七年级上册数学期末试卷(含答案)

合集下载

数学试卷---五套七年级数学上册期末试卷(附答案)

数学试卷---五套七年级数学上册期末试卷(附答案)

数学期末考试卷一、选择题(每小题3分,共36分) 1、下列说,其中正确的个数为( )①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。

A .1个B .2个C .3个D .4个 2、下列计算中正确的是( )A .532a a a =+B .22a a -=-C .33)(a a =-D .22)(a a -- 3、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( )A .a <a -<b <b -B .b -<a <a -<bC .a -<b <b -<aD .b -<a <b <a -4、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)( ) A .13107.4⨯元 B .12107.4⨯ C .131071.4⨯元 D .131072.4⨯元5、下列结论中,正确的是( )A .单项式732xy 的系数是3,次数是2 。

a b 图3B .单项式m 的次数是1,没有系数C .单项式z xy 2-的系数是1-,次数是4 。

D .多项式322++xy x 是三次三项式 6、在解方程133221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x x C .13413=+--x x D .6)32(2)1(3=+--x x7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元B .1700元C .1710元D .1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。

乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)

七年级上册数学期末试卷(含答案)一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 2.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1B .410 +415x +=1C .410x + +415=1D .410x + +15x =1 3.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( ) A .1个B .2个C .3个D .4个 4.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .75.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120206.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)7.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .8.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180° 9.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣4 10.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A .不赔不赚B .赚了9元C .赚了18元D .赔了18元 11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚了10元B .赔了10元C .赚了50元D .不赔不赚12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.若523m x y +与2n x y 的和仍为单项式,则n m =__________.16.写出一个比4大的无理数:____________.17.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.18.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.19.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.20.若α与β互为补角,且α=50°,则β的度数是_____.21.方程x +5=12(x +3)的解是________. 22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.用度、分、秒表示24.29°=_____.24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、解答题25.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马.(1)当良马追上驽马时,驽马行了 里(用x 的代数式表示).(2)求x 的值.(3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?26.计算(﹣1)2019+36×(11-32)﹣3÷(﹣34) 27.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?28.甲乙两站相距450km ,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,那么两车行驶多少小时相遇?(2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?(3)快车先开30min ,两车相向而行,慢车行驶多少小时两车相遇?29.甲队原有工人65人,乙队原有工人40人,现又有30名工人调入这两队,为了使乙队人数是甲队人数的12,应调往甲、乙两队各多少人? 30.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x 元,请用含x 的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.四、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积;(3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.33.阅读下列材料,并解决有关问题: 我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x 分钟, 由题意得6x -0.5x =180,解之得x =36011. 故选D. 【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.3.D解析:D【解析】【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52 +25 x x a x x a=⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x ax a=⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确④方程组解得25-15x a y a=⎧⎨=-⎩由题意得:x-3a=5把25-15x ay a=⎧⎨=-⎩代入得25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键4.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.5.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 -,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.6.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.7.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.8.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.9.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:3x﹣9﹣3=0,解得:x=4,故选:B.【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.10.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.11.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【分析】根据图和题意可得出答案.【详解】解:,A B 表示的数互为相反数,且4AB =,则A 表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.15.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.5【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.18.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,,∴AB=1–(–2)=1+2, 则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.19.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】 解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面20.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.21.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、解答题25.(1)(150x+1800);(2)20;(3)驽马出发3或27或37或47天后与良马相距450里.【解析】【分析】(1)利用路程=速度×时间可用含x的代数式表示出结论;(2)利用两马行的路程相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设驽马出发y天后与良马相距450里,分良马未出发时、良马未追上驽马时、良马追上驽马时及良马到达B站时四种情况考虑,根据两马相距450里,即可得出关于y的一元一次方程,解之即可得出结论.【详解】解:(1)∵150×12=1800(里),∴当良马追上驽马时,驽马行了(150x+1800)里.故答案为:(150x+1800).(2)依题意,得:240x=150x+1800,解得:x=20.答:x的值为20.(3)设驽马出发y天后与良马相距450里.①当良马未出发时,150y=450,解得:y=3;②当良马未追上驽马时,150y﹣240(y﹣12)=450,解得:y=27;③当良马追上驽马时,240(y﹣12)﹣150y=450,解得:y=37;④当良马到达B站时,7500﹣150y=450,解得:y=47.答:驽马出发3或27或37或47天后与良马相距450里.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,利用含x的代数式表示出驽马行的路程;(2)(3)找准等量关系,正确列出一元一次方程.26.-3【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣1+12﹣18+4=﹣3.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.27.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.28.(1)两车行驶3小时相遇;(2)行驶22.5小时快车追上慢车;(3)慢车行驶163 60小时两车相遇.【解析】【分析】(1)设两车行驶t1小时相遇,根据相遇时两车行驶路程之和为450km建立方程求解;(2)设t2小时快车追上慢车,快车比慢车多行驶450km建立方程求解;(3)设慢车行驶t3小时两车相遇,根据两车行驶路程之和为450km建立方程求解.【详解】解:(1)设两车行驶t1小时相遇,依题意得65t1+85t1=450解得:t1=3因此,那么两车行驶3小时相遇.(2)设t2小时快车追上慢车,依题意得 85t2-65t2=450解得:t2=22.5因此,行驶22.5小时快车追上慢车(3)设慢车行驶t3小时两车相遇,依题意得30分钟=0.5小时85×0.5+85t3+65t3=450解得:t3=163 60因此,慢车行驶16360小时两车相遇. 【点睛】 本题考查了一元一次方程的应用,熟练掌握行程问题中的等量关系是解题的关键.29.应调往甲队25人,乙队5人【解析】【分析】由题意设调往甲队x 人,并根据题意建立一元一次方程与解出一元一次方程即可.【详解】解:设调往甲队x 人,依题意得1(65)40(30)2x x +=+- 解得 25x =∴30255-=(人)答:应调往甲队25人,乙队5人.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤.解决本题的关键是表示出调入后甲乙两队的人数.30.()1(42-8x )元,(28-4x )元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】【分析】(1)若笑脸气球的单价是x 元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x )元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】解:(1)若笑脸气球的单价是x 元,则爱心气球的单价是(14-3x )元,根据题意得 第②束气球的总价格是:x+3(14-3x )=x+42-9x=42-8x (元);第③束气球的总价格是:2x+2(14-3x )=2x+28-6x=28-4x (元);(2)由题意得42-8x=28-4x-2,解得x=4,14-3x=2.答:笑脸气球的单价是4元,爱心气球的单价是2元.【点睛】本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.四、压轴题31.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.32.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.33.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值, (2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--, ②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.。

七年级数学上册期末试卷(附答案)

七年级数学上册期末试卷(附答案)

七年级数学上册期末试卷(附答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若分式的值为0, 则x的值为()A. 0B. 1C. ﹣1D. ±12.如图, 将▱ABCD沿对角线AC折叠, 使点B落在B′处, 若∠1=∠2=44°, 则∠B为()A. 66°B. 104°C. 114°D. 124°3.如图, ∠1=68°, 直线a平移后得到直线b, 则∠2﹣∠3的度数为()A. 78°B. 132°C. 118°D. 112°4. 下列说法正确的是()A.一个数前面加上“-”号, 这个数就是负数B. 零既是正数也是负数C.若是正数, 则不一定是负数D. 零既不是正数也不是负数5.点A在数轴上, 点A所对应的数用表示, 且点A到原点的距离等于3, 则a的值为()A. 或1B. 或2C.D. 16.下列二次根式中, 最简二次根式的是()A. B. C. D.7.明月从家里骑车去游乐场, 若速度为每小时10km, 则可早到8分钟, 若速度为每小时8km, 则就会迟到5分钟, 设她家到游乐场的路程为xkm, 根据题意可列出方程为()A. B.C. D.8. 6的相反数为A. -6B. 6C.D.9.已知(a≠0, b≠0), 下列变形错误的是()A. B. 2a=3b C. D. 3a=2b10. 下列判断正确的是()A. 任意掷一枚质地均匀的硬币10次, 一定有5次正面向上B. 天气预报说“明天的降水概率为40%”, 表示明天有40%的时间都在降雨C. “篮球队员在罚球线上投篮一次, 投中”为随机事件D. “a是实数, |a|≥0”是不可能事件二、填空题(本大题共6小题, 每小题3分, 共18分)1.已知, 则=________.2. 如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3. 在关于x、y的方程组中, 未知数满足x≥0, y>0, 那么m的取值范围是_________________.4.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.5. 2的相反数是________.6. 如果, 那么代数式的值是________.三、解答题(本大题共6小题, 共72分)1. 求满足不等式组的所有整数解.2. 已知A-B=7a2-7ab, 且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0, 求A的值.3. 如图, 在平面直角坐标系中, 已知点A(0, 4), B(8, 0), C(8, 6)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m, 1), 且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.4. 如图, 已知A.O、B三点共线, ∠AOD=42°, ∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD, 求∠COE的度数.5. 为了解某市市民“绿色出行”方式的情况, 某校数学兴趣小组以问卷调查的形式, 随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类), 并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息, 回答下列问题:(1)参与本次问卷调查的市民共有人, 其中选择B类的人数有人;(2)在扇形统计图中, 求A类对应扇形圆心角α的度数, 并补全条形统计图;(3)该市约有12万人出行, 若将A, B, C这三类出行方式均视为“绿色出行”方式, 请估计该市“绿色出行”方式的人数.6. 粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作, 无人化是自动驾驶的终极目标. 某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场. 今年每辆无人驾驶出租车的改装费用是50万元, 预计明年每辆无人驾驶出租车的改装费用可下降.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、D4、D5、A6、C7、C8、A9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.1002.90°3.-2≤m<34.53°5、﹣2.6、5三、解答题(本大题共6小题, 共72分)1、不等式组的解集:-1≤x<2, 整数解为:-1, 0, 1.2.(1)3a2-ab+7;(2)12.3.(1)24;(2)P(﹣16, 1)4.(1)∠BOD =138°;(2)∠COE=21°.5、(1)800, 240;(2)补图见解析;(3)9.6万人.6、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.。

七年级数学上册期末考卷(含答案)

七年级数学上册期末考卷(含答案)

七年级数学上册期末考卷(含答案)一、选择题(每题4分,共40分)1. 下列数中,最小的无理数是()A. √2B. √3C. πD. √52. 已知a=3,b=2,则a+b的值是()A. 1B. 5C. 5D. 13. 下列各式中,正确的是()A. (x+y)² = x² + y²B. (x+y)² = x² + 2xy + y²C. (xy)² = x² y²D. (xy)² = x² 2xy y²4. 下列关于单项式的说法,错误的是()A. 单项式中的数字因数叫做单项式的系数B. 单项式中的所有字母的指数和叫做单项式的次数C. 单项式是数或字母的积组成的式子D. 单项式中不含加减号5. 下列各式中,多项式的是()A. 5x² + 3x 2B. √x + 1C. 2x³ 4x² + 5D. 1/a + 3a²6. 已知一个等差数列的首项为2,公差为3,第五项是()A. 14B. 16C. 18D. 207. 下列关于平行线的说法,正确的是()A. 同位角相等B. 内错角相等C. 同旁内角互补8. 下列图形中,既是中心对称图形又是轴对称图形的是()A. 线段B. 等腰三角形C. 正方形D. 梯形9. 已知直角三角形的两条直角边分别为3和4,则斜边的长度是()A. 5B. 6C. 7D. 810. 下列关于概率的说法,错误的是()A. 概率是0到1之间的数B. 必然事件的概率为1C. 不可能事件的概率为0D. 随机事件的概率一定大于0二、填空题(每题4分,共40分)11. 已知|x|=3,则x的值为______。

12. 若3x6=0,则x的值为______。

13. 已知a²=9,则a的值为______。

14. 若(x2)(x+2)=0,则x的值为______。

七年级数学上册期末测试(含答案)

七年级数学上册期末测试(含答案)

七年级数学上册期末测试(含答案)时间:100分钟 总分:120分一、选择题(每题3分,共24分)1.已知a 与﹣2021互为倒数,则a 的值为 ( ) A .+2021 B .﹣2021 C .12021-D .12021+【解析】 解:∵()1202112021⎛⎫-⨯-= ⎪⎝⎭, ∴12021-与2021-互为倒数, 则a 的值为12021-.故选:C . 【点睛】本题主要考查倒数的定义,掌握倒数的定义是解题的关键. 2.已知2234m x y x y x y +=,则m 的值为 ( ) A .0 B .1 C .2 D .3 【解析】解:∵2234m x y x y x y +=, ∴m x y 与2x y 是同类项, ∴m =2, 故选: C . 【点睛】本题考查了整式的加减,同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.3.关于x 的方程43x a x +=+的解是1x =,则a 的值是 ( ) A .5 B .6 C .7 D .8 【解析】解:x =1代入方程得:4+3=a +1,a =6, 故选: B . 【点睛】本题考查了方程的解的意义(代入方程满足等式关系)和解一元一次方程,掌握其意义是解题关键.4.下列说法错误的是 ( )A .0既不是正数,也不是负数B .零上6摄氏度可以写成+6℃,也可以写成6℃C .向东走一定用正数表示,向西走一定用负数表示D .若盈利1000元记作+1000元,则-200元表示亏损200元 【解析】∵0既不是正数,也不是负数, ∴A 正确,不符合题意;∵零上6摄氏度可以写成+6℃,也可以写成6℃, ∴B 正确,不符合题意; ∵正方向可以自主确定,∴向东走一定用正数表示,向西走一定用负数表示,是错误的, ∴C 不正确,符合题意;∵盈利1000元记作+1000元,则-200元表示亏损200元, ∴D 正确,不符合题意; 故选:C . 【点睛】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.5.若5x y +=,2310x y -=,则4x y -的值为 ( ).A .15B .5-C .5D .3 【解析】解:因为5x y +=①,2310x y -=②,所以②-①得:4105x y -=-,即45x y -=, 故选:C . 【点睛】本题考查了代数式求值,正确找出所求代数式与两个已知等式之间的联系是解题关键. 6.《九章算术》是中国古代的数学专著,其中载有“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”译文“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么还差3钱,求买羊的人数和羊的价钱.”设羊价是x 钱,则可列方程为 ( )A .45357x x ++= B .45357x x --= C .45375x x -+= D .45375x x --= 【解析】解:设羊是x 钱, 根据题意得:45357x x --=. 故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.下列哪个图形是正方体的展开图 ( )A .B .C .D .【解析】解:根据正方体展开图的特征,选项A 、C 、D 不是正方体展开图;选项B 是正方体展开图. 故选:B . 【点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.8.已知三条不同的射线OA 、OB 、OC ,有下列条件:①AOC BOC ∠=∠;②2AOB AOC ∠=∠;③AOC COB AOB ∠+∠=∠;④1BOC AOB 2∠=∠其中能确定射线OC 平分AOB ∠的有( ) A .3个 B .2个 C .1个 D .0个 【解析】∵AOC BOC ∠=∠, ∴OC 平分∠AOB , ∴①正确.∵如图,当∠AOC =∠AOD =∠DOB 时,满足∠AOB =2∠AOC ,但OC 不是∠AOB 的平分线, ∴②错误.∵如图,满足∠AOB =∠AOC +∠COB ,但OC不是∠AOB的平分线,∴③错误.∵如图,满足12BOC AOB∠=∠,但OC不是∠AOB的平分线,∴④错误.综上,只有一个符合要求的,故选C.【点睛】本题考查了角的平分线即从同一顶点出发的射线把这个角分成相等的两个角,正确理解角的平分线的定义是解题的关键.二、填空题(每题3分,共24分)9.某地星期一上午的温度是﹣7℃,中午上升了8℃,下午由于冷空气南下,到夜间又下降了10℃,则这天夜间的温度是_____℃.【解析】由题意可列算式为:﹣7+8−10=﹣9(℃),即这天夜间的温度是﹣9℃,故答案为:﹣9.【点睛】本题考查有理数的加减实际应用,根据题意列出式子再计算时解题的关键.10.若a,b互为倒数,则﹣4ab+1的值为______.【解析】解:∵a,b互为倒数,∴ab=1,∴﹣4ab+1=﹣4+1=﹣3,故答案为:﹣3.【点睛】本题主要考查倒数,代数式求值,利用倒数的定义求解ab的值是解题的关键.11.线段AB =3cm ,延长AB 至点C ,使BC =2AB ,则AC =________cm . 【解析】解:∵线段AB =3cm ,延长AB 至点C ,使BC =2AB , ∴BC=6cm ,∴AC=AB+BC=9cm, 故答案为:9. 【点睛】本题考查线段的和差倍分,解题关键是理清线段之间的和差关系. 12.若a 的相反数是﹣3,b 的绝对值是4,则a ﹣b =________. 【解析】解:∵a 的相反数是−3,b 的绝对值是4, ∴a =3,b =4或−4,∴a ﹣b =3-4=-1或a ﹣b =3−(−4)=3+4=7, 故答案为:-1或7. 【点睛】此题考查了相反数,绝对值以及有理数的减法,熟练掌握各自的性质是解本题的关键.13.已知2AOB BOC ∠=∠,若25BOC ∠=︒,则AOC ∠的度数是__________. 【解析】解:分两种情况考虑.当OB 在∠AOC 中时,如图1所示, ∵∠AOB =2∠BOC =2×25°=50°,∴∠AOC =∠AOB +∠BOC =50°+25°=75°; 当OC 在∠AOB 中时,如图2所示, ∵∠AOB =2∠BOC =2×25°=50°,∴∠AOC =∠AOB ﹣∠BOC =50°﹣25°=25°. 故答案为:75°或25°.【点睛】本题考查了角的计算,分∠AOC =∠AOB +∠BOC 和∠AOC =∠AOB ﹣∠BOC 两种情况考虑是解题的关键. 14.关于x 的一元一次方程120222022xx m -=+的解为2019x =-,则关于y 的方程()31202232022yy m --=-+的解为______. 【解析】 ∵120222022xx m -=+的解为2019x =-, ()31202232022yy m --=-+,∴x =3-y , ∴3-y =-2019, 解得y =2022, 故答案为:2022. 【点睛】本题考查一元一次方程的解,正确得出x 和y 的关系是解题的关键.15.如图,每个图案均由边长相等的黑、白两色的正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多____________个(用含n 的代数式表示).【解析】解:第1个图案中白色正方形有3⨯2+1⨯1=7个,黑色正方形有2个,白色正方形比黑色正方形多7-2=5个,即多(2⨯2+1)个;第2个图案中白色正方形有3⨯3+1⨯2=11个,黑色正方形有2⨯2=4个,白色正方形比黑色正方形多11-4=7个,即多(2⨯3+1)个;第3个图案中白色正方形有3⨯4+1⨯3=15个,黑色正方形有2⨯3=6个,白色正方形比黑色正方形多15-6=9个,即多(2⨯4+1)个; ,第n 个图案中白色正方形比黑色正方形多()()21123n n ++=+个, 故答案为:(2n +3). 【点睛】此题考查了图形类规律,正确计算已知图形中色正方形比黑色正反向多的个数并得到规律是解题的关键.16.如图,在直线m 上顺次取A ,B ,C 三点,使得3cm AB =,1cm BC =,取线段AC 的中点D ,若动点P 从点A 出发以2cm/s 的速度沿射线AC 方向运动,设运动时间为s t ,当5DP DB =时,t 的值为______s .【解析】解:3cm AB =,1cm BC =, 4cm AC ∴=,D 是线段AC 的中点, 2cm AD ∴=,1cm DB AB AD ∴=-=, 依题意有:2251t -=⨯, 解得 3.5t =. 故答案为:3.5. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(每题8分,共72分) 17.计算:(1)()()()()219812---+---;(2)24132844⎛⎫--⨯-+ ⎪⎝⎭.【解析】(1)解:原式219812=-+-+ 12812=--+ 2012=-+ 8=-(2)原式13168164=--⨯+ 131624=--+131624=-+3154=-【点睛】此题考查了有理数的混合运算,熟练掌握有理数的混合运算法则,是解本题的关键.18.先化简,再求值:2(3ab 2﹣a 2b +ab )﹣3(2ab 2﹣4a 2b +ab ),其中a =﹣1,b =2. 【解析】解:2(3ab 2﹣a 2b +ab )﹣3(2ab 2﹣4a 2b +ab ) =6ab 2﹣2a 2b +2ab ﹣6ab 2+12a 2b ﹣3ab =10a 2b ﹣ab .当a =﹣1,b =2时, 原式=10a 2b ﹣ab=10×(﹣1)2×2﹣(﹣1)×2 =10×1×2﹣(﹣1)×2 =20+2 =22. 【点睛】本题考查整式加减运算的化简求值,熟练掌握该知识点是解题关键. 19.已知224102m x x y =++,2222n x y y =-+,求: (1)2m n -;(2)当522x y +=时,求2m n -的值. 【解析】解:(1)()222224102222m n x x y x y y -=++--+ 22224102442x x y x y y =++-+- 104x y =+;(2)∵522x y +=∴原式=1042(52)x y x y +=+=2×2=4. 【点睛】此题考查了利用整式的加减化简求值,熟练掌握运算法则是解本题的关键. 20.如图,数轴上有若干个点,每相邻两点间的距离为1,其中点A ,B ,C 对应的数分别是整数a ,b ,c .(1)用含b 的式子分别表示:=a _________,c =_________. (2)已知29c a -=,求b 的值. 【解析】(1)解:由题意知,线段AB 的长为3,线段BC 的长度为1, 则a +3=b ,b +1=c ∴3a b =-,1c b =+ 故答案为:3b -;1b + (2)由3a b =-,1c b =+得:212(3)1267c a b b b b b -=+--=+-+=-+, 79b ∴-+=, 解得2b =-. 【点睛】本题考查了数轴上两点间的距离,列代数式及解一元一次方程等知识,关键根据数轴的距离表示a 与c .21.如图120AOB ∠=,OF 平分AOB ∠,212∠=∠(1)判断1∠与2∠互余吗?试说明理由. (2)2∠与AOB ∠互补吗?试说明理由. 【解析】(1)解:1∠与2∠互余,理由如下: ∵120AOB ∠=︒,OF 平分AOB ∠,∴12==602∠∠︒AOB ,∵21=2∠∠,∴1=30∠︒ ,∴1+2=30+60=90∠∠︒︒︒,∴1∠与2∠互余;(2)解:2∠与AOB ∠互补,理由如下: ∵∠AOB =120°,OF 平分AOB ∠, ∴12==602∠∠︒AOB ,∴∠2+∠AOB =60°+120°=180°, ∴2∠与AOB ∠互补. 【点睛】本题考查角平分线定义,两角互余,互补的判定,掌握角平分线定义,两角互余,互补的判定是解题关键.22.如图是一个长方体的表面展开图,每个面上都标注了字母和数据,请根据要求回答(1)如果A 面在长方体的底部,那么 面会在上面; (2)求这个长方体的表面积和体积.【解析】(1)如图所示,A 与F 是对面,所以如果A 面在长方体的底部,那么 F 面会在上面;故答案是:F ;(2)这个长方体的表面积是:2×(1×3+1×2+2×3)=22(米2).这个长方体的体积是:1×2×3=6(米3).【点睛】关于几何体的表面展开图,关键是那些面是相对的,那些面是相邻的. 23.某糕点厂中秋节前要制作一批盒装月饼,每盒中装4块大月饼和8块小月饼,制作1块大月饼要用0.05kg 面粉,1块小月饼要用0.02kg 面粉,现共有面粉4500kg ,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?最多可生产多少盒盒装月饼?【答案】应用2500kg 面粉生产大月饼,2000kg 面粉生产小月饼才能生产最多的盒装月饼.最多可生产12500盒盒装月饼 【解析】解:设用kg x 面粉生产大月饼,用()4500kg x -面生产小月饼, ∵每盒中装4块大月饼和8块小月饼,4500×20.050.02x x -=, 解得2500(kg)x =,共生产了:2500125000.054=⨯(盒).答:应用2500kg 面粉生产大月饼,2000kg 面粉生产小月饼才能生产最多的盒装月饼.最多可生产12500盒盒装月饼. 【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键. 24.某中学七年级(1)班4名老师决定带领本班m 名学生去某革命胜地参观.该革命胜地每张门票的票价为30元,现有A 、B 两种购票方案可供选择: 方案A :教师全价,学生半价;方案B :不分教师与学生,全部六折优惠(1)请用含m 的代数式分别表示选择A 、B 两种方案所需的费用;(2)当学生人数40m =时,且只选择其中一种方案购票,请通过计算说明选择哪种方案更为优惠. 【解析】(1)解:选择方案A 所需的费用为130430120152m m ⨯+⨯=+(元),选择方案B 所需的费用为()3040.61872m m ⨯+⨯=+(元).(2)解:当40m =时,选择方案A 所需的费用为1201540720+⨯=(元), 选择方案B 所需的费用为184072792⨯+=(元), ∵720792<,∴选择方案A 更为优惠. 【点睛】本题考查了列代数式及代数式求值,理解题意正确列出代数式是解决问题的关键. 25.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数﹣2,点B 表示的数4,下列各数,3,2,0所对应的点分别C 1,C 2,C 3,其中是点A ,B 的“联盟点”的是 ;(2)点A 表示数﹣10,点B 表示的数30,P 在为数轴上一个动点: ①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,求此时点P 表示的数; ②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数为 . 【解析】(1)解:对于表示的数是3的C 1来说.∵点A 所表示的数为﹣2,点B 所表示的数是4, ∴AC 1=5,BC 1=1.∵AC 1和BC 1不满足2倍的数量关系, ∴C 1不是点A 、点B 的“联盟点”. 对于表示的数是2的C 2来说.∵点A 所表示的数为﹣2,点B 所表示的数是4, ∴AC 2=4,BC 2=2.∵422=⨯,即AC 2=2BC 2,11 ∴C 2是点A 、点B 的“联盟点”.对于表示的数是0的C 3来说.∵点A 所表示的数为﹣2,点B 所表示的数是4,∴AC 3=2,BC 3=4.∵422=⨯,即BC 3=2AC 3,∴C 3是点A 、点B 的“联盟点”.故答案为:C 2或C 3.(2)解:①设点P 在数轴上所表示的数为x .当点P 在线段AB 上,且PA =2PB 时.根据题意得()()10230x x --=-.解得503x =. 当点P 在线段AB 上,且2PA =PB 时.根据题意得()21030x x --=-⎡⎤⎣⎦.解得103x =. 当点P 在点A 的左侧时,且2PA =PB 时.根据题意得2(﹣10﹣x )=30﹣x .解得x =﹣50.综上所述,点P 表示的数为103或503或﹣50. ②当点A 是点P ,点B 的“联盟点”时,有PA =2AB .根据题意得()()1023010x --=⨯--⎡⎤⎣⎦.解得x =70.当点B 是点A 、点P 的“联盟点”时,有AB =2PB 或2AB =PB .根据题意得()()3010230x --=-或()2301030x ⨯--=-⎡⎤⎣⎦.解得x =50或x =110.当点P 是点A 、点B 的“联盟点”时,有PA =2PB .根据题意得()()10230x x --=⨯-.解得x =70.所以此时点P 表示的数为70或50或110.故答案为:70或50或110.【点睛】本题考查数轴上两点间的距离,一元一次方程的实际应用,正确理解题意和应用分类讨论思想是解题关键.。

七年级数学上册期末考试卷(有答案)

七年级数学上册期末考试卷(有答案)
25.(10分)随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,设消费次数
为x时,所需费用为y元,且y与x的函数关系如图所示.根据图中信息,解答下
列问题:
(1)分别求出选择这两种卡消费时,y关于x的函数表达式.
(2)求出B点坐标.
(3)洋洋爸爸准备240元钱用于洋洋在该游乐场消费,请问选择哪种消费卡划算?
5.对于一次函数 的相关性质,下列描述错误的是()
A.函数图象经过第一、二、四象限B.图象与y轴的交点坐标为
C.y随x的增大而减小D.图象与坐标轴围成三角形的而积为
6.下列图形中的曲线不表示 是 的函数的是()
7.如图,在 中, ,垂足为D,下列结论中,不一定成立的是()
A. 与 互余B.∠B与 互余C. D.
15.如图,BD是△ABC的角平分线,DE⊥AB于点E;BD=13,BE=12,BC=14,则△BCD的面积是.
16.根据下图所示的程序计算函数值,若输入的x值为 ,则输出的结果为。
17.如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是
18.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动
到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2022次运动后,动点的坐标是______.
三、解答题:本大题共7小题,共66分.解答要写出必要的文字说明、计算过程或验算步骤.
20、(1)图略,A′(1,3),B′(5,1),C′(2,-2);┄┄┄┄4分
(2)△ABC的面积为 .┄┄┄┄8分
21、证明:∵AB∥CD
∴∠ABD=∠CDE ┄┄┄┄┄3分

初一上期末考试数学试卷(含答案)

初一上期末考试数学试卷(含答案)

初一上期末考试数学试卷(含答案)第一学期期末考试初一数学试卷一、选择题(共9个小题,每小题3分,共27分)1.-1的相反数是()A。

2.B。

1/2.C。

-2.D。

-1/22.当地面高于海平面1米时,记作“+1米”,那么地面低于海平面10米时,记作()A。

-1米。

B。

+1米。

C。

-10米。

D。

+10米3.最新数据显示,目前全世界人口总数约为70亿,中国是世界第一人口大国,约为1 400 000 000人。

请将1 400 000 000用科学记数法表示为()A。

14×10^7.B。

1.4×10^9.C。

14×10^8.D。

140×10^114.如果x=1是关于x的方程2x+m=2的解,那么m的值是()A。

1.B。

1/2.C。

-1.D。

-1/25.下列运算正确的是()A。

6a-5a=a。

B。

a^2+a^2=2a^4.C。

3a^2b-4b^2a=-a^2b。

D。

(a^2)^3=a^56.从正面、上面、左面三个方向看某一个物体得到的图形如图所示,则这个物体是()A。

圆锥。

B。

圆柱。

C。

三棱锥。

D。

三棱柱7.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的是()A。

①②。

B。

①④。

C。

②③。

D。

③④8.如图是一个正方体的展开图,如果在其中的三个面A,B,C内分别填入适当的数,使得它们围成正方体后相对的面上的两个数互为相反数,那么填入A,B,C内的三个数依次为()A。

0,-1,2.B。

0,2,-1.C。

2,-1,-2.D。

-1,1,-29.列数中第9个数及第n个数(n为正整数)分别是()A。

82,-n^2+1.B。

82,(-1)^n+2.C。

-82,(n^2+1)。

D。

-82,3n+1二、填空题(共6个小题,每小题3分,共18分)10.单项式-2xy的系数是_______,次数是_______。

11.角度换算:3615′=_______。

12.某商店把一双旅游鞋按进价提高30%标价,然后再按标价的8折出售,如果每双旅游鞋的进价为x元,那么每双鞋标价为_______元;8折后,每双鞋的实际售价为_______元。

七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列是一元一次方程的是()A.x+1B.x+1=y C.2x+1=﹣1D.x+1=x22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.已知a=b,下列变形不一定成立的是()A.a﹣n=b﹣n B.an=bn C.a2=b2D.=14.已知x=1是关于x的一元一次方程2x﹣a=0的解,则a的值为()A.﹣1B.﹣2C.1D.25.下列运算正确的是()A.﹣2(a﹣b)=﹣2a﹣b B.﹣2(a﹣b)=﹣2a+bC.﹣2(a﹣b)=﹣2a﹣2b D.﹣2(a﹣b)=﹣2a+2b6.如图是正方体的一个平面展开图,则原正方体上与“周”相对的面上的字是()A.七B.十C.华D.诞7.某车间28名工人生产螺栓螺母,每人每天平均生产螺栓12个或螺母18个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:2配套,为求x列的方程是()A.12x=18(28﹣x)B.12x=2×18(28﹣x)C.2×18x=18(28﹣x)D.2×12x=18(28﹣x)8.如图,一直线段AB:BC:CD=3:2:4,点E、F分别是AB、CD的中点,且EF=22cm,则线段BC的长为()cm.A.8B.9C.11D.129.不相等的有理数a,b,c在数轴上的对应点分别是A、B、C,如果|a﹣b|+|b﹣c|=|a﹣c|,那么点B()A.在A、C点的左边B.在A、C点的右边C.在A、C点之间D.上述三种均可能10.如图,射线OB、OC在∠AOD的内部,下列说法:①若∠AOC=∠BOD=90°,则与∠BOC互余的角有2个;②若∠AOD+∠BOC=180°,则∠AOC+∠BOD=180°;③若OM、ON分别平分∠AOD,∠BOD,则∠MON=∠AOB;④若∠AOD=150°、∠BOC=30°,作∠AOP=∠AOB、∠DOQ=∠COD,则∠POQ=90°其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.若|a|=2,则a=.12.一个角的补角是它本身的3倍,则这个角的度数为.13.在同一平面内,三条直线两两相交,交点的个数为.14.若关于x的方程mx|m+1|﹣2=0是一元一次方程,则m=.15.一文具店在某一时间以每件30元的价格卖出两个笔袋,其中一个盈利25%,另一个亏损25%.卖这两个笔袋总的盈亏情况是元(填盈利或亏损多少)16.如图,数轴上线段AB及可移动的线段CD(点A在点B的左侧,点C在点D的左侧),已知线段AB覆盖8个整数点(数轴上对应整数的点),线段CD覆盖2个整数点,点M,点N分别为AC、BD的中点,则线段MN覆盖个整数点.三、解答题(共8题,共72分)17.(8分)计算:(1)48°39′+67°31′(2)18.(8分)解方程:19.(8分)先化简,再求值:,其中x=﹣3,y=2.20.(8分)整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?21.(8分)已知a、b、c在数轴上对应的点如图所示,(1)化简:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;(2)若(c+4)2与|a+c+10|互为相反数,且b=|a﹣c|,求(1)中式子的值.22.(10分)为了支持囤货,大智路某手机卖场本月计划用9万元购进某国产品牌手机,从卖场获知该品牌3中不同型号的国产手机的进价及售价如下表:若该手机卖场同时购进两种不同型号的手机共50台,9万元刚好用完.(1)请你确定该手机卖场的进货方案,并说明理由;(2)该卖场老板准备把这批手机销售的利润的50%捐给公益组织,在同时购进两种不同型号的手机方案中,为了使捐款最多,你选择哪种方案?23.(10分)已知,直线l上线段AB=8、线段CD=4(点A在点B的左侧,点C在点D的左侧)(1)若线段BC=2,则线段AD=;(2)如图2,点P、Q分别为AD、BC的中点,求线段PQ的长度;(3)若线段CD从点B开始以1个单位/秒的速度向右运动,同时,点M从点A开始以2个单位/秒的速度向右运动,点N是线段BD的中点,若MN=2DN,求线段CD运动的时间.24.(12分)已知∠AOB、∠COD,射线OE平分∠AOD(1)如图1,已知∠AOB=180°、∠COD=90°,若∠DOB=40°,则∠COE=度;(2)∠AOB、∠COD的位置如图所示,已知∠AOB=2∠COD,求的值;(3)射线OC、OD在直线OA的右侧按顺时针方向分布,已知∠COD=30°,OF为∠AOD的三等分线且靠近射线OD,设∠COF=α,将∠COD绕点O顺时针旋转,满足45°<∠AOD<135°且∠AOD≠90°,若∠BOD=3α,求∠AOB(可用α表示)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】依次分析各个选项,选出符合一元一次方程定义的选项即可.【解答】解:A.属于整式,不符合一元一次方程的定义,即A项错误,B.属于二元一次方程,不符合一元一次方程的定义,即B项错误,C.符合一元一次方程的定义,是一元一次方程,即C项正确,D.属于一元二次方程,不符合一元一次方程的定义,即D项错误,故选:C.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】分别利用等式的基本性质判断得出即可.【解答】解:由等式a=b,可得:a﹣n=b﹣n,an=bn,a2=b2,但b=0时,无意义,故选:D.【点评】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.4.【分析】把x=1代入方程2x﹣a=0得到关于a的一元一次方程,解之即可.【解答】解:把x=1代入方程2x﹣a=0得:2﹣a=0,解得:a=2,故选:D.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.【分析】分别根据去括号法则整理得出判断即可.【解答】解:A、﹣2(a﹣b)=﹣2a+2b,故此选项错误;B、﹣2(a﹣b)=﹣2a+2b,故此选项错误;C、﹣2(a﹣b)=﹣2a+2b,故此选项错误;D、﹣2(a﹣b)=﹣2a+2b,故此选项正确.故选:D.【点评】此题主要考查了去括号法则,正确去括号得出是解题关键.6.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“十”与“年”是相对面,“七”与“诞”是相对面,“周”与“华”是相对面.故原正方体上与“周”相对的面上的字是华.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【分析】要列方程首先要根据题意找出题中存在的等量关系:每天生产的螺母=每天生产的螺栓的2倍,从而列出方程.【解答】解:设x名工人生产螺栓,则生产螺母的工人为28﹣x名.每天生产螺栓12x个,生产螺母18×(28﹣x);根据“恰好每天生产的螺栓和螺母按1:2配套”,得出方程:2×12x=18(28﹣x)故选:D.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.【分析】设AB=3x,BC=2x,CD=4x,由线段和差关系列出方程,可求解.【解答】解:∵AB:BC:CD=3:2:4,∴设AB=3x,BC=2x,CD=4x,∵点E、F分别是AB、CD的中点,∴BE=AB=x,CF=CD=2x,∵EF=BE+BC+CF=x+2x+2x=22cm∴x=4cm∴BC=2x=8cm故选:A.【点评】本题考查了两点间距离,线段中点的定义,熟练运用线段和差关系求线段的长度是本题的关键.9.【分析】根据|a﹣b|+|b﹣c|表示数b的点到a与c两点的距离的和,|a﹣c|表示数a与c两点的距离即可求解.【解答】解:∵|a﹣b|+|b﹣c|=|a﹣c|,∴点B在A、C点之间.故选:C.【点评】本题主要考查了绝对值的定义,就是表示两点之间的距离.10.【分析】根据余角和补角的定义和角平分线的定义即可得到结论.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴与∠BOC互余的角有2个;正确;②∵∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BCO=∠AOC+∠BOD=180°,∴∠AOC+∠BOD=180°;故正确;③如图1,∵OM、ON分别平分∠AOD,∠BOD,∴∠DOM=∠AOD,∠DON=∠BOD,∴∠MON=∠DOM﹣∠DON=(∠AOD﹣∠BOD)=∠AOB,故正确;④如图2,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°﹣30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°﹣60°=90°,如图3,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°﹣30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°+60°=210°,综上所述,∠POQ=90°或210°,故错误.故选:C.【点评】本题考查了余角和补角,角平分线的定义,正确的识别图形是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】理解绝对值的意义:一个数的绝对值表示在数轴上表示这个数的点到原点的距离.显然根据绝对值的意义,绝对值等于2的数有两个,为2或﹣2.【解答】解:∵|a|=2,∴a=±2.故本题的答案是±2.【点评】理解绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.【分析】首先根据补角的定义,设这个角为x°,则它的补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的补角为(180°﹣x),依题意,得180°﹣x=3x,解得x=45°答:这个角的度数为45°.故答案为:45°.【点评】本题考查的是余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.13.【分析】分三点共线和三点不共线两种情况作出图形即可.【解答】解:如图,三条不同的直线两两相交交点个数有1或3个.故答案为:1或3个【点评】本题考查了直线、射线、线段,作出图形,利用数形结合的思想求解更加简便.14.【分析】根据一元一次方程的定义,得到关于m的方程,结合m≠0,即可得到答案.【解答】解:根据题意得:|m+1|=1,即m+1=1或m+1=﹣1,解得:m=0或﹣2,∵m≠0,∴m=﹣2,故答案为:﹣2.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.15.【分析】尽管是同样的价格卖出,但是由于两个笔袋的成本不一样,所以这是解决问题的出发点,于是分别设两个笔袋的成本来列式计算,求出成本即可.【解答】解:设两个笔袋的成本分别为a元、b元,由题意可知a(1+25%)=30,b(1﹣25%)=30解得a=24,b=40∴30×2﹣(24+40)=﹣4故答案为亏损了4元.【点评】本题考查的是一元一次方程在利润计算上的应用,计算利润问题抓住成本是关键,此题应该注意盈利25%与亏损25%的基数不一样.16.【分析】分析AB,CD,MN三者之间的关系,在通过长度推算整点的个数的范围【解答】解:MN=CB﹣CM﹣BN=CB﹣CA﹣BD=(2BC﹣CA﹣BD)=(CD+AB)∵线段AB覆盖8个整数点,7≤AB<9,∵线段CD覆盖2个整数点,1≤CD<3,4≤(CD+AB)<6,则线段MN覆盖个整数点为4,5,6故答案:4,5,6【点评】这题的难度较大,综合考察了线段的运算和线段覆盖的整点问题,一个典型的压轴题三、解答题(共8题,共72分)17.【分析】(1)根据角度的计算方法计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=115°70′=116°10′;(2)原式=×(﹣)×÷=﹣×=﹣.【点评】本题主要考查角度的计算和有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【分析】依次去分母、去括号、移项、合并同类项、系数化为1即可得.【解答】解:2(x﹣1)﹣4=x+1,2x﹣2﹣4=x+1,2x﹣x=1+2+4,x=7.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.19.【分析】首先计算乘除,再合并同类项,将整式化为最简形式,然后把x的值代入即可.【解答】解:原式=x﹣=x+3,当x=﹣3时,原式=×(﹣3)+3=.【点评】本题考查了整式的混合运算﹣化简求值.先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.【分析】由一个人做要40小时完成,即一个人一小时能完成全部工作的,就是已知工作的速度.本题中存在的相等关系是:这部分人4小时的工作+增加2人后8小时的工作=全部工作.设全部工作是1,这部分共有x人,就可以列出方程.【解答】解:设应先安排x人工作,根据题意得:解得:x=2,答:应先安排2人工作.【点评】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的,这一个关系是解题的关键.21.【分析】(1)通过数轴判断a,c,b的相对大小,从而确定绝对值里代数式的值的符号,再去掉绝对值,最后实现化简;(2)两个非负数互为相反数,只能各自为零.求出a、b、c的值再计算代数式的值.【解答】(1)解:观察数轴可知a<c<0<b,且|a|>|c|>|b|∴b﹣c>0,b+c<0,a﹣c<0a﹣b<0∴原式=2(b﹣c)+(b+c)+(c﹣a)+(a﹣b)=2b故化简结果为2b.(2)解:∵(c+4)2与|a+c+10|互为相反数,∴(c+4)2+|a+c+10|=0∴c+4=0,a+c+10=0∴c=﹣4,a=﹣6而b=|a﹣c|,∴b=2∴2b=4故(1)式的值为4.【点评】本题考查的是利用数轴比较数的大小,并进行化简,利用数轴判断绝对值内代数式的符号是解题关键.22.【分析】(1)分成三种分案进行讨论,列出一元一次方程组,即可求出方案;(2)根据(1)的方案算出每一种方案的利润,然后计算出捐出给工艺的钱,即可求出方案.【解答】解:(1)①当购进A和B两种品牌手机时,设买进A品牌手机a台时,则买进B品牌手机(50﹣a)台时,根据题意:1500a+2100(50﹣a)=90000,解得a=25,故可购进A品牌手机25台时,则买进B品牌手机25台.②当购进B和C两种品牌手机时,设买进B品牌手机b台时,则买进C品牌手机(50﹣b)台时,根据题意:2100b+2500(50﹣b)=90000,解得b=87.5>50,故舍去;③当购进A和C两种品牌手机时,设买进C品牌手机c台时,则买进A品牌手机(50﹣c)台时,根据题意:1500(50﹣c)+2500c=90000,解得c=15,故可购进C品牌手机15台时,则买进A品牌手机35台.故有两种进货方案,方案一:可购进A品牌手机25台时,则买进B品牌手机25台;方案二:可购进C品牌手机15台时,则买进A品牌手机35台.(2)方案一的利润:25(1650﹣1500)+25(2300﹣2100)=8750元,捐款数额:8750×50%=4375元;方案二的利润:15(2750﹣2500)+35(1650﹣1500)=9000元,捐款数额:9000×50%=4500元;故选择方案二,即可购进C品牌手机15台时,则买进A品牌手机35台.【点评】本题考查了一元一次方程的应用题,根据已知问题,列出一元一次方程使解答此题的关键.23.【分析】(1)①当点C在点B的左侧时,②当点C在点B的右侧时,根据线段的和差即可得到结论;(2)设BC=x,则AD=AB+BC+CD=12+x,根据线段中点的定义得到PD=AD=6+x,CQ=x,于是得到结论;(3)线段CD运动的时间为t,则AM=2t,BC=t,列方程即可得到结论.【解答】解:(1)①当点C在点B的左侧时,∵AB=8,BC=2,CD=4,∴AC=6,∴AD=AC+CD=10,②当点C在点B的右侧时,∵AB=8,BC=2,CD=4,∴AD=AB+BC+CD=14,故线段AD=10或14;故答案为:10或14;(2)设BC=x,则AD=AB+BC+CD=12+x,∵点P、Q分别为AD、BC的中点,∴PD=AD=6+x,CQ=x,∴PQ=PD﹣CD﹣CQ=6+x﹣4﹣x=2;(3)线段CD运动的时间为t,则AM=2t,BC=t,∴BM=AB﹣AM=8﹣2t,BD=BC+CD=t+4,∵点N是线段BD的中点,∴DN=BN=BD=t+2,∵MN=2DN,∴8﹣2t+t+2=2(t+2),解得:t=,故线段CD运动的时间为s.【点评】本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.24.【分析】(1)先求出∠AOD,然后计算出∴∠DOE,即可求出∠COE=∠COD﹣∠DOE;(2)通过设出已知角∠COD,∠BOC,然后根据题意,表示出∠COE和∠DOB;(3)分情况讨论,当OB在OD下方和OB在OD上方,进行计算.【解答】解:(1)∵∠AOB=180°,∠DOB=40°,∴∠AOD=140°,∵射线OE平分∠AOD,∴∠DOE=∠AOD=70°,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=20°,故答案为:20;(2)∵∠AOB=2∠COD,∴设∠COD=x,∠BOC=y,则∠AOB=2x,∴∠BOD=x﹣y,∠AOD=3x﹣y,∵射线OE平分∠AOD,∴∠DOE=∠AOD=(3x﹣y),∴∠COE=∠DOE﹣∠COD=(3x﹣y)﹣x=(x﹣y),∴==;(3)由题意可知:∠DOF=30°﹣α,=20,此时,当OB在OD下方时,此时;当OB在OD上方时,此时.【点评】本题主要考查学生在学习过程中对角度关系及运算的灵活运用和掌握.此类题目的练习有利于学生更好的对角的理解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学期末试卷(含答案)一、选择题1.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .82.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或33.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10094.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .45.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( ) A .1个B .2个C .3个D .4个6.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人 7.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海9.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .2016201510.若3x-2y-7=0,则 4y-6x+12的值为( ) A .12 B .19C .-2D .无法确定11.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3212.下列方程为一元一次方程的是( )A.x+2y=3 B.y+3=0 C.x2﹣2x=0 D.1y+y=013.下列计算正确的是()A.b﹣3b=﹣2 B.3m+n=4mnC.2a4+4a2=6a6D.﹣2a2b+5a2b=3a2b14.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是()A.500个B.501个C.602个D.603个15.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是()A.1B.2C.3D.416.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个17.已知线段AB=m,BC=n,且m2﹣mn=28,mn﹣n2=12,则m2﹣2mn+n2等于()A.49B.40C.16D.918.在上午八点半钟的时候,时针和分针所夹的角度是()A.85°B.75°C.65°D.55°19.甲、乙两人分别从A B、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A地后也立刻以原路和提高后的速度向B地返行.甲、乙两人在开始出发后的5小时36分钟又再次相遇,则A B、两地的距离是()A.24千米B.30千米C.32千米D.36千米20.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .25321.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定22.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >023.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强24.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24025.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块 26.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=27.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >028.“比a 的3倍大5的数”用代数式表示为( ) A .35a + B .3(5)a + C .35a -D .3(5)a -29.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .13C .25cmD .30cm 30.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( )A .4B .5C .6D .7【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8. 【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3, ∴22019的末位数字是8. 故选:D 【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.2.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c =∴a b c a b c ++1111=-++= 故选:A . 【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.3.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.4.C解析:C 【解析】 【分析】根据题意,由n =x +y +xy ,可得n +1=x +y +xy +1,所以n +1=(x +1)(y +1),因此如果n +1是合数,则n 是“好数”,据此判断即可. 【详解】 根据分析, ∵8=2+2+2×2, ∴8是好数; ∵9=1+4+1×4, ∴9是好数;∵10+1=11,11是一个质数, ∴10不是好数; ∵11=2+3+2×3, ∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11. 故选C . 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.5.B解析:B 【解析】 【分析】根据一元一次方程的定义逐个判断即可. 【详解】一元一次方程有x+1=0,12x =12,共2个, 故选:B .本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.6.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对; 故选:B . 【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.9.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++ =111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.10.C解析:C 【解析】 【分析】把(3x-2y )看作一个整体并求出其值,再代入所求代数式进行计算即可得解. 【详解】 解:∵3x-2y-7=0, ∴3x-2y=7,∴4y-6x+12=-2(3x-2y )+12=-2×7+12=-14+12=-2. 故选:C . 【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.12.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键. 13.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b ﹣3b =﹣2b ,故原选项计算错误;B. 3m +n 不能计算,故原选项错误;C. 2a 4+4a 2不能计算,故原选项错误;D.﹣2a 2b +5a 2b =3a 2b 计算正确.故选D .【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.14.B解析:B【解析】【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈.【详解】解:∵第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,…∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=.故选:B .【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.15.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.16.B解析:B【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.17.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..18.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.19.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.20.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.21.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.22.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.23.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.25.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.26.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.27.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b<0,a>0,且|b|>|a|,A、a-b>0,故本选项符合题意;B、a+b<0,故本选项不合题意;C、ba<0,故本选项不合题意;D、ab<0,故本选项不合题意.故选:A.【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a、b的正负情况以及绝对值的大小是解题的关键.28.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.29.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm,底面直径等于30πcm,∴底面周长=3030ππ⋅=cm,∴BC=20cm,AC=12×30=15(cm),∴AB2222201525AC BC+=+=(cm).答:它需要爬行的最短路程为25cm.故选:C .【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.30.B解析:B【解析】【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数;【详解】 ∵29623 4.655-==, ∴分成的组数是5组.故答案选B .【点睛】 本题主要考查了频数分布直方图,准确计算是解题的关键.。

相关文档
最新文档