初中数学(8)--代数测试卷

合集下载

初中数学精品试题:《数与代数》综合测试卷

初中数学精品试题:《数与代数》综合测试卷

《数与代数》综合测试卷一、选择题(每小题3分,共30分)1.1008亿用科学记数法表示为(D ) A .1008×108 B .1.008×109 C .1.008×1010 D .1.008×10112.已知m ,n 互为相反数,则下列结论错误的是(C ) A .2m +2n =0 B .mn =-m 2 C.m n=-1 D.3m =-3n 【解析】 ∵当m ,n 均为0时,mn 无意义,∴C 选项错误.3.下列运算正确的是(D ) A .(-2a 3)2=2a 6 B.9=±3C .m 2·m 3=m 6D .x 3+2x 3=3x 3【解析】 A .(-2a 3)2=4a 6,故本选项错误. B.9=3,故本选项错误. C .m 2·m 3=m 5,故本选项错误. D .x 3+2x 3=3x 3,故本选项正确.4.定义一种新运算ʃb a n ·x n -1dx =a n -b n ,例如,ʃh k 2xdx =k 2-h 2.若ʃ5m m -x -2dx =-2,则m =(B )A .-2B .-25C .2 D.25【解析】 由题意,得m -1-(5m )-1=-2, ∴1m -15m =-2,解得m =-25. 经检验,m =-25是原分式方程的解.5.如果▲、●、■分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为(C ),(第5题))A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■【解析】 设▲、●、■的质量分别为a ,b ,c .易得⎩⎪⎨⎪⎧c +a >2a ,a +b =3b ,∴⎩⎨⎧c >a ,a =2b ,∴c >a >b .6.将y =1x 的图象向右平移1个单位,再向上平移1个单位所得的图象如图所示,则所得的图象的函数表达式为(C )(第6题)A .y =1x +1+1B .y =1x +1-1C .y =1x -1+1D .y =1x -1-1【解析】 由“左加右减”的原则可知,y =1x的图象向右平移1个单位所得图象的函数表达式为y =1x -1;由“上加下减”的原则可知,函数y =1x -1的图象向上平移1个单位所得图象的函数表达式为y =1x -1+1.(第7题)7.如图,直线y =2x +4与x 轴、y 轴分别相交于点A ,B ,C ,D 分别为线段AB ,OB 的中点,P 为OA 上一动点,则当PC +PD 的值最小时,点P 的坐标为(C )A .(-1,0) B.⎝⎛⎭⎫-32,0 C.⎝⎛⎭⎫-12,0 D .(-2,0) 【解析】 易知点A (-2,0),B (0,4),∴点C (-1,2),D (0,2).作点D 关于x 轴的对称点D ′(0,-2),连结D ′C ,则PC +PD 的最小值即为D ′C 的长.易得直线D ′C 的函数表达式为y =-4x -2.令y =0,得-4x -2=0,∴x =-12,∴点P ⎝⎛⎭⎫-12,0. 8.对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如,[1.2]=1,[3]=3,[-2.5]=-3.若⎣⎡⎦⎤x +410=5,则x 的取值可以是(C )A .40B .45C .51D .56【解析】由题意,得⎩⎪⎨⎪⎧x +410<6,x +410≥5,解得46≤x <56.9.将二次函数y =x 2-5x -6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y =2x +b 与这个新图象有3个公共点,则b 的值为(A )A .-734或-12B .-734或2C .-12或2D .-694或-12(第9题解)【解析】 如解图,过点B 的直线y =2x +b 与新图象有三个公共点,将直线向下平移到恰在点C 处相切,此时与新抛物线也有三个公共点.令y =x 2-5x -6=0, 解得x 1=-1,x 2=6, ∴点B 的坐标为(6,0).当直线过点B 时,将点B 的坐标代入y =2x +b ,得 0=12+b ,解得b =-12.将一次函数与二次函数的表达式联立,得x2-5x-6=2x+b,整理,得x2-7x-6-b=0,Δ=49-4(-6-b)=0,解得b =-734.综上所述,b的值为-12或-734.10.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图①),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图②),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是(B),(第10题)) A.13B.14 C.15D.16【解析】如解图①,连结AC,CF,则AF=32,∴两次变换相当于向右移动3格,向上移动3格.(第10题解)又∵MN=202,∴202÷32=203(不是整数),∴按A-C-F的方向连续变换10次后,相当于向右移动了10÷2×3=15(格),向上移动了10÷2×3=15(格),此时点M位于如解图②所示的5×5的正方形网格的点G处,再按如解图②所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14,故选B.二、填空题(每小题4分,共24分)11.若点A 在数轴上的位置如图所示,则点A 表示的数的倒数是__12__.(第11题)12.把多项式a 3-6a 2b +9ab 2分解因式的结果是__a(a -3b)2__. 【解析】 a 3-6a 2b +9ab 2=a(a 2-6ab +9b 2)=a(a -3b)2. 13.若7-2×7-1×70=7p ,则p 的值为__-3__. 【解析】 ∵7-2×7-1×70=7p , ∴-2-1+0=p ,解得p =-3.14.已知关于x 的一元一次方程x2019+5=2019x +m 的解为x =2020,那么关于y 的一元一次方程5-y2019-5=2019(5-y)-m 的解为__y =2025__.【解析】 整理方程x 2019+5=2019x +m ,得x 2019-2019x =m -5,该方程的解为x =2020,整理方程5-y 2019-5=2019(5-y)-m ,得5-y2019-2019(5-y)=5-m.令n =5-y ,则整理原方程,得n2019-2019n =5-m ,则n =-2020,即5-y =-2020,解得y =2025.(第15题)15.定义[x]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x]的图象如图所示(-2≤x <2),则方程[x]=12x 2的解为x =0或2.【解析】 当1≤x<2时,12x 2=1,解得x 1=2,x 2=-2(不合题意,舍去).当0≤x<1时,12x 2=0,解得x 1=x 2=0.当-1≤x <0时,12x 2=-1,方程没有实数解.当-2≤x <-1时,12x 2=-2,方程没有实数解.∴方程[x]=12x 2的解为x =0或 2.16.如图,点A ,B 在坐标轴的正半轴上移动,且AB =10,反比例函数y =kx (x >0)的图象与AB 有唯一公共点P ,点M 在x 轴上,△OPM 为直角三角形,当点M 从点(52,0)移动到点(10,0)时,动点P 所经过的路程为__512π__.(第16题)(第16题解)【解析】 如解图,设点A(a ,0),B(0,b),则直线AB 的函数表达式为y =-bax +b.联立⎩⎨⎧y =-ba x +b ,y =k x ,消去y ,得bx 2-abx +ak =0.∵反比例函数y =kx 的图象与AB 有唯一公共点P ,∴点P 的横坐标x P =--ab 2b =a2,∴P 是AB 的中点,∴OP =12AB =5.∵点P 在第一象限,点M 在x 轴上,△OPM 为直角三角形,52≤OM ≤10,∴∠OPM =90°.①当OM =52时,cos ∠POM =OP OM =22, ∴∠POM =45°.②当OM′=10时,cos ∠P ′OM ′=OP′OM′=12,∴∠P ′OM ′=60°,∴∠POP ′=15°,∴l PP′︵=15×π×5180=512π,即动点P 所经过的路程为512π.三、解答题(共66分)17.(6分)(1)计算:-42+38-(π-3.14)0+2cos 245°.【解析】 原式=-16+2-1+2×⎝⎛⎭⎫222=-16+1+1=-14.(2)先化简,再求值:2(a +3)(a -3)-(a -6)+6,其中a =5-1. 【解析】 原式=2(a 2-3)-a +6+6 =2a 2-6-a +12 =2a 2-a +6.当a =5-1时,原式=2a 2-a +6=2×(5-1)2-(5-1)+6=2×(6-25)-5+1+6=19-5 5.18.(6分)(1)解方程:4x 2-8x +1=0. 【解析】 x 2-2x +14=0,x 2-2x +1=34,(x -1)2=34,x -1=±32,x =2±32,∴x 1=2+32,x 2=2-32.(2)解不等式组:⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1.【解析】⎩⎨⎧2x +5≤3(x +2),①2x -1+3x2<1.②解①,得x ≥-1; 解②,得x <3,∴不等式组的解为-1≤x <3.19.(6分)先化简:⎝⎛⎭⎫3x -1-x -1·x -1x 2-4x +4,再从1,2,3中选取一个适当的数代入求值.【解析】 原式=⎣⎢⎡⎦⎥⎤3x -1-x (x -1)x -1-x -1x -1·x -1(x -2)2 =(2-x )(2+x )x -1·x -1(x -2)2=2+x 2-x.当x =1,2时分式无意义,∴将x =3代入原式,得原式=5-1=-5.20.(8分)已知关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.【解析】 ∵关于x 的方程x 2-2x +2m -1=0有实数根, ∴b 2-4ac =4-4(2m -1)≥0,解得m ≤1. ∵m 为正整数,∴m =1,∴x 2-2x +1=0, 则(x -1)2=0,解得x 1=x 2=1. 21.(8分)阅读理解:如图,点A ,B 在反比例函数y =1x 的图象上,连结AB ,取线段AB 的中点C .分别过点A ,C ,B 作x 轴的垂线,垂足分别为E ,F ,G ,CF 交反比例函数y =1x 的图象于点D .点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1).(1)小红通过观察反比例函数y =1x 的图象,并运用几何知识得出结论:AE +BG =2CF ,CF >DF ,由此得出一个关于1n -1,1n +1,2n 之间的数量关系的命题:若n >1,则__1n -1+1n +1>2n__.(第21题)(2)证明命题:小东认为:可以通过“若a -b ≥0,则a ≥b ”的思路证明上述命题. 小晴认为:可以通过“若a >0,b >0,且a÷b ≥1,则a ≥b ”的思路证明上述命题. 请你选择一种方法证明(1)中的命题.【解析】 (1)∵AE +BG =2CF ,CF >DF ,AE =1n -1,BG =1n +1,DF =1n ,∴1n -1+1n +1>2n. (2)方法一: ∵n >1,∴n(n -1)(n +1)>0.∵1n -1+1n +1-2n =n 2+n +n 2-n -2n 2+2n (n -1)(n +1)=2n (n -1)(n +1), ∴1n -1+1n +1-2n >0,∴1n -1+1n +1>2n . 方法二:∵1n -1+1n +12n=n 2n 2-1>1,∴1n -1+1n +1>2n. 22.(10分)某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表: 产品种类,每天工人 数(人),每天产 量(件),每件产品可获利润(元)甲,65-x,2(65-x ),15乙,x,x,130-2x (2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一种产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x 值.【解析】 (2)由题意,得15×2(65-x)=x(130-2x)+550, ∴x 2-80x +700=0,解得x 1=10,x 2=70(不合题意,舍去), ∴130-2x =110(元).答:每件乙产品可获得的利润是110元. (3)设安排m 人生产甲产品,则W =x(130-2x)+15×2m +30(65-x -m) =-2(x -25)2+3200.∵2m =65-x -m ,∴m =65-x3.∵x ,m 都是非负整数,∴取x =26,此时m =13,65-x -m =26, 即当x =26时,W 最大=3198.答:每天生产三种产品可获得的最大总利润为3198元,此时x =26.23.(10分)对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617).(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y(1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F(s)+F(t)=18时,求k 的最大值.【解析】 (1)F(243)=(423+342+234)÷111=9; F(617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F(s)=(302+10x +230+x +100x +23)÷111=x +5,F(t)=(510+y +100y +51+105+10y)÷111=y +6.∵F(s)+F(t)=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =3,y =4或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2或⎩⎪⎨⎪⎧x =6,y =1.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2.∴⎩⎪⎨⎪⎧F (s )=6,F (t )=12或⎩⎪⎨⎪⎧F (s )=9,F (t )=9或⎩⎪⎨⎪⎧F (s )=10,F (t )=8. ∴k =F (s )F (t )=612=12或k =F (s )F (t )=99=1或k =F (s )F (t )=108=54, ∴k 的最大值为54. 24.(12分)已知抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数表达式.(2)该抛物线与直线y =35x +3相交于C ,D 两点,P 是抛物线上的动点且位于x 轴下方,直线PM ∥y 轴,分别与x 轴和直线CD 相交于点M ,N.①连结PC ,PD ,如图①,在点P 运动的过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.②连结PB ,过点C 作CQ ⊥PM ,垂足为Q ,如图②,是否存在点P ,使得△CNQ 与△PBM 相似?若存在,求出满足条件的点P 的坐标;若不存在,请说明理由.(第24题)【解析】 (1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0),∴⎩⎪⎨⎪⎧a +b +3=0,25a +5b +3=0,解得⎩⎨⎧a =35,b =-185,∴该抛物线对应的函数表达式为y =35x 2-185x +3. (2)①存在.∵P 是抛物线上的动点且位于x 轴下方,∴可设点P ⎝⎛⎭⎫t ,35t 2-185t +3(1<t <5). ∵直线PM ∥y 轴,分别与x 轴和直线CD 相交于点M ,N ,∴点M(t ,0),N ⎝⎛⎭⎫t ,35t +3, ∴PN =35t +3-⎝⎛⎭⎫35t 2-185t +3=-35⎝⎛⎭⎫t -722+14720. 联立⎩⎨⎧y =35x +3,y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,⎩⎪⎨⎪⎧x 2=7,y 2=365. ∴点C(0,3),D ⎝⎛⎭⎫7,365. 如解图,分别过点C ,D 作直线PN 的垂线,垂足分别为E ,F ,,(第24题解))则CE =t ,DF =7-t ,∴S △PCD =S △PCN +S △PDN =12PN·CE +12PN·DF =72PN =72⎣⎡⎦⎤-35⎝⎛⎭⎫t -722+14720=-2110⎝⎛⎭⎫t -722+102940, ∴当t =72时,△PCD 的面积有最大值,最大值为102940. ②存在.∵∠CQN =∠PMB =90°,∴当△CNQ 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BM PM这两种情况. ∵CQ ⊥PM ,∴点Q(t ,3),N ⎝⎛⎭⎫t ,35t +3, ∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35. ∵点P ⎝⎛⎭⎫t ,35t 2-185t +3,M(t ,0),B(5,0), ∴BM =5-t ,PM =0-⎝⎛⎭⎫35t 2-185t +3=-35t 2+185t -3. 当NQ CQ =PM BM 时,有PM =35BM ,即-35t 2+185t -3=35(5-t), 解得t 1=2,t 2=5(不合题意,舍去),此时点P ⎝⎛⎭⎫2,-95. 当NQ CQ =BM PM 时,有BM =35PM ,即5-t =35⎝⎛⎭⎫-35t 2+185t -3, 解得t 1=349,t 2=5(不合题意,舍去),此时点P(349,-5527). 综上所述,存在点P(2,-95)或(349,-5527),使得△CNQ 与△PBM 相似.。

初中数学代数式求值综合测试卷(含答案)

初中数学代数式求值综合测试卷(含答案)

初中数学代数式求值综合测试卷
一、单选题(共7道,每道10分)
1.化简的结果为( )
A. B.
C.9m-2
D.-9m-2
答案:D
试题难度:三颗星知识点:整式的加减
2.若关于x的多项式的值与x无关,则m2-2m2-2(2m-4)+4m的值为( )
A.-28
B.28
C.-32
D.44
答案:A
试题难度:三颗星知识点:整式的加减;化简求值
3.已知a-b=1,则代数式2a-2b-3的值是()
A.-1
B.1
C.-5
D.5
答案:A
试题难度:三颗星知识点:整体代入
4.已知代数式的值是8,那么代数式的值为()
A.1
B.2
C.3
D.4
答案:B
试题难度:三颗星知识点:整体代入
5.当x=2时,代数式ax3+bx+1的值为6,那么当x=-2时这个式子的值为()
A.-4
B.1
C.5
D.6
答案:A
试题难度:三颗星知识点:整体代入
6.一个三位数,中间的数字为a,个位上的数字比十位上的数字大2,百位上的数字比个位上的数字小3,用代数式表示这个三位数为()
A.3a+1
B.111a-98
C.111a+199
D.111a-298
答案:B
试题难度:三颗星知识点:数位表示
7.若a表示一个两位数,b也表示一个两位数,要把b放在a的右边,那么所组成的四位数应表示为()
A.100a+b
B.100a+10b
C.100b+a
D.1000b+10a
答案:A
试题难度:三颗星知识点:数位表示。

初中数学代数部分测试题(考试)

初中数学代数部分测试题(考试)

初中代数部分综合测试题一、选择题(每题3分,共36分)1.下列各式是代数式的是………( )(A )S =πr 2 (B )5>3 (C )3x -2 (D )a <b +c 2)A .-2B .±2C .2D .4 3.下列各式中,一定成立的是……( )(A)2)(b a +=a +b (B )22)1(+a =a 2+1(C )12-a =1+a ·1-a (D )b a =b 1ab4。

下列运算正确的是( ) A. ()a b a b +=+222B. ()a b a b -=-222C 。

()()a m b n ab mn ++=+D. ()()m n m n m n +-+=-+225、从2010年4月14日青海玉树地震发生后,截止至4月23日15时,中华慈善总会接收社会各界通过银行捐赠的玉树地震救灾款已达 5.95亿元.用科学记数法保留两位有效数字表示“5.95亿”应记为( ) A 、5。

95×1010 B 、 5。

9×109 C 、6.0×108 D 、5。

9×1076、不等式组240x -<⎧⎨的解集在数轴上表示正确的是( )A B C D7.计算:aba bb a a -⎛⎫-÷=⎪⎝⎭( )A .a b b +B .a b b -C .a b a -D .a ba + 8.下列4个多项式作因式分解,有① x 2(m -n )2-xy (n -m )2=(m -n )2(x 2+xy ); ② a 2-(b +c)2=(a +b +c )(a -b +c ); ③222()x y x y +=+ ④ x 2 y 2+10xy +25=(xy +5)2,结果正确的个数是( ) (A )1个 (B )2个 (C)3个 (D )4个9。

如果关于x 的方程x 2-2x -2k=0没有实数根,那么k 的最大整数值是( ) (A )-3 (B )-2 (C )-1 (D )010.若抛物线22y ax x c =-+的顶点坐标为)3,2(-,则该抛物线有 ( )A.最大值-3 B 。

人教版数学七年级上册 代数式综合测试卷(word含答案)

人教版数学七年级上册 代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。

代数式单元测试卷(初中数学)附答案

代数式单元测试卷(初中数学)附答案

代数式单元测试卷一.选择题(共10小题共20分)1.计算-3(x -2y )+4(x -2y )的结果是( )A .x -2yB .x+2yC .-x-2yD .-x+2y2.若2y m+5x n+3与-3x 2y 3是同类项,则m n =( )A .21B .21- C .1 D .-2 3.下列各式中,是3a 2b 的同类项的是( )A .2x 2yB .-2ab 2C .a 2bD .3ab4.若-x 3y m 与x n y 是同类项,则m+n 的值为( )A .1B .2C .3D .45.下列计算正确的是( )A .3a -2a =1B .x 2y-2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax-2xa=ax6.若单项式2x n y m-n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =37.下列判断错误的是( )A .若x <y ,则x +2010<y +2010B .单项式7432y x -的系数是-4 C .若|x -1|+(y -3)2=0,则x =1,y =3 D .一个有理数不是整数就是分数8.化简m-n-(m+n )的结果是( )A .0B .2mC .-2nD .2m -2n 9.已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( )A .2a+2bB .2b +3C .2a -3D .-110.若x-y =2,x-z =3,则(y-z )2-3(z-y )+9的值为( )A .13B .11C .5D .7 二.填空题(共10小题共30分)11.如果单项式-xy b+1与21x a-2y 3是同类项,那么(a-b )2015= . 12.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 .13.若-2x 2y m 与6x 2n y 3是同类项,则mn = .14.单项式-4x 2y 3的系数是 ,次数 .15.单项式322y x -的系数与次数之积为 . 16.多项式 与m 2+m-2的和是m 2-2m .17.多项式-2m 2+3m -21的各项系数之积为 . 18.在代数式3xy 2,m ,6a 2-a +3,12,22514xy yz x -,ab 32中,单项式有 个,多项式有 个.19.单项式-2πa 2bc 的系数是 .20.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2013个单项式是 .三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(每小题4分)合并同类项①3a-2b-5a+2b②(2m+3n-5)-(2m-n-5)③2(x 2y+3xy 2)-3(2xy 2-4x 2y )22.(每小题4分)化简:(1)16x-5x+10x(2)7x-y+5x-3y+3(3)a 2+(2a 2-b 2)+b 2(4)6a 2b+(2a+1)-2(3a 2b-a )23.(6分)已知|a-2|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值。

初中数学代数式经典测试题含答案

初中数学代数式经典测试题含答案
6.若 与 是同类项.则()
A. B. C. D.
【答案】B
【解析】
【分析】
根据同类项的定义列出关于m和n的二元一次方程组,再解方程组求出它们的值.
【详解】
由同类项的定义,得:
,解得 .
故选B.
【点睛】
同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.
【点睛】
本题考查了多项式乘多项式,熟练掌握其运算方法: 是解题的关键.
2.下列各运算中,计算正确的是( )
A.2a•3a=6aB.(3a2)3=27a6
C.a4÷a2=2aD.(a+b)2=a2+ab+b2
【答案】B
【解析】
试题解析:A、2a•3a=6a2,故此选项错误;
B、(3a2)3=27a6,正确;
故选:A.
点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.
15.图为“ ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.
19.若(x+4)(x﹣1)=x2+px+q,则( )
A.p=﹣3,q=﹣4 B.p=5,q=4
C.p=﹣5,q=4 D.p=3,q=﹣4
【答案】D
【解析】
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:∵(x+4)(x﹣1)=x2+3x﹣4

初中数学——(8)代数式

初中数学——(8)代数式

初中数学——(8)代数式
一、代数式
(一)定义:用运算符号将数字或者字母连接起来的式子
(二)单独的一个数或者字母也叫代数式
(三)代数式中不含有“=”、“<”、“>”、“≠”等符号
(三)列代数式的时候一定要找出问题中的数量关系
(四)分数与字母相乘的时候,分数要为假分数
例如:a 2b ·221应该写成2
5a 2b 二、多位数表示方法
一个三位数,百位数字为 a ,十位数字为 b ,各位数字为 c ,那么这个三位数不能直接写成 abc ,而是要写成 100a+10b+c
三、练习题
(一)用适当的式子表示:
1、比 m 除以 n 的 2 倍的商大 8 的数。

2、a 与 b 的平方和的相反数。

3、m 的平方与 n 的立方的倒数的差。

(二)一个三位数,十位数字为 x ,个位数字比十位数字少 3,百位 数字是个位数字的 3 倍,则这个三位数可表示为。

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为  岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、解答题: (本大题共 2 个小题,第 25 小题 10 分,第 26 小题 12 分,共 22 分)解答时每 小题必须给出必要的演算过程或推理步骤. 25.如图,利用一面墙(墙的长度不超过 45m) ,用 80m 长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为 750m ? ⑵能否使所围矩形场地的面积为 810m ,为什么?
3. 数据 14 ,10 ,12, 13, 11 的中位数是 ( A.14 4.在代数式 A.2 个 B.12 C.13 D.11
2 1 2 2 3 2x2 5 2 2 x, , xy , , , x 中,分式共有( 3 x 3 x4 2x 3
B.3 个 C.4 个 D.5 个
).
5. 若 a > b ,则不等式组 A、 x b
2
x b 的解集为………………………( x a
C、 a x b D、无解 )

B、 x a
6.若 a b 2 1 2a, 则a b的值 ( A.1 B.2 C.-1
2 2
D.-2 ) D、33 )
7.若 a+b=0,ab= 11,则 a ab+b 的值是( A、11
2010
-| -7 |+
9 ×( 5 -π) +(
0
1 -1 ) 5
18.解方程:
x 1 + =1 x-1 x
19.已知
x 2 y 4k ,且 x-y<0,求 k 的取值范围 2 x y 2k 1
20.已知 3x-4y-z=0,2x+y-8z=0,求
x2 y 2 z 2 xy yz 的值.
2 2
3/5
Fangjiyong 荣誉出品

D C
A 第21题图
B
26.为支持四川抗震救灾,重庆市 A、B、C 三地现在分别有赈灾物资 100 吨, 、100 吨、80 吨,需要全部运往四川重灾地区的 D、E 两县。根据灾区的情况,这批赈灾物资运往 D 县的 数量比运往 E 县的数量的 2 倍少 20 吨。 (1)求这批赈灾物资运往 D、E 两县的数量各是多少? (2)若要求 C 地运往 D 县的赈灾物资为 60 吨,A 地运往 D 的赈灾物资为 x 吨(x 为整 数) ,B 地运往 D 县的赈灾物资数量小于 A 地运往 D 县的赈灾物资数量的 2 倍。其余的赈灾 物资全部运往 E 县,且 B 地运往 E 县的赈灾物资数量不超过 25 吨。则 A、B 两地的赈灾物资 运往 D、E 两县的方案有几种?请你写出具体的运送方案; (3)已知 A、B、C 三地的赈灾物资运往 D、E 两县的费用如下表: A地 运往 D 县的费用(元/ 220 吨) 运往 E 县的费用(元/ 250 吨) 为即使将这批赈灾物资运往 D、E 两县,某公司主动承担运送这批赈灾物资的总费用, 在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少? 220 210 200 200 B地 C地
1/5
Fangjiyong 荣誉出品
12.关于 x 的不等式组 13.如果
x a 0 的整数解共有 5 个,则 a 的取值范围 3 2 x 1
B=________.
A B 5x 4 2 ,则 A=____ x 5 x 2 x 3x 10
x y
14.若 3 2 x 3 y, 则4 8 = 15.用换元法解分式方程
(2)
2 x12 x2 8 ( x1 x2 ) 2 2 x1 x2 8
36 2 (11) 8 66
24.解:设路程为 s 第一次往返时间为:
s s 2vs s s 2vs 第二次往返时间为: 2 2 2 va va v a v b v b v b2 1 1 所以第一次用的时间短一些。 2 2 v a v b2
2x 1 x 2x 1 2 时,如果设 y ,并将原方程化为关 x 2x 1 x

于 y 的整式方程,那么这个整式方程是
16.含有同种果蔬但浓度不同的 A、B 两种饮料,A 种饮料重 40 千克,B 种饮料重 60 千克现从这两种饮料中各倒出一部分, 且倒出部分的重量相同, 再将每种饮料所倒出的部分 与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮 料中倒出的相同的重量是_____________千克 三、解答题: (本大题共 4 个小题,每小题 6 分,共 24 分)解答时每小题必须给出必要 的演算过程或推理步骤. 17.计算: (-1)
4/5
Fangjiyong 荣誉出品
答案: 1-5 8 A C B B D 6-10
2
C D C A C 11. 3.24 10 24
2
12. 4 a 3 13.
A=3 B=2
14.
15. y 2 y 1 0 16.
17. 解 : 原 式 = 1 7 3 1 5 =2
Fangjiyong 荣誉出品
代数综合测试
(考试满分:150 分,时间 120 分钟) 一、选择题(本大题共 10 个小题,每题 4 分,共 40 分) 1. 2 的倒数是( )A.
1 2
B.-2 ) A. 3x
2
C. -
1 2
D. 2 C. 4x ) D. 4x
2
2. 计算 3x+x 的结果是(
B. 2x
23. 解 :
x 2,当x 1时, 原式 3 22. 解 : 由 已 知 得 : x 2 x 1
36 4k 0, k 9
x1 x2 6 k 2 6 115 k -11或者x 11(舍去) x1 x2 k
18. 解 :
x 2 x 1 x 2 x x=0.5
19. 解 : <1>-<2> 得 : x y 2k 1 2k 1 0
k
3x 4 y z x 3z 9z 2 4z 2 z 2 3 1 20.解: 原式 21.解:化简得: 2 2 6z 2 2z 2 2 x y 8 z y 2z
2
b a 0, v 2 a 2 v 2 b 2
25.(1)解:设宽为 x,则长为 80-2x
(80-2x)x=750 解得:x=25 或者 x=15
因为 0 80 2 x 45,17.5 x 40 所以,宽为 25,长为 30 (2) y (80 2 x) x 2( x 20) 800 800 所以不可能
2/5
Fangjiyong 荣誉出品
四、解答题: (本大题共 4 个小题,每小题 10 分,共 40 分)解答时每小题必须给出必 要的演算过程或推理步骤. 21.先化简,再求值: (
x2+4 x2-4 -4)÷ 2 ,其中 x=-1 x x +2x
22.已知 x x 1 0, 求代数式x 2 x 4 x 3 的值。
2
26.(1)180,100 (2)
120 x 2 x 40 x 45 ,所以有五种方案 x 20 25
(3)
y 220 x 250(100 x) 200(120 x) 220( x 20) 200 60 210 20 10 x 60800
m 1 n 2
B.
m 1 n 2
C.
m 1 n 2
D.
m 1 n 2
二、填空题(本大题共 6 个小题,每小题 4 分,共 24 分) 11. 上海世界博览会自 2010 年 5 月 1 日开幕以来, 截止到 5 月 18 日, 累计参观人数约 为 324 万人,将 324 万用科学记数法表示为_____________万.
所以,当 x=41 时,有最大值为 60390 元
5/5
2 3 2
23.已知 x 2 x 2 是关于 x 的一元二次方程 x 6 x k 0 的两个实数根,且 x1 x 2 — x1
2
2
2
— x 2 =115 (1)求 k 的值; (2)求 x1 + x 2 +8 的值。
2 2
24. 有一客轮往返于重庆和武汉之间,第一次做往返航行时,长江的水流速度为 a 千米/小 时;第二次做往返航行时,正遇上长江发大水,水流速度为 b 千米/小时(b>a) 。已知该船 在两次航行中,静水速度都为 V 千米/小时,问该船两次往返航行所花时间是否相等,若你 认为相等,请说明理由;若你认为不相等,请分别表示出两次航行所花的时间,并指出哪次 时间更短些?
2
B、11
C、33
x2 x 2 3 9.若 x x 2 0 ,则 2 的值等于( ( x x) 2 1 3
A.

2 3 3
B.
3 3
C. 3
2
D. 3 或
3 3
10.设 x1 、x2 是关于 x 的一元二次方程 x x n 2 mx 的两个实数根, 且 x1 <0,x2 -3 x1 <0,则( ) A.
相关文档
最新文档