的过程中:①当0<t≤时,如题图所示:=CP•CD=•t•t=t2;此时S=S△PCD②当<t≤4时,如答图1所示,设PC与x轴交于点E.BD=BC+CD=t+t=t,过点D作DN⊥y轴于点N,则ND=BD•sin∠ABO=t•=t,BN=BD•cos∠ABO=t•=t.∴PN=BN﹣BP=t﹣t=t,ON=BN﹣OB=t﹣4.∵ND∥x轴,∴,即,得:OE=28﹣7t.∴AE=OA﹣OE=3﹣(28﹣7t)=7t﹣25.﹣S△ADE=CP•CD﹣AE•ON=t2﹣(7t﹣25)(t﹣4)=t2+28t﹣50;故S=S△PCD③当4<t≤时,如答图2所示,设PC与x轴交于点E.AC=AB﹣BC=5﹣t,∵tan∠OAB==,∴CE=AC•tan∠OAB=(5﹣t)×=﹣t.=AC•CE=(5﹣t)•(﹣t)=t2﹣t+;故S=S△ACE④当t>时,无重合部分,故S=0.综上所述,S与t的函数关系式为:S=.点评:本题考查了典型的运动型综合题,且计算量较大,有一定的难度.解题关键在于:一,分析点P的运动过程,区分不同的阶段,分类讨论计算,避免漏解;二,善于利用图形面积的和差关系计算所求图形的面积;三,认真计算,避免计算错误.25.(12分)(2013•大连)将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.(1)如图1,若∠ABC=α=60°,BF=AF.①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示).考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;解直角三角形.分析:(1)由旋转性质证明△ABD为等边三角形,则∠DAB=∠ABC=60°,所以DA∥BC;(2)①如答图1所示,作辅助线(在DF上截取DG=AF,连接BG),构造全等三角形△DBG≌△ABF,得到BG=BF,∠DBG=∠ABF;进而证明△BGF为等边三角形,则GF=BF=AF;从而DF=2AF;②与①类似,作辅助线,构造全等三角形△DBG≌△ABF,得到BG=BF,∠DBG=∠ABF,由此可知△BGF为顶角为α的等腰三角形,解直角三角形求出GF的长度,从而得到DF长度,问题得解.解答:(1)证明:①由旋转性质可知,∠DBE=∠ABC=60°,BD=AB∴△ABD为等边三角形,∴∠DAB=60°,∴∠DAB=∠ABC,∴DA∥BC.②猜想:DF=2AF.证明:如答图1所示,在DF上截取DG=AF,连接BG.由旋转性质可知,DB=AB,∠BDG=∠BAF.∵在△DBG与△ABF中,∴△DBG≌△ABF(SAS),∴BG=BF,∠DBG=∠ABF.∵∠DBG+∠GBE=α=60°,∴∠GBE+∠ABF=60°,即∠GBF=α=60°,又∵BG=BF,∴△BGF为等边三角形,∴GF=BF,又BF=AF,∴GF=AF.∴DF=DG+GF=AF+AF=2AF.(2)解:如答图2所示,在DF上截取DG=AF,连接BG.由(1),同理可证明△DBG≌△ABF,BG=BF,∠GBF=α.过点B作BN⊥GF于点N,∵BG=BF,∴点N为GF中点,∠FBN=.在Rt△BFN中,NF=BF•sin∠FBN=BFsin=mAFsin.∴GF=2NF=2mAFsin∴DF=DG+GF=AF+2mAFsin,∴=1+2msin.点评:本题是几何综合题,考查了旋转性质、全等三角形的判定与性质、等边三角形的判定与性质、解直角三角形等知识点.难点在于第(2)问,解题关键是构造全等三角形得到等腰三角形,同学们往往不能由此突破而陷入迷途.26.(12分)(2013•大连)如图,抛物线y=﹣x2+x﹣4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.考点:二次函数综合题.分析:(1)在抛物线解析式中,令y=0,解一元二次方程,可求得点A、点B的坐标;如答图1所示,作辅助线,构造全等三角形△AMF≌△BME,得到点M为为Rt△EDF斜边EF的中点,从而得到MD=ME,问题得证;(2)首先分析,若△MDE为等腰直角三角形,直角顶点只能是点M.如答图2所示,设直线PC 与对称轴交于点N,首先证明△ADM≌△NEM,得到MN=AM,从而求得点N坐标为(3,2);其次利用点N、点C坐标,求出直线PC的解析式;最后联立直线PC与抛物线的解析式,求出点P 的坐标.(3)当点P是抛物线在x轴下方的一个动点时,解题思路与(2)完全相同.解答:解:(1)抛物线解析式为y=﹣x2+x﹣4,令y=0,即﹣x2+x﹣4=0,解得x=1或x=5,∴A(1,0),B(5,0).如答图1所示,分别延长AD与EM,交于点F.∵AD⊥PC,BE⊥PC,∴AD∥BE,∴∠MAF=∠MBE.在△AMF与△BME中,,∴△AMF≌△BME(ASA),∴ME=MF,即点M为Rt△EDF斜边EF的中点,∴MD=ME,即△MDE是等腰三角形.(2)答:能.抛物线解析式为y=﹣x2+x﹣4=﹣(x﹣3)2+,∴对称轴是直线x=3,M(3,0);令x=0,得y=﹣4,∴C(0,﹣4).△MDE为等腰直角三角形,有3种可能的情形:①若DE⊥EM,由DE⊥BE,可知点E、M、B在一条直线上,而点B、M在x轴上,因此点E必然在x轴上,由DE⊥BE,可知点E只能与点O重合,即直线PC与y轴重合,不符合题意,故此种情况不存在;②若DE⊥DM,与①同理可知,此种情况不存在;③若EM⊥DM,如答图2所示:设直线PC与对称轴交于点N,∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA.在△ADM与△NEM中,∴△ADM≌△NEM(ASA),∴MN=MA.抛物线解析式为y=﹣x2+x﹣4=﹣(x﹣3)2+,故对称轴是直线x=3,∴M(3,0),MN=MA=2,∴N(3,2).设直线PC解析式为y=kx+b,∵点N(3,2),C(0,﹣4)在抛物线上,∴,解得k=2,b=﹣4,∴y=2x﹣4.将y=2x﹣4代入抛物线解析式得:2x﹣4=﹣x2+x﹣4,解得:x=0或x=,当x=0时,交点为点C;当x=时,y=2x﹣4=3.∴P(,3).综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,3).(3)答:能.如答题3所示,设对称轴与直线PC交于点N.与(2)同理,可知若△MDE为等腰直角三角形,直角顶点只能是点M.∵MD⊥ME,MA⊥MN,∴∠DMN=∠EMB.在△DMN与△EMB中,∴△DMN≌△EMB(ASA),∴MN=MB.∴N(3,﹣2).设直线PC解析式为y=kx+b,∵点N(3,﹣2),C(0,﹣4)在抛物线上,∴,解得k=,b=﹣4,∴y=x﹣4.将y=x﹣4代入抛物线解析式得:x﹣4=﹣x2+x﹣4,解得:x=0或x=,当x=0时,交点为点C;当x=时,y=x﹣4=.∴P(,).综上所述,△MDE能成为等腰直角三角形,此时点P坐标为(,).点评:本题是二次函数综合题型,考查了二次函数与一次函数的图象与性质、待定系数法、全等三角形的判定与性质、等腰直角三角形、解方程等知识点,题目难度较大.第(2)(3)问均为存在型问题,且解题思路完全相同,可以互相借鉴印证.PDF pdfFactory Pro 。
2013年初中数学中考锦州试题解析

辽宁省锦州市 2013 年中考数学试卷一、选择题(以下各题的备选答案中, 只有一个是正确的, 请将正确答案的序填入下边的表格中. 每小题 3 分,共 24 分)1.( 3 分)( 2013?锦州)﹣ 3 的倒数是()A .B .﹣3C . 3D .考点 :倒数.剖析: 依据乘积是 1 的两个数互为倒数解答. 解答:解:∵﹣ 3×(﹣ )=1,∴﹣ 3 的倒数是﹣ .应选 A .评论: 本题考察了互为倒数的定义,是基础题,熟记观点是解题的重点.2.( 3 分)( 2013?锦州)以下运算正确的选项是()2223363 25A . ( a+b ) =a +bB .x +x =xC . ( a ) =a考点 :完整平方公式;归并同类项;幂的乘方与积的乘方;单项式乘单项式.专题 :计算题.剖析: A 、利用完整平方公式睁开获得结果,即可做出判断;B 、归并同类项获得结果,即可做出判断;C 、利用幂的乘方运算法例计算获得结果,即可做出判断;D 、利用单项式乘单项式法例计算获得结果,即可做出判断.222,本选项错误;解答: 解: A 、( a+b ) =a +2ab+b B 、x 3+x 3=2x 3,本选项错误;326C 、(a ) =x ,本选项错误;D 、( 2x 2)(﹣ 3x 3) =﹣6x 5,本选项正确,D . ( 2x 2)(﹣ 3x 3) =﹣56x应选 D评论: 本题考察了完整平方公式,归并同类项,幂的乘方与积的乘方,以及单项式乘单项式,娴熟掌握公式及法例是解本题的重点.3.( 3 分)( 2013?锦州)以下几何体中,主视图和左视图不一样的是() A . B . C .D .球圆柱正方体正三棱柱考点 :简单几何体的三视图.剖析: 分别剖析四种几何体的主视图和左视图,找出主视图和左视图不一样的几何体.解答: 解: A 、圆柱的主视图与左视图都是长方形,不合题意,故本选项错误;B、正方体的主视图与左视图同样,都是正方形,不合题意,故本选项错误;C、正三棱柱的主视图是长方形,长方形中有一条杠,左视图是矩形,切合题意,故本选项正确;D、球的主视图和左视图同样,都是圆,且有一条水平的直径,不合题意,故本选项错误.应选: C.左视评论:本题考察了简单几何体的三视图,要求同学们掌握主视图是从物体的正面看到的视图,图是从物体的左面看获得的视图,.4.( 3 分)(2013?锦州)为响应“节俭用水”的召,小刚随机检查了班级 35 名同学中 5 名同学家庭一)年的均匀用水量(单位:吨),记录以下: 8,9,8,7,10,这组数据的均匀数和中位数分别是(A. 8, 8 B .8.4, 8 C. 8.4,8.4 D. 8, 8.4考点:中位数;算术均匀数.剖析:依据中位数和均匀数的定义求解即可.解答:解:这组数据按从小到大的次序摆列为:7, 8, 8, 9, 10,则中位数为:8,均匀数为:=8.4.应选 B.评论:本题考察了中位数和均匀数的知识,属于基础题,解答本题的重点是掌握中位数和均匀数的定义.5.( 3 分)( 2013?锦州)不等式组的解集在数轴上表示正确的选项是()A. B .C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.剖析:求出不等式组的解集,表示在数轴上即可.解答:解:,由①得: x< 1;由②得: x≤4,则不等式组的解集为x<1,表示在数轴上,以下图应选 C评论:本题考察了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分红若干段,假如数轴的某一段上边表示解集的线的条数与不等式的个数同样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.( 3 分)( 2013?锦州)如图,直线 y=mx 与双曲线y=交于A,B两点,过点A作 AM ⊥ x 轴,垂足为点 M ,连结 BM ,若 S△ABM =2,则 k 的值为()A.﹣2 B .2C. 4D.﹣4考点:反比率函数系数 k 的几何意义.专题:计算题.剖析:依据反比率的图象对于原点中心对称获得点 A 与点 B 对于原点中心对称,则S△OAM =S△OBM,而 S△ABM =2,S△OAM =1,而后依据反比率函数y= ( k≠0)系数 k 的几何意义即可获得 k=﹣ 2.解答:解:∵直线 y=mx 与双曲线 y=交于 A ,B 两点,∴点 A 与点 B 对于原点中心对称,∴S△OAM =S△OBM,而 S△ABM =2,∴S△OAM=1,∴ |k|=1,∵反比率函数图象在第二、四象限,∴k< 0,∴k= ﹣2.应选 A.评论:本题考察了反比率函数y= ( k≠0)系数 k 的几何意义:从反比率函数y= ( k≠0)图象上任意一点向x 轴和 y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.7.( 3 分)( 2013?锦州)有以下四个命题:(1)三角形有且只有一个内切圆;(2)四边形的内角和与外角和相等;(3)按序连结四边形各边中点所得的四边形必定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.此中真命题的个数有()A.1个B.2 个C.3 个D.4 个考点:命题与定理剖析:依据三角形的内切圆的定义、多边形内角和公式、菱形的性质和平行四边形的性质,对每一项分别进行剖析,即可得出答案.解答:解:(1)三角形的内切圆的圆心是三个内角均分线的交点,有且只有一个交点,所以随意一个三角形必定有一个内切圆,并且只有一个内切圆,则正确;(2)依据题意得:( n﹣ 2) ?180=360,解得 n=4.则四边形的内角和与外角和相等正确;(3)按序连结四边形各边中点所得的四边形必定是矩形,故不正确;(4)一组对边平行且一组对角相等的四边形是平行四边形,正确;应选 C.评论:本题主要考察命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假重点是要熟习课本中的性质定理.8.(3 分)( 2013?锦州)为了帮助遭到自然灾祸的地域重修家园,某学校召同学们自发捐钱.已知第一次捐钱总数为4800 元,第二次捐钱总数为5000 元,第二次捐钱人数比第一次多20 人,并且两次人均捐钱额恰巧相等,假如设第一次捐钱人数是x 人,那么 x 知足的方程是()A. B .=C.D.考点:由实质问题抽象出分式方程.剖析:假如设第一次有x 人捐钱,那么第二次有(x+20 )人捐钱,依据两次人均捐钱额相等,可得等量关系为:第一次人均捐钱额=第二次人均捐钱额,据此列出方程即可.解答:解:设第一次有x 人捐钱,那么第二次有(x+20)人捐钱,由题意,有=,应选 B.评论:本题考察由实质问题抽象出分式方程,剖析题意,找到重点描绘语,找到适合的等量关系是解决问题的重点.二、填空题(本大题共8 个小题,每题 3 分,共24 分)3﹣ xy 2的结果是x(x+y )(x﹣ y).9.( 3 分)( 2013?锦州)分解因式 x考点:提公因式法与公式法的综合运用.剖析:先提取公因式x,再对余下的多项式利用平方差公式持续分解.32解答:解: x ﹣xy ,=x ( x+y )( x﹣ y).故答案为: x( x+y )( x﹣y).评论:本题考察了用提公因式法和公式法进行因式分解,一个多项式有公因式第一提取公因式,而后再用其余方法进行因式分解,同时因式分解要完全,直到不可以分解为止.10.(3 分)( 2013?锦州)函数中,自变量x 的取值范围是x≥2.考点 :函数自变量的取值范围.剖析: 依据二次根式的性质,被开方数大于等于 0,就能够求解.解答: 解:依题意,得 x ﹣ 2≥0,解得 x ≥2,故答案为: x ≥2.评论: 本题考察的知识点为:二次根式的被开方数是非负数.11.( 3 分)( 2013?锦州)据统计, 2013 锦州世界园林展览会 6 月 1 日共招待旅客约 154000 人次,154000 可用科学记数法表示为1.54×105.考点 :科学记数法 —表示较大的数.剖析: 科学记数法的表示形式为 a ×10n的形式,此中 1≤|a|< 10, n 为整数.确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值<1 时, n 是负数.解答: 解:将 154000 用科学记数法表示为1.54×105.故答案为: 1.54×105.a ×10n的形式,此中评论: 本题考察科学记数法的表示方法.科学记数法的表示形式为1≤|a|<10,n 为整数,表示时重点要正确确立a 的值以及 n 的值.12.(3 分)( 2013?锦州)为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的 10次竞赛成绩作了统计:均匀成绩为9.3 环:方差分别为 S 2 甲 =1.22, S 2 乙=1.68 ,S 2丙 =0.44 ,则应当选 丙 参加全运会.考点 :方差;算术均匀数.剖析: 依据方差的意义可作出判断.方差是用来权衡一组数据颠簸大小的量, 方差越小, 表示这组数据散布比较集中,各数据偏离均匀数越小,即颠簸越小,数据越稳固.解答: 解:∵ S 2 甲=1.22 ,S 2 乙 =1.68 ,S 2丙 =0.44 ,∴ S 2丙 最小,∴则应当选丙参加全运会.故答案为:丙.评论: 本题考察方差的意义.方差是用来权衡一组数据颠簸大小的量,方差越大, 表示这组数据偏离均匀数越大, 即颠簸越大, 数据越不稳固; 反之, 方差越小, 表示这组数据散布比较集中,各数据偏离均匀数越小,即颠簸越小,数据越稳固.13.(3 分)( 2013?锦州)计算: |1﹣ 0) ﹣1.|+﹣( 3.14﹣π) ﹣(﹣ = 3考点 :实数的运算;零指数幂;负整数指数幂. 专题 :计算题.剖析: 本题波及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,而后依据实数的运算法例求得计算结果.解答:解:原式 =﹣ 1+2﹣ 1﹣=﹣ 1+2 ﹣ 1+2=3 .评论: 本题考察实数的综合运算能力, 是各地中考题中常有的计算题型.解决此类题目的重点是掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.14.(3 分)( 2013?锦州)在四张反面完整同样的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片反面向上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是.考点:概率公式;中心对称图形.剖析:先求出中心对称图形的个数,除以卡片总张数即为恰巧是中心对称图形的概率.解答:解:正三角形,正六边形、平行四边形和圆中,是中心对称图形的有圆、平行四边形、正六边形 3个,所以从中随机抽取一张,卡片上画的恰巧是中心对称图形的概率为:.故答案为:.评论:本题主要考察了概率的求法,假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件A出现m 种结果,那么事件 A 的概率P(A )=.15.(3 分)( 2013?锦州)在△ ABC 中, AB=AC , AB 点 E,垂足为 D ,连结 BE .已知 AE=5 , tan∠ AED=的垂直均分线,则 BE+CE=DE 与6 或AC16所在的直线订交于.考点:线段垂直均分线的性质;等腰三角形的性质;解直角三角形专题:分类议论.剖析:本题有两种情况,需要分类议论.第一依据题意画出图形,由线段垂直均分线的性质,即可求得质,求得AD 的长,既而求得答案.解答:解:①若∠ BAC 为锐角,如答图 1 所示:AE=BE,又由三角函数的性∵ AB 的垂直均分线是DE ,∴ AE=BE , ED⊥ AB , AD=AB ,∵AE=5 , tan∠ AED= ,∴sin∠ AED= ,∴AD=AE ?sin ∠AED=3 ,∴AB=6 ,∴BE+CE=AE+CE=AC=AB=6 ;②若∠ BAC 角,如答 2 所示:同理可求得:BE+CE=16 .故答案: 6 或 16.点:本考了段垂直均分、等腰三角形、数学思想.解直角三角形等知点,侧重考了分的16.(3 分)( 2013?州)二次函数 y=的象如,点 A 0位于坐原点,点 A 1, A 2,A 3⋯A n 在 y 的正半上,点 B1, B2,B 3⋯B n在二次函数位于第一象限的象上,点C1, C2,C3⋯C n在二次函数位于第二象限的象上,四形 A 0B 1A 1C1,四形 A 1B2A 2C2,四形 A 2B3A3C3⋯四形 A n﹣1B n A n C n都是菱形,∠ A 0B 1A1=∠ A1B 2A 1=∠ A 2B 3A3⋯=∠ A n﹣1B n A n=60 °,菱形 A n﹣1B n A n C n 的周 4n .考点:二次函数合.剖析:因为△A 0B1A 1,△ A 1B2A 2,△ A 2B3A 3,⋯,都是等三角形,所以∠B1A 0x=30 °,可先出△ A 0B 1A1的,而后表示出B1的坐,代入抛物的分析式中即可求得△A0B1A 1的,用同的方法可求得△ A 0B1A 1,△ A 1B2A 2,△A 2B 3A 3,⋯的,而后依据各的特色出此的一般化律,依据菱形的性易求菱形 A n﹣1B n A n C n的周.解答:解:∵四形 A 0B1A 1C1是菱形,∠ A 0B 1A 1=60 °,∴△ A 0B1A 1是等三角形.△A0B1A 1的 m1, B1(,);代入抛物的分析式中得:(2,) =解得 m1=0(舍去), m1=1;故△ A 0B1A 1的1,同理可求得△ A 1B2A 2的2,⋯依此推,等△ A n﹣1B n A n的n,故菱形 A n﹣1B n A n C n的周4n.故答案是: 4n.点:本考了二次函数合.解,利用了二次函数象上点的坐特色,菱形的性,等三角形的判断与性等知点.解答此的点是推知等△ A n﹣1 B n A n的 n.三、解答(本大共 2 个小,每小8 分,共 16 分)17.(8 分)( 2013?州)先将( 1)÷化,而后自一个你喜的x 代入求.考点:分式的化求.剖析:原式括中两通分并利用同分母分式的减法法算,再利用除以一个数等于乘以个数的倒数将除法运算化乘法运算,分获得最果,将x=2 代入算即可获得果.解答:解:原式 =?=x+2 ,当 x=2 ,原式 =2+2=4 .点:此考了分式的化求,分式的加减运算关是通分,通分的关是找最公分母;分式的乘除运算关是分,分的关是找公因式.18.(8 分)( 2013?州)如,方格中的每个小正方形都是 1 个度位, Rt△ ABC 的点均在格点上,成立平面直角坐系后,点 A 的坐( 1, 1),点 B 的坐( 4, 1).( 1)先将 Rt△ ABC 向左平移 5 个位度,再向下平移 1 个位度获得 Rt△ A 1B1C1,在中画出 Rt△ A 1B 1C1,并写出点 A 1的坐;( 2)再将 Rt△ A 1B 1C1点 A1旋90°后获得 Rt△ A2B 2C2,在中画出 Rt△ A 2B 2C2,并算 Rt△ A 1B1C1在上述旋程中点C1所的路径.考点:作-旋;作-平移:作.剖析:( 1)依据格构找出点 A 、B、C 平移后的点 A 1、B1、C1的地点,而后次接即可,再依据平面直角坐系写出点 A 1的坐;( 2)依据格构找出点 A 1、B 1、C1点 A1旋90°后的点A2、B2、C2的地点,而后次接即可,再依据勾股定理列式求出 A 1C1的,而后利用弧公式列式算即可得解.解答:解:( 1) Rt△ A 1B 1C1如所示, A 1( 4, 0);( 2)Rt△ A 2B2C2以下图,依据勾股定理, A 1C1==,所以,点 C1所经过的路径长 ==π.评论:本题考察了利用旋转变换作图,利用平移变换作图,弧长的计算,娴熟掌握格结构,正确找出对应点的地点是解题的重点.四、解答题(本大题共 2 小题,每题10 分,共 20 分)19.( 10分)( 2013?锦州)以下是依据全国人力资源和社会保障部宣布的有关数据绘制的统计图的一部分,请你依据图中信息解答以下问题:( 1)求2013 年全国一般高校毕业生数年增加率约是多少?(精准到0.1% )(2)求 2011 年全国一般高校毕业生数约是多少万人?(精准到万位)(3)补全折线统计图和条形统计图.考点:折线统计图;条形统计图.专题:图表型.剖析:( 1)用 2013 年比 2012 年多的人数除以2012 年的人数,计算即可求出2013 年的增加率;(2)设 2011 年的毕业生人数约是 x 万人,依据 2011 年的增加率是 4.6% 列式计算即可得解;(3)依据计算补全统计图即可.解答:解:( 1)×100%≈2.8%,故 2013年全国一般高校毕业生数年增加率约是 2.8%;( 2)设 2011 年的毕业生人数约是x 万人,依据题意得,≈4.6%,解得 x≈660,故 2011年全国一般高校毕业生数约是660 万人;( 3)补全统计图以下图.评论:本题考察的是条形统计图和折线统计图的综合运用.读懂统计图,从不一样的统计图中获得必要的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化状况.20.( 10 分)( 2013?锦州)如图,点 O 是菱形 ABCD 对角线的交点, DE ∥AC ,CE∥ BD ,连结 OE.求证: OE=BC .考点:菱形的性质;矩形的判断与性质.专题:证明题.剖析:先求出四边形OCED 是平行四边形,再依据菱形的对角线相互垂直求出∠COD=90 °,证明OCED 是矩形,利用勾股定理即可求出BC=OE .解答:证明:∵ DE∥ AC , CE∥ BD ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形,∴∠ COD=90 °,∴四边形OCED 是矩形,∴DE=OC ,∵OB=OD ,∠ BOC= ∠ ODE=90 °,∵BC=,OE=,∴BC=OE .评论:本题考察了菱形的性质,矩形的判断与性质,勾股定理的应用,是基础题,熟记矩形的判断方法与菱形的性质是解题的重点.五、解答题(本大题共 2 个小题,每题 10 分,共21.( 10 分)( 2013?锦州)一个不透明的口袋中装有4,还有一个能够自由旋转的圆盘.被分红面积相等的20 分)4 个完整同样的小球,分别标有数字1、2、3、3 个扇形区,分别标有数字1、 2、 3(如图所示).小颖和小亮想经过游戏来决定谁代表学校参加歌唱竞赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,假如所摸球上的数字与圆盘上转出数字之和小于 4,那么小颖去;不然小亮去.(1)用树状图或列表法求出小颖参加竞赛的概率;(2)你以为该游戏公正吗?请说明原因;若不公正,请改正该游戏规则,使游戏公平.考点:游戏公正性剖析:( 1)第一依据题意画出树状图,由树状图求得全部等可能的结果与两指针所指数字之和和小于 4 的状况,则可求得小颖参加竞赛的概率;(2)依据小颖获胜与小亮获胜的概率,比较概率能否相等,即可判断游戏能否公正;使游戏公正,只需概率相等即可.解答:解:( 1)画树状图得:∵共有 12 种等可能的结果,所指数字之和小于 4 的有 3 种状况,∴P(和小于 4) = = ,∴小颖参加竞赛的概率为:;( 2)不公正,∵ P(和小于4) =,P(和大于等于4) =.∴P(和小于 4)≠P(和大于等于 4),∴游戏不公正;可改为:若两指针所指数字之和为偶数,则小颖获胜;若两指针所指数字之和为奇数,则小亮获胜;P(和为偶数)=P(和为奇数)=.评论:本题考察的是游戏公正性的判断.判断游戏公正性就要计算每个事件的概率,概率相等就公平,不然就不公正.22.(10 分)( 2013?锦州)如图,某企业进口处有一斜坡准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为( 1)求 AC 的长度;( 2)求每级台阶的高度h.AB ,坡角为 12°,AB 的长为30cm,设台阶的起点为C.3m,施工队(参照数据: sin12°≈0.2079, cos12°≈0.9781, tan12°≈0.2126.结果都精准到0.1cm)考点:解直角三角形的应用-坡度坡角问题.剖析:( 1)过点 B 作 BE⊥ AC 于点 E,在 Rt△ ABE 中利用三角函数求出可得出答案;( 2)在 Rt△ ABE 中,求出BE,即可计算每级台阶的高度h.解答:解:如右图,过点 B 作 BE⊥ AC 于点 E,( 1)在 Rt△ ABE 中, AB=3m ,cos12°≈0.9781,AE=ABcos12 °≈2.934m=293.4cm ,AE ,由AC=AE﹣ CE,∴ AC=AE ﹣CE=293.4 ﹣ 60=233.4cm .答: AC 的长度约为233.4cm.(2) h= BE= ABsin12 °= ×300×0.2079=20.79 ≈20.8cm.答:每级台阶的高度h 约为 20.8cm.评论:本题考察认识直角三角形的应用,角形,并解直角三角形.难度一般,解答本题的重点是依据坡度和坡角结构直角三六、解答题(本大题共 2 个小题,每题10 分,共 20 分)23.( 10 分)( 2013?锦州)如图, AB 是⊙ O 的直径, C 是⊙ O 上一点, OD ⊥ BC 于点 D,过点 C 作⊙ O 的切线,交 OD 的延伸线于点 E,连结 BE.(1)求证: BE 与⊙ O 相切;(2)设 OE 交⊙ O 于点 F,若 DF=1, BC=2 ,求由劣弧 BC 、线段 CE 和 BE 所围成的图形面积S.考点:切线的判断;扇形面积的计算.剖析:( 1)第一连结OC,易证得△ COE≌△ BOE (SAS),即可得∠ OCE= ∠ OBE=90 °,证得 BE 与⊙ O 相切;(2)第一设 OC=x,则 OD=OF ﹣ DF=x ﹣ 1,易求得 OC 的长,即可得∠ BOC=120 °,又由S=S 四边形OBFC﹣ S 扇形OBC求得答案.解答:( 1)证明:连结OC,∵CE 是⊙ O 的切线,∵OB=OC , OD ⊥ BC,∴∠ EOC= ∠ EOB ,∵在△EOC 和△ EOB 中,,∴△ COE≌△ BOE( SAS),∴∠ OCE= ∠ OBE=90 °,即 OB⊥BE,∴BE 与⊙ O 相切;( 2)解:∵ OD⊥ BC ,∴CD= BC=×2=,设 OC=x ,则 OD=OF ﹣DF=x ﹣ 1,222在 Rt△ OCD 中, OC=OD +CD ,222∴ x =(x﹣ 1) +(),解得: x=2 ,∴ OC=2 ,∠ COD=60 °,∴∠ BOC=120 °,∴ CF=OC ?tan60°=2,2∴ S=S 四边形OBFC﹣ S 扇形OBC=2S△OCE﹣S 扇形OBC=2× ×2×2 ﹣×π×2=4﹣π.评论:本题考察了切线的性质、全等三角形的判断与性质、垂径定理以及勾股定理.本题难度适中,注意掌握协助线的作法,注意数形联合思想的应用.24.( 10 分)( 2013?锦州)甲、乙两车分别从 A ,B 两地同时出发相向而行.并以各自的速度匀速行驶,甲车门路 C 地时歇息一小时,而后按原速度持续行进抵达 B 地;乙车从 B 地直接抵达 A 地,如图是甲、乙两车和 B 地的距离y(千米)与甲车出发时间x(小时)的函数图象.( 1)直接写出a, m, n 的值;( 2)求出甲车与 B 地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x 的取值范围);( 3)当两车相距120 千米时,乙车行驶了多长时间?考点:一次函数的应用剖析:( 1)依据甲车歇息 1 小时列式求出m,再依据乙车 2 小时距离 B 地 120 千米求出速度,然后求出 a,依据甲的速度列式求出抵达 B 地行驶的时间再加上歇息的 1 小时即可获得n 的值;( 2)分歇息前,歇息时,歇息后三个阶段,利用待定系数法求一次函数分析式解答;( 3)求出甲车的速度,而后分① 相遇前两人的行程之和加上相距的120 千米等于总行程列出方程求解即可;② 相遇后,两人行驶的行程之和等于总行程加120 千米,列出方程求解即可.解答:解:( 1)∵甲车门路C 地时歇息一小时,∴2.5﹣ m=1,∴m=1.5 ,乙车的速度 = =,即=60,解得 a=90,甲车的速度为:=,解得 n=3.5;所以, a=90, m=1.5 ,n=3.5 ;( 2)设甲车的y 与 x 的函数关系式为y=kx+b ( k≠0),①歇息前, 0≤x< 1.5,函数图象经过点(0, 300)和( 1.5, 120),所以,,解得,所以, y= ﹣ 120x+300 ,②歇息时, 1.5≤x< 2.5, y=120 ,③歇息后, 2.5≤x≤3.5,函数图象经过( 2.5, 120)和( 3.5, 0),所以,,解得,所以, y= ﹣ 120x+420 .综上, y 与 x 的关系式为y=;(3)设两车相距 120 千米时,乙车行驶了 x 小时,甲车的速度为:( 300﹣ 120)÷1.5=120 千米 /时,①若相遇前,则120x+60x=300 ﹣ 120,解得 x=1,②若相遇后,则120( x﹣1) +60x=300+120 ,解得 x=3,所以,两车相距120 千米时,乙车行驶了 1 小时或 3 小时.评论:本题考察了一次函数的应用,主要利用了待定系数法求一次函数分析式,行程、速度、时间三者之间的关系,依据歇息 1 小时求出 m 的值是本题的打破口,( 3)要注意分两种状况议论.七、解答题(本题12 分)25.( 12 分)( 2013?锦州)如图 1,等腰直角三角板的一个锐角极点与正方形ABCD 的极点将此三角板绕点 A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC 于点接 EF.A 重合,E, F,连(1)猜想 BE、 EF、 DF 三条线段之间的数目关系,并证明你的猜想;(2)在图 1 中,过点 A 作 AM ⊥ EF 于点 M ,请直接写出 AM 和 AB 的数目关系;(3)如图 2,将 Rt△ ABC 沿斜边 AC 翻折获得 Rt △ ADC , E,F 分别是 BC, CD 边上的点,∠EAF= ∠ BAD ,连结 EF,过点 A 作 AM ⊥ EF 于点 M ,试猜想 AM 与 AB 之间的数目关系.并证明你的猜想.考点:四边形综合题.剖析:( 1)延伸 CB 到 Q,使 BQ=DF ,连结 AQ ,依据四边形ABCD 是正方形求出AD=AB ,∠D= ∠ DAB= ∠ ABE= ∠ ABQ=90 °,证△ ADF ≌△ ABQ ,推出 AQ=AF ,∠ QAB= ∠ DAF ,求出∠ EAQ= ∠ F,证△ EAQ ≌△ EAF ,推出 EF=BQ 即可;( 2)依据△ EAQ ≌△ EAF , EF=BQ 得出×BQ×AB=×FE×AM,求出即可;( 3)延伸 CB 到 Q,使 BQ=DF ,连结 AQ ,依据折叠和已知得出AD=AB ,∠D= ∠ DAB= ∠ ABE=90 °,∠ BAC= ∠ DAC= ∠ BAD ,证△ ADF ≌△ ABQ ,推出 AQ=AF ,∠QAB= ∠ DAF ,求出∠ EAQ= ∠FAE ,证△EAQ ≌△ EAF ,推出 EF=BQ 即可.解答:( 1)EF=BE+DF ,证明:如答图1,延伸 CB 到 Q,使 BQ=DF ,连结 AQ ,∵四边形ABCD 是正方形,∴AD=AB ,∠ D= ∠ DAB= ∠ ABE= ∠ ABQ=90 °,在△ADF 和△ABQ 中,∴△ ADF ≌△ ABQ ( SAS ),∴AQ=AF ,∠QAB= ∠DAF ,∵∠ DAB=90 °,∠ FAE=45 °,∴∠ DAF+ ∠ BAE=45 °,∴∠ BAE+ ∠ BAQ=45 °,即∠ EAQ= ∠ FAE,在△EAQ 和△EAF 中∴△ EAQ ≌△ EAF ,∴EF=BQ=BE+EQ=BE+DF .(2)解: AM=AB ,原因是:∵△EAQ ≌△ EAF , EF=BQ ,∴×BQ×AB=×FE×AM,∴AM=AB .(3)AM=AB ,证明:如答图2,延伸 CB 到 Q,使 BQ=DF ,连结 AQ ,∵折叠后 B 和 D 重合,∴ AD=AB ,∠ D= ∠ DAB= ∠ ABE=90 °,∠ BAC= ∠ DAC=∠BAD,在△ADF 和△ABQ 中,∴△ ADF ≌△ ABQ ( SAS ),∴AQ=AF ,∠QAB= ∠DAF ,∵∠ FAE= ∠ BAD ,∴∠ DAF+ ∠ BAE= ∠ BAE+ ∠ BAQ= ∠ EAQ=∠ BAD,即∠ EAQ= ∠ FAE,在△EAQ 和△EAF 中∴△EAQ ≌△ EAF ,∴EF=BQ ,∵△ EAQ ≌△ EAF , EF=BQ ,∴ ×BQ ×AB= ×FE×AM ,∴ AM=AB .评论:本题考察了正方形的性质,全等三角形的性质和判断,折叠的性质的应用,主要考察学生综合运用定理进行推理的能力,题目比较典型,证明过程近似.八、解答题(本题 14 分)26.( 14 分)( 2013?锦州)如图,抛物线2y=﹣ x +mx+n 经过△ ABC 的三个极点,点 A 坐标为(0,3),点 B 坐标为( 2, 3),点 C 在 x 轴的正半轴上.( 1)求该抛物线的函数关系表达式及点 C 的坐标;( 2)点 E 为线段 OC 上一动点,以 OE 为边在第一象限内作正方形OEFG,当正方形的极点 F 恰好落在线段 AC 上时,求线段 OE 的长;( 3)将( 2)中的正方形 OEFG 沿 OC 向右平移,记平移中的正方形OEFG 为正方形 DEFG ,当点E 和点 C 重合时停止运动.设平移的距离为t,正方形 DEFG 的边 EF 与 AC 交于点 M ,DG 所在的直线与 AC 交于点 N ,连结 DM ,能否存在这样的t,使△ DMN 是等腰三角形?若存在,求出t 的值;若不存在,请说明原因;( 4)在上述平移过程中,当正方形DEFG 与△ ABC 的重叠部分为五边形时,请直接写出重叠部分的面积 S 与平移距离t 的函数关系式及自变量t 的取值范围;并求出当t 为什么值时, S 有最大值,最大值是多少?考点:二次函数综合题剖析:( 1)利用待定系数法求出抛物线的分析式,令y=0 解方程,求出点 C 的坐标;( 2)如答图 1 所示,由△ CEF∽△ COA ,依据比率式列方程求出OE 的长度;( 3)如答图 2 所示,若△ DMN 是等腰三角形,可能有三种情况,需要分类议论;( 4)当正方形DEFG 与△ ABC 的重叠部分为五边形时,如答图 3 所示.利用S=S 正方形DEFG ﹣S 梯形MEDN﹣ S△FJK求出 S 对于 t 的表达式,而后由二次函数的性质求出其最值.解答:解:( 1)∵抛物线 y= ﹣ x2+mx+n 经过点 A ( 0, 3), B ( 2, 3),∴,解得: ,∴抛物线的分析式为:y= ﹣ x 2+ x+3.令 y=0,即﹣2x + x+3=0 ,解得 x=6 或 x= ﹣4,∵点 C 位于 x 轴正半轴上,∴ C ( 6, 0).( 2)当正方形的极点F 恰巧落在线段 AC 上时,如答图 1 所示:设 OE=x ,则 EF=x , CE=OC ﹣OE=6 ﹣x . ∵EF ∥ OA , ∴△ CEF ∽△ COA ,∴,即,解得 x=2. ∴ OE=2 .( 3)存在知足条件的 t .原因以下:如答图 2 所示,易证 △CEM ∽△ COA ,∴,即 ,得 ME=2 ﹣ t .过点 M 作 MH ⊥ DN 于点 H ,则 DH=ME=2 ﹣t , MH=DE=2 .易证△MNH ∽△ COA ,∴,即,得NH=1.∴ DN=DH+HN=3 ﹣ t.在 Rt△ MNH 中, MH=2 ,NH=1 ,由勾股定理得: MN=.△ DMN 是等腰三角形:①若 DN=MN ,则 3﹣ t=,解得 t=6 ﹣;22222,②若 DM=MN ,则 DM =MN,即 2 +(2﹣t) =()解得 t=2 或 t=6(不合题意,舍去);22,即 22③若 DM=DN ,则 DM =DN+(2﹣综上所述,当t=1 、2 或 6﹣时,△ DMN22,解得 t=1 .t) =( 3﹣t)是等腰三角形.( 4)当正方形DEFG 与△ ABC 的重叠部分为五边形时,如答图 3 所示:设 EF、 DG 分别与 AC 交于点 M 、 N,由( 3)可知: ME=2 ﹣t, DN=3 ﹣t.设直线 BC 的分析式为y=kx+b ,将点 B ( 2, 3)、 C( 6, 0)代入得:,解得,∴ y=x+.设直线 BC 与 EF 交于点 K,∵ x K=t+2 ,∴ y K=x K+ =t+3,∴ FK=y F﹣ y K=2﹣(t+3 )=t﹣ 1;设直线 BC 与 GF 交于点 J,∵yJ=2,∴ 2=x J+,得x J=,。
锦州市中考数学试题及答案

辽宁省锦州市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(辽宁锦州,1,3分)-1.5的绝对值是()A.0B.-1.5C.1.5D.23答案:C2.(辽宁锦州,2,3分)如图,在一水平面上摆放两个几何体,它的主视图是( )(第2题图)A.B.C. D.答案:B3.下列计算正确的是()A.3x+3y=6xyB.a2×a3=a6C.b6÷b3=b2D.(m2)3=m6答案:D4. (辽宁锦州,4,3分)已知a >b >0,下列结论错误的是( )A .a m b m ++>B .a b >C .22a b ->-D .22a b>答案:C5. (辽宁锦州,5,3分)如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°答案:A6. (辽宁锦州,6,3分)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示: 每人销售件数 1800510250210150120人数113532那么这15位销售人员该月销售量的平均数、众数、中位数分别是( ) A.320,210,230 B. 320,210,210 C. 206,210,210 D. 206,210,230 答案:B7. (辽宁锦州,7,3分)二次函数2y ax bx c =++(a ≠0,a ,b ,c 为常数)的图象如图所示,2ax bx c m ++=有实数根的条件是( )EDC21ba (第5题图)A.2m ≤-B. 2m ≥-C. 0m ≥D. 4m >答案:A8.(辽宁锦州,8,3分)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁,”如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( )A.1818x y y x y =-⎧⎨-=-⎩B.1818y x x y y -=⎧⎨-=+⎩C. 1818x y y x y +=⎧⎨-=+⎩D.1818y xy y x =-⎧⎨-=-⎩答案:D二、填空题(本大题共6小题,每小题3分,满分18分.)9.(辽宁锦州,11,3分)分解因式2242x x -+ 的结果是__________.答案:22(1x -)10.(辽宁锦州,11,3分)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10-9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为_________米. 答案:6×10-5(第7题图)4-2O 5y x11.(辽宁锦州,11,3分)计算:tan45°-()1313-=________.答案:2312. (辽宁锦州,12,3分)方程13144x x x +-=-- 的解是________. 答案:x=013. (辽宁锦州,13,3分)如图,在一张正方形纸片上剪下一个半径为r 的圆形和一个半径为R 的扇形,使之恰好围成图中所示范的圆锥,则R 与r 之间的关系是________.(第13题图)答案:R=4r .14. (辽宁锦州,14,3分)某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是_________.答案:13(第14题图)15. (辽宁锦州,15,3分)菱形ABCD 的边长为2,60ABC ∠=︒,E 是AD 边中点,点P 是对角线BD 上的动点,当AP+PE 的值最小时,PC 的长是__________.23316. (辽宁锦州,16,3分)如图,点B 1在反比例函数2y x=(x >0)的图象上,过点B 1分别作x 轴和y 轴的垂线,垂足为C 1和A ,点C 1的坐标为(1,0)取x 轴上一点C 2(32,0),过点C 2分别作x 轴的垂线交反比例函数图象于点B 2,过B 2作线段B 1C 1的垂线交B 1C 1于点A 1,依次在x 轴上取点C 3(2,0),C ,4(52,0)…按此规律作矩形,则第n ( 2,n n ≥为整数)个矩形)A n-1C n-1C ,n B n 的面积为________.OAB 1B 2B 3 B 4A 1A 2A 3C 1C 2C 3C 4(第16题图)ABCDPE (第15题图)答案:21n 三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(辽宁锦州,21,8分)已知53n m ,求式子222()m mn m n m nmm的值.答案:解:222()mmn m n m nm m =22222()()m m n m m n m n m n m=222222mn m n m n n =2m n .∵53n m , ∴35m n . ∴原式=-2×35=-65.18.(辽宁锦州,21,8分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.(1)利用尺规作图在AC 边上找一点D ,使点D 到AB 、BC 的距离相等.(不写作法,保留作图痕迹)(2)在网格中,△ABC 的下方..,直接画出△EBC ,使△EBC 与△ABC 全等. CBA答案:解:(1)如图,点D 即为所求.(2)如图,1BCE 和2BCE 即为所求.DE2E119.(辽宁锦州,21,10分)对某市中学生的幸福指数进行调查,从中抽取部分学生的调查表问卷进行统计,并绘制出不完整的统计表和条形统计图.(1)直接补全统计表.(2)补全条形统计图(不要求写出计算过程).(3)抽查的学生约占全市中学生的5℅,估计全市约有多少名中学生的幸福指数能达到五★级?3008060等级频数频率★60★★80★★★0.16★★★★0.30★★★★★答案:解:(1)补全的统计表如下图所示:(每空0.5分,共3分)(2)补全的统计图如下图所示:(每个条形1分,共5分)(3)∵被抽查的学生总数为:300÷0.3=1000(人) ∴全市的中学生总数约为:1000÷5%=20000(人)∴幸福指数能达到五★级的全市学生约有20000×0.40=8000(人)……………10分 20.(辽宁锦州,21,10分)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A 转盘被分成三个面积相等的扇形,B 转盘被分成四个面积相等的扇形,每一个扇形都飘浮相应的数字,先转动A 转盘,记下指针所指区域内的数字,再转动B 转发盘,记下指针所指等级 频数 频率 ★ 60 0.06 ★★ 80 0.08 ★★★ 160 0.16 ★★★★ 300 0.30 ★★★★★4000.401★ 2★ 3★ 4★ 5★人数6080300等级160400区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一下区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表表格的方法,求出乘积结果为负数的概率. (2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?答案:解:(1)解法一:根据题意画树状图如下:-1.532-121.5-3-21200积B A1.51.51.5-3-3-3-2-2-2121212 - 11解法二:根据题意列表得:B A 12231.50 0 0 01122 31.5-1-1223-1.5(A)-110-31.5-212(B )由表(图)可知,所有可能结果共有12种,且每种结果发生的可能性相同,其中积结果为负数的结果有4种,分别是(1,-2),(1,-3),(-1,12),(-1,1.5),乘积结果为负数的概率为41123.(2)乘积是无理数的结果有2种,分别是(1,-2),(-1,-2),所以获得一等奖的概率为21126.21.(辽宁锦州,22,10分)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=12AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.M FEDCBA答案:解:(1)证明:∵CD=CB,E为BD的中点,∴CE⊥BD,∴∠AEC=90°.又∵F为AC的中点,∴EF=12AC.(2)解:∵∠BAC=45°,∠AEC=90°,∴∠ACE=∠BAC=45°,∴AE=CE.又∵F为AC的中点,∴EF⊥AC,∴EF为AC的垂直平分线,∴AM=CM,∴AM+DM=CM+DM=CD.又∵CD=CB,∴AM+DM=BC.22.(辽宁锦州,22,10分)如图所示,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79, sin22°≈0.37,cos22°≈0.93, sin37°≈0.60,cos37°≈0.80)东北M BCAN答案:解:过点C作CD⊥AB,垂足为D.由题意知∠NAC=30°,∠NAB=68°,AC=20,∴∠CAB=38°,∠BAM=90°—68°=22°,∵BC ∥AM ,∴∠CBA =∠BAM =22°. ∵CD ⊥AB ,∴∠ADC =∠CDB =90°. 在Rt △BCD 中,sin ∠CBD =CDCB , ∴CB =12412433.51sin sin 220.37CD CBD ,∴t =33.5120=1.7(小时).答:救生船到达B 处大约需要1.7小时.23. (辽宁锦州,23,10分)已知,⊙O 为∆ABC 的外接圆,BC 为直径,点E 在AB 上,过点E 作EF ⊥BC ,点G 在FE 的延长线上,且GA=GE . (1)求证:AG 与⊙O 相切.(2)若AC=6,AB=8,BE=3,求线段OE 的长.答案:解:(1)连接OA ,∵OA=OB ,∴∠B=∠BAO , 又∵EF ⊥BC ,∴∠BFE=900,∴∠B+∠BE F=900,…………2分 ∵AG=GE ,∴∠GAE=∠GEA ,∵∠GEA=∠BEF ,∴∠BAO+∠GAE=900,……………………4分 ∴GA ⊥AO ,又OA 为⊙O 的半径,∴ AG 与⊙O 相切…………………………………………5分BAC OE FG(2)过点O 作OH ⊥AB ,垂足为H ,由垂径定理得,BH=AH=21AB=21×8=4.………………6分 ∵BC 是直径,∴∠BAC=900,又∵AB=8,AC=6,∴AB=2268+=10,……………………8分 ∴OA=5,OH=3,又∵BH=4,BE=3,∴EH=1,∴OE=2213+=10……………………………………10分24. (辽宁锦州,24,10分)在机器调试过程中,生产甲、乙两种产品的效率分别为y 1、y 2(单位:件/时),y 1、y 2与工作时间x (小时)之间大致满足如图所示的函数关系,y 1的图像为折线OABC ,y 2的图像是过O 、B 、C 三点的抛物线一部分.(1)根据图像回答:①调试过程中,生产乙的效率高于甲的效率的时间x (小时)的取值范围是_________________________;②说明线段AB 的实际意义是___________________. (2)求出调试过程中,当8x 6≤≤时,生产甲种产品的效率y 1(件/时)与工作时间x (小时)之间的函数关系式.BACOEFGHBAC OE FG(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m 小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z (件)与生产甲所用时间m (小时)之间的函数关系式.答案:解:(1)①6x 8x 2≠<<且,(或866x 2<<<<x ,)……………………2分 ②从第1小时到底6小时乙的生产效率保持3件/时,…………………………4分 (2)当8x 6≤≤时,图像呈直线,故可设解析式为y=kx+b , ∵过点(6,3),(8,0),∴6380k b k b +=⎧⎨+=⎩,解得⎪⎩⎪⎨⎧==12b 23k ,…………………………………………6分 当8x 6≤≤时,y 1与x 之间的函数关系式为12x 23y +=.………………7分 (3)由题意可知,Z=3m+4(6-m )=m+24,………………………………9分 ∴Z 与m 之间的函数关系式为:Z=m+24.……………………………10分25. (辽宁锦州,25,12分)(1)已知正方形ABCD 中,对角线AC 与BD 相交于点O ,如图①,将∆BOC 绕点O 逆时针方向旋转得到∆B ’OC ’,OC ’与CD 交于点M ,OB ’与BC 交于点N ,请猜想线段CM 与BN 的数量关系,并证明你的猜想.(2)如图②,将(1)中的∆BOC 绕点B 逆时针旋转得到∆BO ’C ’,连接AO ’、DC ’,请猜想线段AO ’与DC ’的数量关系,并证明你的猜想.OABCx (时y (件/(3)如图③,已知矩形ABCD 和Rt ∆AEF 有公共点A ,且∠AEF=900,∠EAF=∠DAC=α,连接DE 、CF ,请求出CFDE的值(用α的三角函数表示).图① 图② 图③ 答案:解:(1)BN=CM 理由如下:……………………………………………………1分 ∵四边形ABCD 是正方形,∴BO=CO ,∠BOC=900,∠OBC=∠OCD=21×900=450.……………………2分 由旋转可知,∠B ’OC ’=900,∠BON=∠COM,…………………………3分 ∴∆BON ≌∆COM ,∴BN=CM .……………………………………4分 (2)AO ’=22DC ’.………………………………………………5分 由旋转可知,∠O ’BC ’=∠OBC=450,∠BO ’C ’=∠BOC=900. ∴BO'2BC'=又∵四边形ABCD 是正方形, ∴∠ABO=21×900=450,∴22BD AB =,………………6分 ∴ ∠ABO ’=∠OBC ’,=BC'BO'22BDAB=…………………………………………7分 A B CD C'B 'OMNABC D C 'O ' OE ABCDOF∴∆ABO ’∽∆OBC ’,∴22DC'AO'=,即AO ’=22DC ’,……………………8分(3)在矩形ABCD 中,∠ADC=900, ∵∠AEF=900,∴∠AEF=∠ADC ∵∠EAF=∠DAC=α,∴∆AEF ∽∆ADC ,∴ACAFAD AE =,…………………………10分 又∵∠EAF+∠FAD=∠DAC+∠FAD ,∴∠EAD=∠FAC , ∴∆AED ∽∆AFC ,∴αcos AFAECF DE ==……………………………………12分 26. (辽宁锦州,26,14分)如图,平行四边形ABCD 在平面直角坐标系中,点A 的坐标为(-2,0),点B 的坐标为(0,4),抛物线2y x mx n =-++经过点A 和C .(1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO 分成两部分,对称轴左侧部分的图形面积记为1S ,右侧部分图形的面积记为2S ,求1S 与2S 的比. (3)在y 轴上取一点D ,坐标是(0,72),将直线OC 沿x 轴平移到O C '',点D 关于直线O C ''的对称点记为D ',当点D '正好在抛物线上时,求出此时点D '坐标并直接写出直线O C ''的函数解析式.答案:解:(1)∵四边形ABCO 为平行四边形, ∴BC ∥AO ,且BC=AO ,yxABCO yxABCO由题意知,A (-2,0),C (2,4),将其代入抛物线n mx x y ++-=2中,有⎩⎨⎧=++-=+--424024n m n m ,解得⎩⎨⎧==61n m , ∴抛物线解析式为62++-=x x y …………4分(2)由(1)知,抛物线对称轴为直线21=x , 设它交BC 于点E ,交OC 于点F ,则BE=21,CE=23. 又∵∠A=∠C ,∴∆CEF ∽∆AOB , ∴EF BO 2CE AO==, ∴EF=3,∴4932321S 2=⨯⨯=,……………………6分 又∵S □ABCD =2×4=8,∴423498S 1=-=,∴S 1:S 2=23:9.…………………………………………………………8分(3)如图,设过DD ’的直线交x 轴于点M ,交OC 于点P , ∵DM ⊥OC ,∴∠DOP=∠DMO ,∵AB ∥OC ,∴∠DOC=∠ABO ,∴∆ABO ∽∆DMO , ∴2OAOBOD OM ==,∴OM=7………………………………………………10分 yxABCOEF设直线DM 的解析式为b kx y +=,将点D (0,27),M (7,0)代入,得 ⎪⎩⎪⎨⎧=+=027727k b ,解得⎪⎩⎪⎨⎧=-=2721b k , ∴直线DM 的解析式为2721+-=x y ,由题意得⎪⎩⎪⎨⎧++-=+-=627212x x y x y ,解得⎩⎨⎧=-=4111y x ,⎪⎩⎪⎨⎧==492522y x ,……………………12分 ∴点D ’坐标为(-1,4)或(25,49).直线O ’C ’的解析式为:832+=x y (如图1)或4192+=x y (如图2)………………………………14分图1 图2。
辽宁省锦州市中考数学试卷(答案+解析)

B . 12C . 16D . 202018年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题给岀的四个选项中,只有一项是符合题目要求的 )1 . (2分)下列实数为无理数的是()C . 04. (2分)为迎接中考体育加试,小刚和小亮分另U 统计了自己最近 是() A •平均数10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的D .方差5. (2分)如图,直线l i 〃 I 2,且分别与直线I 交于C , D 两点,把一块含30角的三角尺按如图所示的位置摆放,若/仁52 °(2分)下列运算正确的是( )2357a — a=6 B . a ^a =a(2分)如图,在△KBC 中,/ ACB=90°过B ,C 两点的O O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O O 于点F ,2 2连接 BF ,CF ,若/ EDC=135 ; CF=2 ,_则 AE +BE 的值为() 5个大小相同的正方体搭成的几何体,该几何体的左视图 ( )2 . (2分)如图,这是由 C .3. (2分)一元二次方程 A •两个不相等的实数根2x 2 - x+仁0根的情况是( )B •两个相等的实数根C .没有实数根D .无法判断B .中位数C .众数 C . 102°D . 108°C . (a 3)3=a 64 4D . (ab)=ab98 °8 . (2分)如图,在△ABC中,/ C=90° AC=BC=3cm,动点P从点A出发,以_cm/s的速度沿AB方向运动到点B,动点Q 同时从点A出发,以1cm/s的速度沿折线AC - CB方向运动到点B.设△APQ的面积为y(cm"),运动时间为x(s),则下列图象能反映y与x之间关系的是()二、填空题(本大题共8小题,每小题3分,共24分)9. (3分)因式分解:X3- 4x= ___ .10. (3分)上海合作组织青岛峰会期间,为推进一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为__________ 元.11. (3分)如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为__________ m2.C.△AOB与A A1OB1位似,位似中12 . (3分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知B i的坐标为13. (3分)如图,直线y i=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,- 3),则关于x的不等式-x+a < bx-4的解14. (3分)如图,菱形ABCD的对角线AC, BD相交于点0,过点A作AH丄BC于点H,连接0H,若0B=4 , S菱形ABCD=24 , 则0H 的长为______________ .15. (3分)如图,矩形0ABC的顶点A, C分别在x轴,y轴上,顶点B在第一象限,AB=1,将线段0A饶点0按逆时针方向旋转60得到线段OP,连接AP,反比例函数y=-(k工0的图象经过P, B两点,贝U k的值为aC/V5/ \A J16. (3分)如图,射线OM在第一象限,且与x轴正半轴的夹角为60°过点D(6 , 0)作DA丄OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长AQ交射线OB于点B1,以A1B1为边在△AOB的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在M2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为_______ .三、综合题17. (7分)先化简,再求值:(2 ------------ )H------- ,其中x=3 .18 . (7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:零花钱数额x元人数濒数) 频率0$ < 3060.1530 孝< 60120.3060 孝< 90160.40900 < 120b0.10120^< 1502a(1) 这次被调查的人数共有________ 人,a= _______ .(2) 计算并补全频数分布直方图;⑶请估计该校1500名学生中每月零花钱数额低于90元的人数.四、解答题(本大题共2小题,每小题8,共16分)19. (8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好. (1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为B乔治t»r…D倆奇爸爸(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率. 20. (8分)为迎接七?一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?五、解答题(本大题共2小题,每小题8分,共16分)21. (8分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45和65。
2013年辽宁省锦州市中考数学模拟试卷---

2013年辽宁省锦州市中考数学模拟试卷2013年辽宁省锦州市中考数学模拟试卷一、选择题(本大题共8个小题,每小题3分,共24分)1.(3分)(2011•辽阳)|﹣3|的相反数是()A.3B.﹣3 C.D.﹣2.(3分)(2011•大连)在平面直角坐标系中,点P(﹣3,2)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)(2013•锦州模拟)如图,由几个小正方体组成的立体图形的俯视图是()A.B.C.D.4.(3分)(2013•锦州模拟)下列图形中,既是轴对称图形,又是中心对称图形的为()A.B.C.D.5.(3分)(2011•盘锦)下列计算正确的是()A.2(x+y)=2x+y B.x4•x3=x7C.x3﹣x2=x D.(x3)2=x56.(3分)(2011•大连)不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2 C.﹣1≤x≤2 D.﹣1<x<27.(3分)(2013•锦州模拟)下列说法中,正确的是()A.某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式D.“今年我县将举办第十六届中小学生艺术节,在这期间的每一天都是晴天”是必然事件8.(3分)(2013•锦州模拟)如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线y=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线Y左侧部分(阴影部分)的面积为S,则函数Y=S 的图象大致是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分)9.(3分)(2013•锦州模拟)锦州世界园林博览会开幕后,游览世博园的游客数量每天都稳步上升,美丽锦州借力世园喜迎八方宾朋.6月1日单日游客量达到153708人次,153708用科学记数法(保留两个有效数字)表示为_________.10.(3分)(2013•锦州模拟)分解因式:5ma2﹣5mb2=_________.11.(3分)(2013•锦州模拟)函数中自变量x的取值范围是_________.12.(3分)(2013•锦州模拟)=_________.13.(3分)(2013•锦州模拟)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m >kx﹣1的解集为_________.14.(3分)(2011•本溪)若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥底面圆的半径的长_________.15.(3分)(2013•锦州模拟)如图,直线x=t(t>0)与反比例函数的图象分别交于B,C两点,A 为y轴上的任意一点,则△ABC的面积为_________.16.(3分)(2013•锦州模拟)用同样大小的黑色棋子按如图所示的规律摆放:第5个图形有_________个黑色棋子,第_________个图形有2013颗黑色棋子.三、解答题(本大题共2个小题,每小题8分,共16分)17.(8分)(2011•锦州)先化简,再求值:()÷(x+1),其中x=tan60°+1.18.(8分)(2012•六盘水)如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算Rt△A1B1C1在上述旋转过程中C1所经过的路程.四、解答题(本大题共2个小题,每小题10分,共20分)19.(10分)(2011•葫芦岛)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.20.(10分)(2012•鞍山)为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;(4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?五、解答题(本大题共2个小题,每小题10分,共20分)21.(10分)(2013•锦州模拟)如图,在海岛A周围30海里范围内是暗礁区,一艘货轮由东向西航行,在B处看海岛A,是在北偏西60°方向上,航行20海里后到C处,看海岛A,是在北偏西45°方向上,如果货轮继续向西航行,有无触礁危险?试加以说明.22.(10分)(2009•北京)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.六、解答题(本大题共2个小题,每小题10分,共20分)23.(10分)(2010•锦州)根据规划设计,某市工程队准备在开发区修建一条长300米的盲道.铺设了60米后,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加10米,结果共用了8天完成任务,该工程队改进技术后每天铺设盲道多少米?24.(10分)(2011•无锡)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?七、解答题(本题共12分)25.(12分)(2010•沈阳)如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a 的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN 还成立吗?不必说明理由.八、解答题(本题共14分)26.(14分)(2013•锦州模拟)如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点.与y轴交于点C (0,3),抛物线的对称轴与直线BC交于点D(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标.(3)平面直角坐标系上有一点P(5,2),x轴上是否存在一点Q,使△PQD为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(4)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标;若不存在,请说明理由.2013年辽宁省锦州市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分)1.(3分)(2011•辽阳)|﹣3|的相反数是()A.3B.﹣3 C.D.﹣考点:绝对值;相反数.分析:根据相反数的定义:只有符号不同的两个数叫互为相反数.解答:解:|﹣3|的相反数是﹣3.故选B.点评:本题考查绝对值与相反数的意义,是一道基础题.可能会混淆倒数、相反数和绝对值的概念,错误地认为﹣3的绝对值等于,或认为﹣|﹣3|=3,把绝对值符号等同于括号.2.(3分)(2011•大连)在平面直角坐标系中,点P(﹣3,2)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据点在第二象限的坐标特点即可解答.解答:解:∵点的横坐标﹣3<0,纵坐标2>0,∴这个点在第二象限.故选B.点评:解决本题的关键是记住平面直角坐标系中各个象限内点的符号:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)(2013•锦州模拟)如图,由几个小正方体组成的立体图形的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得:有两列小正方形第一列有3个正方形,第二层最右边有一个正方形.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,考查了学生细心观察能力,属于基础题.4.(3分)(2013•锦州模拟)下列图形中,既是轴对称图形,又是中心对称图形的为()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2011•盘锦)下列计算正确的是()A.2(x+y)=2x+y B.x4•x3=x7C.x3﹣x2=x D.(x3)2=x5考点:幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的乘法.专题:计算题.分析:根据单项式乘多项式法则判断A即可;根据同底数幂的乘法法则计算即可判断B;根据合并同类项法则判断C即可;根据幂的乘方计算即可判断D.解答:解:A、2(x+y)=2x+2y,故本选项错误;B、x4•x3=x3+4=x7,故本选项正确;C、x3和x2不是同类项不能合并,故本选项错误;D、(x3)2=x6,故本选项错误.故选B.点评:本题考查了幂的乘方和积的乘方,合并同类项,去括号法则,同底数幂的乘法等知识点的应用,能熟练地运用这些法则进行计算是解此题的关键.6.(3分)(2011•大连)不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2 C.﹣1≤x≤2 D.﹣1<x<2考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:求出不等式①②的解集,再根据找不等式组解集得规律求出即可.解答:解:,由①得:x<2由②得:x≥﹣1∴不等式组的解集是﹣1≤x<2,故选A.点评:本题主要考查对解一元一次不等式组,不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.7.(3分)(2013•锦州模拟)下列说法中,正确的是()A.某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式D.“今年我县将举办第十六届中小学生艺术节,在这期间的每一天都是晴天”是必然事件考点:方差;全面调查与抽样调查;随机事件;概率的意义.分析:分别根据概率的意义以及方差的定义和随机事件、全面调查和抽样调查的定义进行分析得出答案即可.解答:解:A.根据随机掷一枚硬币,正面向上的概率为,某同学连续10次抛掷质量均匀的硬币,3次正面向上,由于次数较少,因此正面向上的概率是30%不正确,故此选项错误;B.根据方差越小越稳定,故在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定错误,故此选项错误;C.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式,此项调查难度较大适合抽样调查,故此选项正确;D.“今年我县将举办第十六届中小学生艺术节,在这期间的每一天都是晴天”是随机事件,故此选项错误;故选:C.点评:本题主要考查了方差的意义以及全面调查与随机事件和概率的意义,在解题时要能够把方差与概率的意义与实际问题相结合是本题的关键.8.(3分)(2013•锦州模拟)如图,正方形ABCD的顶点A (0,),B(,0),顶点C,D位于第一象限,直线y=t,(0≤t≤),将正方形ABCD分成两部分,设位于直线Y左侧部分(阴影部分)的面积为S,则函数Y=S 的图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.解答:解:根据图形知道,当直线y=t在BD的左侧时,如果直线匀速向右运动,左边的图形是三角形;因而面积应是t的二次函数,并且面积增加的速度随t的增大而增大;直线x=t在B点右侧时,面积的增速减缓,显然D是错误的.故选C.点评:读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程.二、填空题(本大题共8个小题,每小题3分,共24分)9.(3分)(2013•锦州模拟)锦州世界园林博览会开幕后,游览世博园的游客数量每天都稳步上升,美丽锦州借力世园喜迎八方宾朋.6月1日单日游客量达到153708人次,153708用科学记数法(保留两个有效数字)表示为1.5×105.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:153708=1.53708×105≈1.5×105.故答案为:1.5×105.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.10.(3分)(2013•锦州模拟)分解因式:5ma2﹣5mb2=5m(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:先提取公因式5m,再对余下的多项式利用平方差公式继续分解.解答:解:5ma2﹣5mb2,=5m(a2﹣b2),=5m(a+b)(a﹣b).故答案为:5m(a+b)(a﹣b).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.(3分)(2013•锦州模拟)函数中自变量x的取值范围是x≥4.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣4≥0且x≠0,解得x≥4.故答案为:x≥4.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.12.(3分)(2013•锦州模拟)=0.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:先分别根据数的乘方法则、特殊角的三角函数值、0指数幂及负整数指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=1+3×﹣4=1+3﹣4=0.故答案为:0.点评:本题考查的是实数的运算,熟知数乘方法则、特殊角的三角函数值及0指数幂的计算法则是解答此题的关键.13.(3分)(2013•锦州模拟)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m >kx﹣1的解集为x>﹣1.考点:一次函数与一元一次不等式.分析:根据函数图象交点右侧直线y1=x+m图象在直线y2=kx﹣1图象的上面,即可得出不等式x+m>kx﹣1的解集.解答:解:根据图象和交点坐标得出关于x的不等式x+m>kx﹣1的解集是x>﹣1,即可得出答案.故答案是:x>﹣1.点评:本题考查了一次函数与一元一次不等式,在数轴上表示不等式的解集,主要培养学生的观察图象的能力和理解能力.14.(3分)(2011•本溪)若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥底面圆的半径的长4.考点:圆锥的计算.专题:计算题.分析:本题考查圆锥的侧面展开图.根据图形可知,圆锥的侧面展开图为扇形,且其弧长等于圆锥底面圆的周长.解答:解:设这个圆锥的底面半径是R,则有2πR=120π×,解得:R=4.故答案为:4.点评:主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.15.(3分)(2013•锦州模拟)如图,直线x=t(t>0)与反比例函数的图象分别交于B,C两点,A 为y轴上的任意一点,则△ABC的面积为.考点:反比例函数系数k的几何意义.分析:先分别求出B、C两点的坐标,得到BC的长度,再根据三角形的面积公式即可得出△ABC的面积.解答:解:解:把x=t分别代入y=,y=﹣,得y=,y=﹣,所以B(t,)、C(t,﹣),所以BC=﹣(﹣)=.∵A为y轴上的任意一点,∴点A到直线BC的距离为t,∴△ABC的面积=××t=.故答案是:.点评:此题考查了反比例函数图象上点的坐标特征及三角形的面积,求出BC的长度是解答本题的关键,难度一般.16.(3分)(2013•锦州模拟)用同样大小的黑色棋子按如图所示的规律摆放:第5个图形有18个黑色棋子,第670个图形有2013颗黑色棋子.考点:规律型:图形的变化类.专题:规律型.分析:根据图中所给的黑色棋子的颗数,找出其中的规律,根据规律列出式子,即可求出答案.解答:解:(1)第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.设第n个图形有2013颗黑色棋子,得3(n+1)=2013,解得n=670,所以第670个图形有2013颗黑色棋子.故答案为:18,670.点评:此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.三、解答题(本大题共2个小题,每小题8分,共16分)17.(8分)(2011•锦州)先化简,再求值:()÷(x+1),其中x=tan60°+1.考点:分式的化简求值;特殊角的三角函数值.专题:计算题;压轴题.分析:把所求式子被除数第一项分子利用提公因式法分解因式,后两项提取﹣1,找出两分母的最简公分母,通分后利用同分母分式的减法法则计算,分子去括号合并,同时利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后把所求式子化为最简,最后把x的值代入,利用特殊角的三角函数值及分母有理化后即可得到结果.解答:解:原式=[﹣(x+1)]•(3分)=•=•(4分)=,(5分)当x=tan60°+1时,原式====.(8分)点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母,分式的乘除运算关键是约分,约分的关键是找公因式,约分时遇到多项式要将多项式分解因式后再约分,分式的化简求值题,要将原式化为最简再代值.18.(8分)(2012•六盘水)如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算Rt△A1B1C1在上述旋转过程中C1所经过的路程.考点:作图-旋转变换;弧长的计算;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构找出点A1、B1、C1绕点A1顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据勾股定理求出A1C1的长度,然后根据弧长公式列式计算即可得解.解答:解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1的坐标为(1,0);(2)如图所示,△A2B2C2即为所求作的三角形,根据勾股定理,A1C1==,所以,旋转过程中C1所经过的路程为=π.点评:本题考查了利用旋转变换作图,利用平移变换作图,弧长的计算公式,熟练掌握网格结构并准确找出对应点的位置是解题的关键.四、解答题(本大题共2个小题,每小题10分,共20分)19.(10分)(2011•葫芦岛)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.考点:列表法与树状图法;概率公式.专题:应用题;图表型.分析:(1)根据概率的求法,找准两点:①全部情况的总数为3;②符合条件的情况数目为1;二者的比值就是其发生的概率;(2)利用列表的方法列举出所有等可能的结果,再找出小宇所摸球上的数字比小静所摸球上的数字大1的情况数目,两者的比值即为发生得概率.解答:解:(1)P(摸出标有数字是3的球)=.(2)用下表列举摸球的所有可能结果:小静4 5 6小宇3 (3,4)(3,5)(3,6)4 (4,4)(4,5)(4,6)5 (5,4)(5,5)(5,6)从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此P(小宇“略胜一筹”)=.点评:此题考查了利用画树状图及列表格的方法求事件发生的概率,利用了数形结合的思想.通过画树状图或列表法将复杂的概率问题化繁为简,化难为易,因为这种方法可以直观的把所有可能的结果一一罗列出来,方便于计算.概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(10分)(2012•鞍山)为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;(4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用1.5﹣2小时的频数除以其所占的百分比即可求得抽样调查的人数;(2)根据圆心角的度数求出每个小组的频数即可补全统计图;(3)用人数除以总人数乘以周角即可求得圆心角的度数;(4)用总人数乘以不超过1.5小时的所占的百分比即可.解答:解:(1)观察统计图知:用车时间在1.5~2小时的有30个,其圆心角为54°,故抽查的总人数为30÷=200个;(2)用车时间在0.5~1小时的有200×=60个;用车时间在2~2.5小时的有200﹣60﹣30﹣90=20个,统计图为:中位数落在1﹣1.5小时这一小组内.(3)用车时间在1~1.5小时的部分对应的扇形圆心角的度数为×360°=162°;(4)该社区用车时间不超过1.5小时的约有1600×=1200个;点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(本大题共2个小题,每小题10分,共20分)21.(10分)(2013•锦州模拟)如图,在海岛A周围30海里范围内是暗礁区,一艘货轮由东向西航行,在B处看海岛A,是在北偏西60°方向上,航行20海里后到C处,看海岛A,是在北偏西45°方向上,如果货轮继续向西航行,有无触礁危险?试加以说明.考点:解直角三角形的应用-方向角问题.专题:计算题;应用题;方程思想.分析:过点A作AD⊥CB于点D,则直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长,与30海里比较,确定货轮继续向西航行,有无触礁危险.解答:解:过点A作AD⊥CB于点D.在直角△ACD中,∠ACD=45°,则直角△ACD是等腰直角三角形,则AD=CD.在直角△ABD中,∠ABD=90﹣60=30°∴BD=•AD∵BC=BD﹣CD∴20=AD﹣AD∴AD==10(+1)<30海里.故该船继续航行(沿原方向)有触礁的危险.点评:本题主要考查了三角形的计算,一般的三角形可以通过作高线转化为解直角三角形的计算,计算时首先计算直角三角形的公共边是常用的思路.22.(10分)(2009•北京)已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.。
2013年辽宁锦州中考数学试卷及答案(word解析版)

锦州市2013年考试数学试卷考试时间120分钟试卷满分150分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确的选项选出.每小题3分,共24分)1.(2013辽宁锦州,1,3分)-3的倒数是A.13-B.3 C.-3 D.13【答案】A.2.(2013辽宁锦州,2,3分)下列运算正确的是A.2()a b+=a2+b2B.3x+3x=6xC.32()a=5a D.23(2)(3)x x-=56x-【答案】D.3.(2013辽宁锦州,3,3分)下列几何体中,主视图与左视图不同的是【答案】C.4.(2013辽宁锦州,4,3分)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.4【答案】B.5.(2013辽宁锦州,5,3分)不等式组312114x xx-<⎧⎪⎨⎪⎩≤的解集在数轴上表示正确的是【答案】C.6.(2013辽宁锦州,6,3分)如图,直线y=mx与双曲线y=kx交于A、B两点,过点A 圆柱球A B C DABCD作A M ⊥x 轴,垂足为点M ,连结B M ,若S △AB M =2,则k 的值为 A .-2 B .2 C .4D .-4【答案】A .7. (2013辽宁锦州,7,3分)有如下四个命题: (1)三角形有且只有一个内切圆; (2)四边形的内角和与外角和相等;(3)顺次连结四边形各边中点所得的四边形一定是菱形; (4)一组对边平行且一组对角相等的四边形是平行四边形. 其中真命题的个数有 A .1个 B .2个 C .3个 D .4个 【答案】C .8. (2013辽宁锦州,8,3分)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x 满足的方程是A .4800x =500020x - B .4800x =500020x + C .480020x -=5000x D .480020x +=5000x 【答案】B .二、填空题(本大题共8个小题,每小题3分,共24分)9. (2013辽宁锦州,9,3分)分解因式32x xy -的结果是_____. 【答案】()()x x y x y +-.10.(2013辽宁锦州,10,3分)在函数y【答案】x ≥2. 11.(2013辽宁锦州,11,3分)据统计,2013锦州世界园林博览会6月1日共接待游客约154000人次.154000可用科学记数法表示为____. 【答案】1.54×510. 12.(2013辽宁锦州,12,3分)为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩均为9.3环;方差分别为2s 甲=1.22,2s 乙=1.68,2s 丙=0.44,则应该选____参加全运会.【答案】丙.第6题13.(2013辽宁锦州,13,3分)计算:111(3.14)()2π--︒--=_____.【答案】14.(2013辽宁锦州,14,3分)在四张背面完全相同的卡片正面分别画有正三角形、正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上,现从中随机抽出一张,抽出的图形是中心对称图形的概率是____.【答案】34. 15.(2013辽宁锦州,15,3分)在△ABC 中,AB =AC ,AB 的垂直平分线DE 与AC 所在的直线相交于点E ,垂足为D ,连结BE .已知AE =5,tan ∠AED =34,则BE +CE =____.【答案】6或16.16.(2013辽宁锦州,16,3分)二次函数y =223x 的图象如图,点A 0位于坐标原点,点A 1、A 2,A 3,…,A n 在y 轴的正半轴上,点B 1、B 2、B 3,…,B n 在二次函数位于第一象限的图象上.四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3,…,四边形A n -1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 2=∠A 2B 3A 3=…=A n -1B n A n =60°,菱形A n -1B n A n C n 的周长为_____.【答案】4n .三、解答题(本大题共2个小题,每小题8分,共16分)17.(2013辽宁锦州,17,8分)先将211(1)2x x x x--÷+化简,然后请自选一个你喜欢的x 值代入求值. 【答案】原式=2112x x x x x--÷+=1(2)1x x x x x -+-g=2x +.取x =10,则原式=12. 18.(2013辽宁锦州,18,8分)如图,方格纸中的每个小正方形边长都是1个单位长度,Rt △ABC 的顶点均在格点上.建立平面直角坐标系后,点A 的坐标为(1,1),点B 的坐标为(4,1).(1)先将Rt △ABC 向左平移5个单位长度,再向下平移1个单位长度得到Rt △A 1B 1C 1,试在图中画出Rt △A 1B 1C 1,并写出点A 1的坐标;第16题(2)再将Rt △A 1B 1C 1绕点A 1顺时针旋转90°后得到Rt △A 1B 2C 2,试在图中画出Rt △A 1B 2C 2,并计算Rt △A 1B 1C 1在上述旋转过程点C 1所经过的路径长.【答案】(1)Rt △A 1B 1C 1如图所示,A 1(-4,0). (2)Rt △A 1B 2C 2如图所示.在Rt △A 1B 1C 1中,A1C1∴点C 1所经过的路径长为90180πg.四、解答题(本大题共2个小题,每小题10分,共20分)19.(2013辽宁锦州,19,10分)以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图中信息解答下列问题:(1)求2013年全国普通高校毕业生数年增长率约是多少?(精确到0.1%) (2)求2011年全国普通高校毕业生数约是多少万人?(精确到万位) (3)补全折线统计图和条形统计图.2009年~2013年全国普通高校 毕业生数的年增长率长率统计图 2009年~2013年全国普通高校毕业生数统计图年份【答案】(1)699680100%680-⨯≈2.8%. 答:2013年全国普通高校毕业生数年增长率约是2.8%. (2)631×(1+4.6%)≈660(万).答:2011年全国普通高校毕业生数约是660万人. (3)如图所示.20.(2013辽宁锦州,20,10分)如图,点O 是菱形ABCD 对角线的交点,DE ∥AC ,CE∥BD ,连结OE . 求证:OE =B C .【答案】∵DE ∥AC ,CE ∥BD , ∴四边形OCED 是平行四边形. ∵四边形ABCD 是菱形, ∴AC ⊥BD . ∴∠DOC =90°.∴四边形OCED 是矩形. ∴OE =CD .∵四边形ABCD 是菱形, ∴CD =BC . ∴OE =B C .五、解答题(本大题共2个小题,每小题10分,分20分) 21.(2013辽宁锦州,21,10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.2009年~2013年全国普通高校毕业生数的年增长率长率统计图 2009年~2013年全国普通高校毕业生数统计图年份A DEO(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.种等可能结果,其中所摸球上的数字与圆盘上转出数字之和小于4的情形有3种. ∴P (小颖去)=312=14. (2)∵P (小颖去)14<12, ∴游戏不公平.游戏规则修改为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于5,那么小颖去;否则小亮去.22.(2013辽宁锦州,22,10分)如图,某公园入口处有一斜坡AB ,坡角为12°,AB 长为3m .施工队准备将斜坡建成三级台阶,台阶高度均为h cm ,深度均为30cm ,设台阶的起点为C .(1)求AC 的长度;(2)每级台阶的高度h . (参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126,结果都精确到0.1cm ).【答案】(1)如图所示构造Rt △ABD . ∴AD =AB ·cos ∠A =300×cos12°≈300×0.9781=293.43. ∴AC =AB -CD =293.43-2×30≈233.4(cm ).答:AC 的长度约为236.1cm . (2)在Rt △ABD 中,BD =AB ·sin ∠A =300×sin12°≈300×0.2079=6.237.∴h =13BD =13×62.37≈20.1(cm ).答:每级台阶的高度h 约为20.1cm .321六、解答题(本大题共2个小题,每小题10分,共20分) 23.(2013辽宁锦州,23,10分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 与⊙O 相切; (2)设OE 交⊙O 于点F ,若DF =1,BC =BC 、线段CE 和BE 所围成的图形面积S .【答案】(1)连结OC . ∵OC =OB ,OD ⊥BC , ∴∠COD =∠BOD .又∵OC =OB ,OE =OE , ∴△OCE ≌△OBE . ∴∠OCE =∠OBE . ∵CE 切⊙O 于点C , ∴OC ⊥CE . ∴∠OCE =90°. ∴∠OBE =90°. ∴OB ⊥BE .∴BE 与⊙O 相切.(2)设⊙O 的半径长为r ,则OD =r 1,OB =r . ∵OC =OB ,OD ⊥BC ,ABCDEOF ABCDEOF∴BD =12BC =12×在Rt △OBD中,由勾股定理得22(1)r -+=2r ,解得r =2. ∴OD =1,OB =2. ∴sin ∠BOD =BDOB.∴∠BOD =60°.在Rt △OBE 中,BE =OB ·tan ∠BOD =2×tan60°=∴S △OBE =12×OB ×BE =12×2×= ∵△OCE ≌△OBE , ∴S △OCE =S △OBE= ∴S 四边形OBEC=∵∠COD =∠BOD ,∠BOD =60°, ∴∠BOC =120°. ∴S 扇形OBC =21202360πg g =43π. ∴S =S 四边形OBEC -S 扇形OBC=43π.24.(2013辽宁锦州,24,10分)甲、乙两车分别从A 、B 两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地.右图是甲、乙两车和B 地的距离y (千米)与甲车出发时间x (小时)的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (千米)与甲车出发时间x (小时)的函数关系式(写出自变量的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?【答案】(1)a =90,m =1.5,n =3.5. (2)如图标注.①设AB 的函数关系式为y 甲=kx b +. 将(0,300)、(1.5,120)代入,得 300120 1.5bk b =⎧⎨=+⎩. 解得k =-120,b =300.∴y 甲=120300x -+(0≤x ≤1.5).②BC 的函数关系式为y 甲=120(1.5<x <2.5).③同理可求CD 的函数关系式为y 甲=120420x -+(2.5≤x ≤3.5). 综合知,y 甲=120300(0 1.5)120(1.5 2.5)120420(2.5 3.5)x x x x -+⎧⎪<<⎨⎪-+⎩≤≤≤≤.(3)设OE 的函数关系式为y 乙=1k x . 将(2,120)代入,得 120=12k . ∴1k =60.∴y 乙=60x (0≤x ≤3.5).当0≤x ≤1.5时,根据题意并结合函数图象得120300x -+-60x =120,解得x =1. 当2.5≤x ≤3.5,根据题意并结合函数图象得60x -(120420x -+)=120,解得x =3. 答:当两车相距120千米时,乙车行驶了1小时或3小时.七、解答题(本题12分) 25.(2013辽宁锦州,25,12分)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A 重合,将此三角板绕点A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC 、DC 于点E 、F ,连结EF .(1)猜想BE 、EF 、DF 三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A 作A M ⊥EF 于点M ,请直接写出A M 和AB 的数量关系;(3)如图2,将Rt △ABC 沿斜边AC 翻折得到Rt △ADC ,E 、F 分别是BC 、CD 边上的点,∠EAF =12∠BAD ,连结EF ,过点A 作A M ⊥EF 于点M .试猜想A M 与AB 之间的数量关系,并证明你的猜想.【答案】(1)EF =BE +DF .证明:如图①,在CB 延长线截取BG =DF ,连结AG .∵四边形ABCD 是正方形, ∴∠D =∠ABE =∠AB G =90°,AD =AB . 又∵BG =DF ,∴△ADF ≌△ABG .∴AF =AF ,∠DAF =∠B A G . ∵∠EAF =45°,∠BAD =90°, ∴∠ADF +∠BAE =45°. ∴∠BAG +∠BAE =45°,即∠GAE =45°. ∴∠GAE =∠EAF .又∵AG =AF ,AE =AE , ∴△GAE ≌△FAE . ∴GE =EF .∵GE =BG +BE =DF +BE , ∴EF =DF +BE . (2)AM =AB . (3)AM =AB .证明:如图②,在CB 延长线截取BG =DF ,连结AG .ABCD EF图1ABCDEFM图2AB CD EF图①G同(1)可证△GAE ≌△FAE .∴∠GEA =∠FEA .又∵AB ⊥GE ,AM ⊥EF ,AM =AB .八、解答题(本题14分)26.(2013辽宁锦州,26,14分)如图,抛物线y =218x mx n -++经过△ABC 的三个顶点,点A 坐标为(0,3),点B 坐标为(2,3)点C 在x 轴正半轴上.(1)求该抛物线的函数表达式及点C 的坐标;(2)点E 为线段OC 上一动点,以OE 为边在第一象限内作正方形OEFG ,当正方形的顶点F 恰好落在线段AC 上时,求线段OE 的长;(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动.设平移的距离为t ,正方形DEFG 的边EF 与AC 交于点M ,DG 所在的直线与AC 交于点N ,连结D M ,是否存在这样的t ,使△D M N 是等腰三角形?若存在,求出t 值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG 与△ABC 的重叠部分为五边形时,请直接写出重叠部分的面积S 与平移距离t 的函数关系式及自变量t 的取值范围;并求当t 为何值时,S 有最大值,最大值是多少?【答案】(1)将A (0,3),B (2,3)代入y =218x mx n -++,得 2313228n m n =⎧⎪⎨=-⨯++⎪⎩. 解得m =14,n =3. AB C DEFM图②G 备用图∴该抛物线的函数表达式为y =211384x x -++. 当y =0时,211384x x -++=0,解得1x =-4,2x =6. ∵点C 在x 轴的正半轴上,∴C (6,0).(2)∵C (6,0),A (0,3),∴OC =6,OA =3.设正方形ODFG 的边长为a ,则CE =6-a ,EF =a . 当正方形的顶点F 恰好落在线段AC 上时,如图①.∵EF ∥OA ,∴△CEF ∽△COA . ∴EF OA =CE OC ,即3a =66a -. 解得a =2.∴OE =2.(3)存在,如图②.∵EF ∥OA ,∴△MEC ∽△AOC . ∴ME AO =EC OC ,即3ME =626t --. ∴ME =122t -. 在Rt △DEM 中,由勾股定理得DM 2=DE 2+ME 2,即DM 2=2212(2)2t +-. ∵EF ∥DG ,∴△NDC ∽△AOC . ∴ND AO =DC OC ,即3ND =66t -.图②图①∴ND =132t -. 过点M 作MH ⊥DG 于点H ,则MH =2,DH =ME =122t -. ∴NH =ND -DH =132t --(122t -)=1. 在Rt △ABC 中,由勾股定理得MN 2=NH 2+MH 2=2212+=5. ①当DM =DN 时,则DM 2=DN 2. ∴2212(2)2t +-=21(3)2t -. 解得t =1.②当DM =MN 时,则DM 2=MN 2. ∴2212(2)2t +-=5. 解得t =2或6,但t =6不符合题意,舍去.③当DN =MN 时,则132t -.解得t =6-综合知,当t =1或2或6-DMN 是等腰三角形.(4)S =235283t t -+-(2<t <103). ∵S =235283t t -+-=238()183t --+, 而38-<0且2<83<103, ∴当t =83时,S 有最大值,最大值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年辽宁省锦州市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面的表格中.每小题3分,共24分)1.(2013年锦州市)﹣3的倒数是()A.B.﹣3 C.3D.分析:根据乘积是1的两个数互为倒数解答.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选A.点评:本题考查了互为倒数的定义,是基础题,熟记概念是解题的关键.2.(2013年锦州市)下列运算正确的是()A(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x5分析:A、利用完全平方公式展开得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用单项式乘单项式法则计算得到结果,即可做出判断.解:A、(a+b)2=a2+2ab+b2,本选项错误;B、x3+x3=2x3,本选项错误;C、(a3)2=x6,本选项错误;D、(2x2)(﹣3x3)=﹣6x5,本选项正确,故选D点评:此题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握公式及法则是解本题的关键.3.(2013年锦州市)下列几何体中,主视图和左视图不同的是()A.圆柱B.正方体C.正三棱柱D.球分析:分别分析四种几何体的主视图和左视图,找出主视图和左视图不同的几何体.解:A、圆柱的主视图与左视图都是长方形,不合题意,故本选项错误;B、正方体的主视图与左视图相同,都是正方形,不合题意,故本选项错误;C、正三棱柱的主视图是长方形,长方形中有一条杠,左视图是矩形,符合题意,故本选项正确;D、球的主视图和左视图相同,都是圆,且有一条水平的直径,不合题意,故本选项错误.故选:C.点评:本题考查了简单几何体的三视图,要求同学们掌握主视图是从物体的正面看到的视图,左视图是从物体的左面看得到的视图,.4.(2013年锦州市)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.4分析:根据中位数和平均数的定义求解即可.解:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为:=8.4.故选B.点评:本题考查了中位数和平均数的知识,属于基础题,解答本题的关键是掌握中位数和平均数的定义.5.(2013年锦州市)不等式组的解集在数轴上表示正确的是()A.B.C.D.分析:求出不等式组的解集,表示在数轴上即可.解:,由①得:x<1;由②得:x≤4,则不等式组的解集为x<1,表示在数轴上,如图所示故选C点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(2013年锦州市)如图,直线y=mx与双曲线y=交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为()A.﹣2 B.2C.4D.﹣4分析:根据反比例的图象关于原点中心对称得到点A与点B关于原点中心对称,则S△OAM=S△OBM,而S△ABM=2,S△OAM=1,然后根据反比例函数y=(k≠0)系数k的几何意义即可得到k=﹣2.解:∵直线y=mx与双曲线y=交于A,B两点,∴点A与点B关于原点中心对称,∴S△OAM=S△OBM,而S△ABM=2,∴S△OAM=1,∴|k|=1,∵反比例函数图象在第二、四象限,∴k<0,∴k=﹣2.故选A.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.7.(2013年锦州市)有如下四个命题:(1)三角形有且只有一个内切圆;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有()A.1个B.2个C.3个D.4个分析:根据三角形的内切圆的定义、多边形内角和公式、菱形的性质和平行四边形的性质,对每一项分别进行分析,即可得出答案.解:(1)三角形的内切圆的圆心是三个内角平分线的交点,有且只有一个交点,所以任意一个三角形一定有一个内切圆,并且只有一个内切圆,则正确;(2)根据题意得:(n﹣2)•180=360,解得n=4.则四边形的内角和与外角和相等正确;(3)顺次连接四边形各边中点所得的四边形一定是矩形,故不正确;(4)一组对边平行且一组对角相等的四边形是平行四边形,正确;故选C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(2013年锦州市)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是()A.B.=C.D.分析:如果设第一次有x人捐款,那么第二次有(x+20)人捐款,根据两次人均捐款额相等,可得等量关系为:第一次人均捐款额=第二次人均捐款额,据此列出方程即可.解答:解:设第一次有x人捐款,那么第二次有(x+20)人捐款,由题意,有=,故选B.点评:本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.二、填空题(本大题共8个小题,每小题3分,共24分)9.(2013年锦州市)分解因式x3﹣xy2的结果是_________.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止10.(2013年锦州市)函数中,自变量x的取值范围是_________.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解:依题意,得x﹣2≥0,解得x≥2,故答案为:x≥2.点评:本题考查的知识点为:二次根式的被开方数是非负数.11.(2013年锦州市)据统计,2013锦州世界园林博览会6月1日共接待游客约154000人次,154000可用科学记数法表示为_________.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将154000用科学记数法表示为1.54×105.故答案为:1.54×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2013年锦州市)为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2甲=1.22,S2乙=1.68,S2丙=0.44,则应该选_________参加全运会.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解:∵S2甲=1.22,S2乙=1.68,S2丙=0.44,∴S2丙最小,∴则应该选丙参加全运会.故答案为:丙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(2013年锦州市)计算:|1﹣|+﹣(3.14﹣π)0﹣(﹣)﹣1=_________.分析:本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:原式=﹣1+2﹣1﹣=﹣1+2﹣1+2=3.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.14.(2013年锦州市)在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是_________.分析:先求出中心对称图形的个数,除以卡片总张数即为恰好是中心对称图形的概率.解:正三角形,正六边形、平行四边形和圆中,是中心对称图形的有圆、平行四边形、正六边形3个,所以从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为:.故答案为:.点评:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(2013年锦州市)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE.已知AE=5,tan∠AED=,则BE+CE=_________.分析:本题有两种情形,需要分类讨论.首先根据题意画出图形,由线段垂直平分线的性质,即可求得AE=BE,又由三角函数的性质,求得AD的长,继而求得答案.解:①若∠BAC为锐角,如答图1所示:∵AB的垂直平分线是DE,∴AE=BE,ED⊥AB,AD=AB,∵AE=5,tan∠AED=,∴sin∠AED=,∴AD=AE•sin∠AED=3,∴AB=6,∴BE+CE=AE+CE=AC=AB=6;②若∠BAC为钝角,如答图2所示:同理可求得:BE+CE=16.故答案为:6或16.点评:本题考查了线段垂直平分线、等腰三角形、解直角三角形等知识点,着重考查了分类讨论的数学思想.16.(2013年锦州市)二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n 在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n 在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n C n都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n C n的周长为_________.分析:由于△A0B1A1,△A1B2A2,△A2B3A3,…,都是等边三角形,因此∠B1A0x=30°,可先设出△A0B1A1的边长,然后表示出B1的坐标,代入抛物线的解析式中即可求得△A0B1A1的边长,用同样的方法可求得△A0B1A1,△A1B2A2,△A2B3A3,…的边长,然后根据各边长的特点总结出此题的一般化规律,根据菱形的性质易求菱形A n﹣1B n A n C n的周长.解:∵四边形A0B1A1C1是菱形,∠A0B1A1=60°,∴△A0B1A1是等边三角形.设△A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:()2=,解得m1=0(舍去),m1=1;故△A0B1A1的边长为1,同理可求得△A1B2A2的边长为2,…依此类推,等边△A n﹣1B n A n的边长为n,故菱形A n﹣1B n A n C n的周长为4n.故答案是:4n.点评:本题考查了二次函数综合题.解题时,利用了二次函数图象上点的坐标特征,菱形的性质,等边三角形的判定与性质等知识点.解答此题的难点是推知等边△A n﹣1B n A n的边长为n.三、解答题(本大题共2个小题,每小题8分,共16分)17.(8分)(2013年锦州市)先将(1﹣)÷化简,然后请自选一个你喜欢的x值代入求值.分析:原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x=2代入计算即可得到结果.解:原式=•=x+2,当x=2时,原式=2+2=4.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18.(8分)(2013年锦州市)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC 的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A1、B1、C1绕点A1顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据勾股定理列式求出A1C1的长,然后利用弧长公式列式计算即可得解.解:(1)Rt△A1B1C1如图所示,A1(﹣4,0);(2)Rt△A2B2C2如图所示,根据勾股定理,A1C1==,所以,点C1所经过的路径长==π.点评:本题考查了利用旋转变换作图,利用平移变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点的位置是解题的关键.四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)(2013年锦州市)以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图中信息解答下列问题:(1)求2013年全国普通高校毕业生数年增长率约是多少?(精确到0.1%)(2)求2011年全国普通高校毕业生数约是多少万人?(精确到万位)(3)补全折线统计图和条形统计图.分析:(1)用2013年比2012年多的人数除以2012年的人数,计算即可求出2013年的增长率;(2)设2011年的毕业生人数约是x万人,根据2011年的增长率是4.6%列式计算即可得解;(3)根据计算补全统计图即可.解:(1)×100%≈2.8%,故2013年全国普通高校毕业生数年增长率约是2.8%;(2)设2011年的毕业生人数约是x万人,根据题意得,≈4.6%,解得x≈660,故2011年全国普通高校毕业生数约是660万人;(3)补全统计图如图所示.点评:本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况20.(10分)(2013年锦州市)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.分析:先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,利用勾股定理即可求出BC=OE.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∵BC=,OE=,∴BC=OE.点评:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.五、解答题(本大题共2个小题,每小题10分,共20分)21.(10分)(2013年锦州市)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.分析:(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.解:(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(和小于4)=,P(和大于等于4)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两指针所指数字之和为偶数,则小颖获胜;若两指针所指数字之和为奇数,则小亮获胜;P(和为偶数)=P(和为奇数)=.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.(10分)(2013年锦州市)如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)分析:(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE ﹣CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.解:如右图,过点B作BE⊥AC于点E,(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE﹣CE=293.4﹣60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.点评:本题考查了解直角三角形的应用,难度一般,解答本题的关键是根据坡度和坡角构造直角三角形,并解直角三角形.六、解答题(本大题共2个小题,每小题10分,共20分)23.(10分)(2013年锦州市)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2,求由劣弧BC、线段CE和BE所围成的图形面积S.分析:(1)首先连接OC,易证得△COE≌△BOE(SAS),即可得∠OCE=∠OBE=90°,证得BE与⊙O相切;(2)首先设OC=x,则OD=OF﹣DF=x﹣1,易求得OC的长,即可得∠BOC=120°,又由S=S四边形OBFC﹣S扇形OBC求得答案.(1)证明:连接OC,∵CE是⊙O的切线,∵OB=OC,OD⊥BC,∴∠EOC=∠EOB,∵在△EOC和△EOB中,,∴△COE≌△BOE(SAS),∴∠OCE=∠OBE=90°,即OB⊥BE,∴BE与⊙O相切;(2)解:∵OD⊥BC,∴CD=BC=×2=,设OC=x,则OD=OF﹣DF=x﹣1,在Rt△OCD中,OC2=OD2+CD2,∴x2=(x﹣1)2+()2,解得:x=2,∴OC=2,∠COD=60°,∴∠BOC=120°,∴CF=OC•tan60°=2,∴S=S四边形OBFC﹣S扇形OBC=2S△OCE﹣S扇形OBC=2××2×2﹣×π×22=4﹣π.点评:此题考查了切线的性质、全等三角形的判定与性质、垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.(10分)(2013年锦州市)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B 地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?分析:(1)根据甲车休息1小时列式求出m,再根据乙车2小时距离B地120千米求出速度,然后求出a,根据甲的速度列式求出到达B地行驶的时间再加上休息的1小时即可得到n的值;(2)分休息前,休息时,休息后三个阶段,利用待定系数法求一次函数解析式解答;(3)求出甲车的速度,然后分①相遇前两人的路程之和加上相距的120千米等于总路程列出方程求解即可;②相遇后,两人行驶的路程之和等于总路程加120千米,列出方程求解即可.解:(1)∵甲车途径C地时休息一小时,∴2.5﹣m=1,∴m=1.5,乙车的速度==,即=60,解得a=90,甲车的速度为:=,解得n=3.5;所以,a=90,m=1.5,n=3.5;(2)设甲车的y与x的函数关系式为y=kx+b(k≠0),①休息前,0≤x<1.5,函数图象经过点(0,300)和(1.5,120),所以,,解得,所以,y=﹣120x+300,②休息时,1.5≤x<2.5,y=120,③休息后,2.5≤x≤3.5,函数图象经过(2.5,120)和(3.5,0),所以,,解得,所以,y=﹣120x+420.综上,y与x的关系式为y=;(3)设两车相距120千米时,乙车行驶了x小时,甲车的速度为:(300﹣120)÷1.5=120千米/时,①若相遇前,则120x+60x=300﹣120,解得x=1,②若相遇后,则120(x﹣1)+60x=300+120,解得x=3,所以,两车相距120千米时,乙车行驶了1小时或3小时.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,路程、速度、时间三者之间的关系,根据休息1小时求出m的值是本题的突破口,(3)要注意分两种情况讨论.七、解答题(本题12分)25.(12分)(2013年锦州市)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.分析:(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠F,证△EAQ≌△EAF,推出EF=BQ即可;(2)根据△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,∠D=∠DAB=∠ABE=90°,∠BAC=∠DAC=∠BAD,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠F AE,证△EAQ≌△EAF,推出EF=BQ即可.(1)EF=BE+DF,证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠DAB=90°,∠F AE=45°,∴∠DAF+∠BAE=45°,∴∠BAE+∠BAQ=45°,即∠EAQ=∠F AE,在△EAQ和△EAF中∴△EAQ≌△EAF,∴EF=BQ=BE+EQ=BE+DF.(2)解:AM=AB,理由是:∵△EAQ≌△EAF,EF=BQ,∴×BQ×AB=×FE×AM,∴AM=AB.(3)AM=AB,证明:如答图2,延长CB到Q,使BQ=DF,连接AQ,∵折叠后B和D重合,∴AD=AB,∠D=∠DAB=∠ABE=90°,∠BAC=∠DAC=∠BAD,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠F AE=∠BAD,∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD,即∠EAQ=∠F AE,在△EAQ和△EAF中∴△EAQ≌△EAF,∴EF=BQ,∵△EAQ≌△EAF,EF=BQ,∴×BQ×AB=×FE×AM,∴AM=AB.点评:本题考查了正方形的性质,全等三角形的性质和判定,折叠的性质的应用,主要考查学生综合运用定理进行推理的能力,题目比较典型,证明过程类似.八、解答题(本题14分)26.(14分)(2013年锦州市)如图,抛物线y=﹣x2+mx+n经过△ABC的三个顶点,点A 坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式及点C的坐标;(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S 有最大值,最大值是多少?分析:(1)利用待定系数法求出抛物线的解析式,令y=0解方程,求出点C的坐标;(2)如答图1所示,由△CEF∽△COA,根据比例式列方程求出OE的长度;(3)如答图2所示,若△DMN是等腰三角形,可能有三种情形,需要分类讨论;(4)当正方形DEFG与△ABC的重叠部分为五边形时,如答图3所示.利用S=S正方形DEFG ﹣S梯形MEDN﹣S△FJK求出S关于t的表达式,然后由二次函数的性质求出其最值.解答:解:(1)∵抛物线y=﹣x2+mx+n经过点A(0,3),B(2,3),∴,解得:,∴抛物线的解析式为:y=﹣x2+x+3.令y=0,即﹣x2+x+3=0,解得x=6或x=﹣4,∵点C位于x轴正半轴上,∴C(6,0).(2)当正方形的顶点F恰好落在线段AC上时,如答图1所示:设OE=x,则EF=x,CE=OC﹣OE=6﹣x.∵EF∥OA,∴△CEF∽△COA,∴,即,解得x=2.∴OE=2.(3)存在满足条件的t.理由如下:如答图2所示,易证△CEM∽△COA,∴,即,得ME=2﹣t.过点M作MH⊥DN于点H,则DH=ME=2﹣t,MH=DE=2.易证△MNH∽△COA,∴,即,得NH=1.∴DN=DH+HN=3﹣t.在Rt△MNH中,MH=2,NH=1,由勾股定理得:MN=.△DMN是等腰三角形:①若DN=MN,则3﹣t=,解得t=6﹣;②若DM=MN,则DM2=MN2,即22+(2﹣t)2=()2,解得t=2或t=6(不合题意,舍去);③若DM=DN,则DM2=DN2,即22+(2﹣t)2=(3﹣t)2,解得t=1.综上所述,当t=1、2或6﹣时,△DMN是等腰三角形.(4)当正方形DEFG与△ABC的重叠部分为五边形时,如答图3所示:设EF、DG分别与AC交于点M、N,由(3)可知:ME=2﹣t,DN=3﹣t.设直线BC的解析式为y=kx+b,将点B(2,3)、C(6,0)代入得:,解得,∴y=x+.设直线BC与EF交于点K,∵x K=t+2,∴y K=x K+=t+3,∴FK=y F﹣y K=2﹣(t+3)=t﹣1;设直线BC与GF交于点J,∵yJ=2,∴2=x J+,得x J=,∴FJ=x F﹣x J=t+2﹣=t﹣.∴S=S正方形DEFG﹣S梯形MEDN﹣S△FJK=DE2﹣(ME+DN)•DE﹣FK•FJ=22﹣[(2﹣t)+(3﹣t)]×2﹣(t﹣1)(t﹣)=t2+2t﹣.过点G作GH⊥y轴于点H,交AC于点I,则HI=2,HJ=,∴t的取值范围是:2<t<.∴S与t的函数关系式为:S=t2+2t﹣(2<t<).S=t2+2t﹣=(t﹣)2+1,∵<0,且2<<,∴当t=时,S取得最大值,最大值为1.点评:本题是典型的运动型二次函数压轴题,考查了二次函数的图象与性质、待定系数法、一次函数、相似三角形、勾股定理、图形面积计算、最值问题等知识点,考查了运动型问题、存在型问题和分类讨论的数学思想,难度较大.解题关键是理解图形的运动过程.。