人教A版数学必修一单元质量评估(一)
人教A版高中数学选修1-1:单元质量评估(一)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元质量评估(一)第一章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·宜昌高二检测)下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.其中假命题的个数是( )A.1B.2C.3D.4【解析】选D.①等底等高的三角形都是面积相等的三角形,但不一定全等;②当x,y中一个为零,另一个不为零时,|x|+|y|≠0;③当c=0时不成立;④菱形的对角线互相垂直,矩形的对角线不一定垂直.【补偿训练】下列命题是真命题的是( )A.y=tanx的定义域是RB.y=的值域为RC.y=的递减区间为(-∞,0)∪(0,+∞)D.y=sin2x-cos2x的最小正周期是π【解析】选D.当x=kπ+,k∈Z时,y=tanx无意义,A错;函数y=的定义域为.答案:【拓展延伸】完美解决参数问题通过已知条件,探索命题的真假,然后求解参数的取值范围,是逻辑用语部分常见的、基本的题型.解决此类问题要从三个方面入手:(1)熟练掌握真值表,判断单个命题p,q的真假.(2)具备丰富的基础知识储备,求解单个命题成立的参数范围.(3)辅助应用集合的运算确定参数的最后范围.15.(2016·徐州高二检测)已知命题p:≤1,命题q:x2-2x+1-m2<0(m>0),若p是q 的充分不必要条件,则实数m的范围是.【解析】命题p首先化简为-1≤x≤3,命题q是二次不等式,p是q的充分不必要条件说明当-1≤x≤3时不等式x2-2x+1-m2<0恒成立,故又m>0,故可解得m>2.答案:(2,+∞)16.给出下列命题:①数列,3,,,3…的一个通项公式是;②当k∈(-3,0)时,不等式2kx2+kx-<0对一切实数x都成立;③函数y=sin2-sin2是周期为π的奇函数;④两两相交且不过同一点的三条直线必在同一个平面内.其中,真命题的序号是.【解析】①数列,3=,,,3=…的被开方数构成一个以3为首项,以6为公差的等差数列,故它的一个通项公式是,故①正确;②当k∈(-3,0)时,因为Δ=k2+3k<0,故函数y=2kx2+kx-的图象开口朝下,且与x轴无交点, 故不等式2kx2+kx-<0对一切实数x都成立,故②正确;③函数y=sin2-sin2=sin2-cos2=-cos=sin2x,是周期为π的奇函数,故③正确;④两两相交且不过同一点的三条直线必在同一个平面内,故④正确.故真命题的序号是①②③④.答案:①②③④【补偿训练】下列正确命题有.①“sinθ=”是“θ=30°”的充分不必要条件;②如果命题“(p或q)”为假命题,则p,q中至多有一个为真命题;③设a>0,b>1,若a+b=2,则+的最小值为3+2;④函数f(x)=3ax+1-2a在(-1,1)上存在x0,使f(x0)=0,则a的取值范围是a<-1或a>. 【解析】①由θ=30°可得sinθ=,反之不成立,因此“sinθ=”是“θ=30°”的必要不充分条件;②命题“(p或q)”为假命题,则p,q都是假命题;③a+b=2,所以a+b-1=1,+=(a+b-1)=3++≥3+2,最小值为3+2;④由题意得f(-1)f(1)<0,所以(-5a+1)(a-1)<0,所以a<-1或a>.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假.(1)对数函数都是单调函数.(2)至少有一个整数,它既能被11整除,又能被9整除.(3)∀x∈{x|x>0},x+≥2.(4)∃x0∈Z,log2x0>2.【解析】(1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题.(3)命题中含有全称量词“∀”,是全称命题,真命题.(4)命题中含有存在量词“∃”,是特称命题,真命题.18.(12分)已知f(x)=x2,g(x)=-m,若对∀x1∈,∃x2∈,有f(x1)≥g(x2),求实数m的取值范围.【解析】根据题意知,f(x1)min≥g(x2)min,当x1∈时,f(x1)min=0.当x2∈时,g(x2)=-m的最小值为g(2)=-m.因此0≥-m,解之得m≥.故实数m的取值范围是.19.(12分)(2016·马鞍山高二检测)已知曲线C:x2+y2+Gx+Ey+F=0(G2+E2-4F>0),求曲线C在x 轴上所截的线段的长度为1的充要条件,证明你的结论.【解题指南】先求出必要条件,再证明其充分性.【解析】必要性:令y=0,则x2+Gx+F=0.设x1,x2为此方程的根,若|x1-x2|==1,则G2-4F=1.充分性:若G2-4F=1,x2+Gx+F=0有两根为x1,x2,且x1+x2=-G,x1·x2=F,|x1-x2|2=(x1+x2)2-4x1·x2=G2-4F=1.故所求的充要条件是G2-4F=1.20.(12分)(2016·汕头高二检测)已知p:-2≤1-≤2,q:x2-2x+1-m2≤0(m>0),且p是q 的必要不充分条件,求实数m的取值范围.【解题指南】先解不等式求出p真和q真的条件.p真:-2≤x≤10;q真:1-m≤x≤1+m,然后利用p是q的必要不充分条件,根据集合之间的包含关系建立关于m的不等式,求出m的取值范围.【解析】由x2-2x+1-m2≤0,得1-m≤x≤1+m,所以q:A={x|x>1+m或x<1-m,m>0}.由-2≤1-≤2,得-2≤x≤10.所以p:B={x|x>10或x<-2},因为p是q的必要不充分条件,所以A B,所以21.(12分)(2016·聊城高二检测)设命题p:函数f(x)=lg的定义域为R:命题q:3x-9x<a对一切的实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围. 【解析】要使函数f(x)=lg的定义域为R,则不等式ax2-x+>0对于一切x∈R恒成立,若a=0,则不等式等价为-x>0,解得x<0,不满足恒成立.若a≠0,则满足条件即解得即a>2,所以p:a>2.因为g(x)=3x-9x=-+≤,所以要使3x-9x<a对一切的实数x的恒成立,则a>,即q:a>.要使p且q为假,则p,q至少有一个为假命题.当p,q都为真命题时,满足即a>2,所以p,q至少有一个为假命题时有a≤2,即实数a的取值范围是a≤2.22.(12分)(2016·福州高二检测)已知a>0,b>0,函数f(x)=ax-bx2.(1)求证:∀x∈R均有f(x)≤1是a≤2的充分条件.(2)当b=1时,求f(x)≤1,x∈恒成立的充要条件.【解析】(1)f(x)=ax-bx2=-b+,因为∀x∈R,f(x)≤1,所以≤1,又a>0,b>0,所以a≤2,所以∀x∈R均有f(x)≤1是a≤2的充分条件.(2)因为b=1,所以f(x)=ax-x2,当x=0时,f(x)=0≤1成立,当x∈(0,1]时,f(x)≤1恒成立,即a≤x+在(0,1]上恒成立,又=2,此时x=1,所以0<a≤2,当0<a≤2时,a≤x+在(0,1]上恒成立,所以f(x)≤1在(0,1]上恒成立,所以f(x)≤1,x∈(0,1]上恒成立的充要条件为0<a≤2.关闭Word文档返回原板块小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
【新教材】2020-2021学年高中数学人教A版必修第一册单元素养评价(一)

单元素养评价(一)(第一、二章)(120分钟150分)一、单选题(每小题5分,共40分)1.不等式14-5x-x2<0的解集为( )A.{x|-7<x<2}B.{x|x<-7或x>2}C.{x|x>2}D.{x|x<-7}【解析】选B.原不等式等价于x2+5x-14>0,所以(x+7)·(x-2)>0,即x<-7或x>2,故选B.2.若a,b,c∈R且a>b,则下列不等式成立的是( )A.a2>b2B.<C.a|c|>b|c|D.>【解析】选D.选项A:a=0,b=-1,符合a>b,但不等式a2>b2不成立,故本选项是错误的;选项B:当a=0,b=-1符合已知条件,但零没有倒数,故<不成立,故本选项是错误的;选项C:当c=0时,a|c|>b|c|不成立,故本选项是错误的;选项D:由于c2+1>0,所以依据不等式的性质,由a>b 能推出>.3.(-6≤a≤3)的最大值为() A.9 B.C.3 D.【解析】选B.由于-6≤a≤3,所以3-a≥0,a+6≥0,所以≤=.当且仅当a=-时,等号成立,即(-6≤a≤3)的最大值为.4.不等式mx2-ax-1>0(m>0)的解集可能是 ( )A. B.RC. D.∅【解析】选A.由于Δ=a2+4m>0,所以函数y=mx2-ax-1的图象与x轴有两个交点,又由于m>0,所以原不等式的解集不行能是B,C,D选项.5.某市原来居民用电价为0.52元/kW·h,换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW·h.对于一个平均每月用电量为200 kW·h的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( )A.110 kW·hB.114 kW·hC.118 kW·hD.120 kW·h【解析】选C.设每月峰时段的平均用电量为x kW·h,则谷时段的用电量为(200-x)kW·h;依据题意,得:(0.52-0.55)x+(0.52-0.35)(200-x)≥200×0.52×10%,解得x≤118.所以这个家庭每月峰时段的平均用电量至多为118 kW·h.6.已知2a+1<0,则关于x的不等式x2-4ax-5a2>0的解集是( )A.{x|x<5a或x>-a}B.{x|x>5a或x<-a}C.{x|-a<x<5a}D.{x|5a<x<-a}【解析】选A.方程x2-4ax-5a2=0的两根为-a,5a.由于2a+1<0,所以a<-,所以-a>5a.结合二次函数y=x2-4ax-5a2的图象,得原不等式的解集为{x|x<5a或x>-a},故选A.7.若0<x<,则函数y=x的最大值为 ( )A.1B.C.D .【解析】选C.由于0<x<,所以1-4x2>0,所以x =×2x ≤×=,当且仅当2x=,即x=时等号成立.8.(2022·攀枝花高一检测)某公司从2022年起每人的年工资主要由三个项目组成并按下表规定实施:项目计算方法基础工资2022年1万元,以后每年逐增10%住房补贴按工龄计算:400元×工龄医疗费每年1 600元固定不变若该公司某职工在2022年将得到的住房补贴与医疗费之和超过基础工资的25%,到2022年底这位职工的工龄至少是( )A.2年B.3年C.4年D.5年【解析】选C.设这位职工工龄至少为x年,则400x+1 600>10 000·(1+10%)2×25%,即400x+1 600>3 025,即x>3.562 5,所以至少为4年.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.下列说法不正确的是 ( )A.某人月收入x不高于2 000元可表示为“x<2 000”B.小明的身高为x,小华的身高为y,则小明比小华矮表示为“x>y”C.某变量x至少是a可表示为“x≥a”D.某变量y不超过a可表示为“y≥a”【解析】选ABD.对于A,x应满足x≤2 000,故A错;对于B,x,y应满足x<y,故B不正确;C正确;对于D,y与a的关系可表示为y≤a,故D错误.10.下列不等式不肯定正确的是( )A.x+≥2B.≥2C.>xyD.≥【解析】选BCD.由于x 与同号,所以=|x|+≥2,A正确;当x,y异号时,B不正确;当x=y 时,=xy,C不正确;当x=1,y=-1时,D不正确.11.已知2<x<3,2<y<3,则( )A.2x+y的取值范围为(6,9)B.2x-y的取值范围为(2,3)C.x-y的取值范围为(-1,1)D.xy的取值范围为(4,9) 【解析】选ACD.由于2<x<3,2<y<3,所以4<xy<9,4<2x<6,所以6<2x+y<9,而-3<-y<-2,所以1<2x-y<4,-1<x-y<1.12.3+5x-2x2>0的充分不必要条件是( )A.-<x<3B.-<x<0C.1<x<2D.-1<x<6【解析】选BC.由不等式3+5x-2x2>0,可得2x2-5x-3<0,解得-<x<3,由此可得:选项A,-<x<3是不等式3+5x-2x2>0成立的充要条件;选项B,-<x<0是不等式3+5x-2x2>0成立的充分不必要条件;选项C,1<x<2是不等式3+5x-2x2>0成立的充分不必要条件;选项D,-1<x<6是不等式3+5x-2x2>0成立的必要不充分条件.三、填空题(每小题5分,共20分)13.二次函数y=ax2+bx+c(x∈R)的部分对应值如表:x -3 -2 -1 0 1 2 3 4y 6 0 -4 -6 -6 -4 0 6则a=_______;不等式ax2+bx+c>0的解集为_______.【解析】由表知x=-2时y=0,x=3时,y=0,所以二次函数y=ax2+bx+c可化为y=a(x+2)(x-3).又由于x=1时,y=-6,所以a=1,图象开口向上,结合二次函数的图象可得不等式ax2+bx+c>0的解集为{x|x<-2或x>3}.答案:1 {x|x<-2或x>3}14.若a<1,则a+与-1的大小关系是_______.【解析】由于a<1,即1-a>0,所以-=(1-a)+≥2=2.即a+≤-1.答案:a+≤-115.已知A={x|1<x<2},B={x|x2-2ax+a2-1<0},若A⊆B,则a的取值范围是_______. 【解析】方程x2-2ax+a2-1=0的两根为a+1,a-1,且a+1>a-1,所以B={x|a-1<x<a+1}.由于A⊆B ,所以,解得1≤a≤2.答案:1≤a≤216.若正数a,b满足a+b=1,则+的最小值为_______.【解析】由a+b=1,知+==,又ab ≤=(当且仅当a=b=时等号成立),所以9ab+10≤,所以≥. 答案:四、解答题(共70分)17.(10分)解下列不等式:(1)2+3x-2x2>0.(2)x(3-x)≤x(x+2)-1.(3)x2-2x+3>0.【解析】(1)原不等式可化为2x2-3x-2<0,所以(2x+1)(x-2)<0,故原不等式的解集是.(2)原不等式可化为2x2-x-1≥0.所以(2x+1)(x-1)≥0,故原不等式的解集为. (3)由于Δ=(-2)2-4×3=-8<0,故原不等式的解集是R.18.(12分)(1)若x<3,求y=2x+1+的最大值.(2)已知x>0,求y=的最大值.【解析】(1)由于x<3,所以3-x>0.又由于y=2(x-3)++7=-2(3-x)++7,由基本不等式可得2(3-x)+≥2=2,当且仅当2(3-x)=,即x=3-时,等号成立,于是-≤-2,-2(3-x)++7≤7-2,故y的最大值是7-2.(2)y==.由于x>0,所以x+≥2=2,所以0<y ≤=1,当且仅当x=,即x=1时,等号成立.故y的最大值为1.19.(12分)“绿水青山就是金山银山”.随着经济的进展,我国更加重视对生态环境的爱护,2022年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、其次周鸡蛋的价格分别为x元、y元(单位:kg);甲、乙两人的购买方式不同:甲每周购买3 kg鸡蛋,乙每周购买10元钱鸡蛋.(1)若x=8,y=10,求甲、乙两周购买鸡蛋的平均价格.(2)推断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由. 【解析】(1)由于x=8,y=10,所以甲两周购买鸡蛋的平均价格为=9(元),乙两周购买鸡蛋的平均价格为=(元).(2)甲两周购买鸡蛋的平均价格为=,乙两周购买鸡蛋的平均价格为=,由(1)知,当x=8,y=10时,乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜想乙的购买方式更实惠.证法一(比较法):依题意x,y>0,且x≠y,由于-==>0,所以>,所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠.证法二(分析法):依题意x,y>0,且x≠y,要证:>,只需证:(x+y)2>4xy只需证:x2+y2>2xy,只需证:x≠y(已知).所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠.20.(12分)解关于x的不等式x2+3ax-4a2<0(a∈R).【解析】由于x2+3ax-4a2<0可化为(x-a)·(x+4a)<0,且方程(x-a)(x+4a)=0的两个根分别是a和-4a.当a=-4a,即a=0时,不等式的解集为∅;当a>-4a,即a>0时,解不等式得-4a<x<a;当a<-4a,即a<0时,解不等式得a<x<-4a.综上所述,当a=0时,不等式的解集为∅;当a>0时,不等式的解集为{x|-4a<x<a};当a<0时,不等式的解集为{x|a<x<-4a}.21.(12分)已知a,b 为正实数,且+=2.(1)求a2+b2的最小值.(2)若(a-b)2≥4(ab)3,求ab的值.【解析】(1)由于a,b 为正实数,且+=2,所以+=2≥2,即ab ≥(当且仅当a=b时等号成立).由于a2+b2≥2ab ≥2×=1(当且仅当a=b时等号成立),所以a2+b2的最小值为1. (2)由于+=2,所以a+b=2ab.由于(a-b)2≥4(ab)3,所以(a+b)2-4ab≥4(ab)3,即(2ab)2-4ab≥4(ab)3,即(ab)2-2ab+1≤0,(ab-1)2≤0.由于a,b为正实数,所以ab=1.22.(12分)(2022·滨州高一检测)为了缓解市民吃肉难的生活问题,某生猪养殖公司欲将一批猪肉用冷藏汽车从甲地运往相距120千米的乙地,运费为每小时60元,装卸费为1 000元,猪肉在运输途中的损耗费(单位:元)是汽车速度(km/h)值的2倍.(说明:运输的总费用=运费+装卸费+损耗费)(1)若汽车的速度为每小时50千米,试求运输的总费用.(2)为使运输的总费用不超过1 260元,求汽车行驶速度的范围.(3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?【解析】(1)当汽车的速度为每小时50千米时,运输的总费用为:×60+1000+2×50=1 244(元).(2)设汽车行驶的速度为x km/h,由题意可得:×60+1 000+2x≤1 260,化简得x2-130x+3 600≤0,解得40≤x≤90,故为使运输的总费用不超过1 260元,汽车行驶速度不低于40 km/h时,不高于90 km/h.(3)设汽车行驶的速度为x km/h ,则运输的总费用为×60+1 000+2x=2x++1 000≥2+1 000=1 240,当2x=,即x=60时取得等号,故若要使运输的总费用最小,汽车应以每小时60千米的速度行驶.关闭Word文档返回原板块。
高中数学(人教A版)必修一单元质量评估(一) Word版含解析

温馨提示:
此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭文档返回原板块。
单元质量评估(一)
(第一章)
(分钟分)
一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项符合题目要求的)
.(·天津高考)已知集合{}{∈},则∩
( )
.{} .{} .{} .{}
【解析】选.因为,所以∩.
.(·银川高一检测)二次函数的对称轴为,则当时的值为( )
【解析】选.因为二次函数的对称轴为,所以,所以,则二次函数,当时.
.设集合{},若→是集合到集合的映射,则集合可以
是( )
.{} .{}
.{} .{}
【解析】选.由对应关系可知,当时;当时;当时.故{}.
.若函数()为偶函数>时()单调递增(π)()(),则的大小为( ) >> >>
>> >>
【解析】选.因为函数()为偶函数,
>时()单调递增,
所以(π)(π),
因为π>>,
所以(π)>()>(),
即>>.
.(·浏阳高一检测)设{≤≤}{≤≤},函数()的定义域为,值域为,则()的图象可以是图中的( )
【解析】选.对,函数定义域不是;对,此图象不是函数图象;对,函数值域不是;只有选项符合要求.
.若函数()的定义域为[],则函数()()()的定义域是( )
.[] .[]
.[] .[]
【解析】选.由解得≤≤.
.(·天水高一检测)偶函数()在区间[]上单调递减,则有( ) ()>>(π)。
高中数学(人教a版)必修一:第1章-集合与函数的概念-单元评估试题(含答案) (2)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元质量评估(一)第一章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012·山东高考)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(ðA)∪B为( )UA.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}2.如图可作为函数y=f(x)的图象的是( )3.已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a的值是( )A.1B.-1C.1或-1D.0,1或-14.方程x2-px+6=0的解集为M,方程x2+6x-q=0的解集为N,且M∩N={2},那么p+q=( )A.21B.8C.6D.75.(2012·安徽高考)下列函数中,不满足f(2x)=2f(x)的是( )A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x6.(2013·衡水高一检测)下列各组中的两个函数是同一函数的为( )(1)y=,y=x-5.(2)y=,y=.(3)y=x,y=.(4)y=x,y=.(5)y=()2,y=2x-5.A.(1),(2)B.(2),(3)C.(3),(5)D.(4)7.下面4个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R),上述正确说法的个数是( )A.1B.2C.3D.48.已知A={0,1},B={-1,0,1},f 是从A 到B 映射的对应关系,则满足f(0)>f(1)的映射有( )A.3个B.4个C.5个D.6个9.若函数y=f(x)的定义域是[-2,4],则函数g(x)=f(x)+f(-x)的定义域是( )A.[-4,4]B.[-2,2]C.[-4,-2]D.[2,4]10.若f(x)= 则f(x)的最大值,最小值分别为( )A.10,6B.10,8C.8,6D.8,811.函数f(x)是定义在R 上的奇函数,下列说法:①f(0)=0;②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数; ④若x>0时,f(x)=x 2-2x,则x<0时,f(x)=-x 2-2x.其中正确说法的个数是( )A.1个B.2个C.3个D.4个12.f(x)满足对任意的实数a,b 都有f(a+b)=f(a)·f(b)且f(1)=2,则+++…+=( )A.1 006B.2 014C.2 012D.1 007二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.(2012·广东高考)函数y=的定义域为.14.若函数f(x)=则f(-3)= .15.已知二次函数f(x)=ax2+2ax+1在区间[-3,2]上的最大值为4,则a的值为.16.若函数f(x)同时满足①对于定义域上的任意x,恒有f(x)+f(-x)=0;②对于定义域上的任意x1,x2,当x1≠x2时,恒有<0,则称函数f(x)为“理想函数”.给出下列三个函数中:(1)f(x)=.(2)f(x)=x2.(3)f(x)=能被称为“理想函数”的有(填相应的序号).三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)已知A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},且∅(A∩B),A∩C=∅,求a的值.18.(12分)已知函数f(x-1)=x2-4x,求函数f(x),f(2x+1)的解析式.19.(12分)某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一天能来回16次,如果每次拖7节车厢,则每天能来回10次.(1)若每天来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式.(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.20.(12分)已知函数f(x)=,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.21.(12分)(能力挑战题)设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)+f(y).(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)若函数f(x)是R上的增函数,已知f(1)=1,且f(2a)>f(a-1)+2,求a 的取值范围.22.(12分)(能力挑战题)已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式.(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围.(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.答案解析1. 【解题指南】先求集合A关于全集U的补集,再求它与集合B的并集即可.【解析】选C.(ðA)∪B={0,4}∪{2,4}={0,2,4}.U2.【解析】选D.只有选项D中对定义域内任意x都有唯一的y值与之对应.3.【解析】选 D.P={-1,1},Q⊆P,所以(1)当Q=∅时,a=0.(2)当Q≠∅时,Q={},∴=1或=-1,解之得a=±1.【变式备选】(2012·上海高考改编)若集合A={x|2x+1>0},B={x|-2<x-1<2},则A∩B= .【解题指南】本题考查集合的交集运算知识,此类题的易错点是临界点的大小比较.【解析】集合A={x|2x+1>0}={x|x>-},集合B={x|-2<x-1<2}={x|-1<x<3},所以A∩B={x|-<x<3}.答案:{x|-<x<3}4.【解析】选A.因为M∩N={2},所以2是这两个方程的解,分别代入两个方程得p=5,q=16,从而p+q=21.5.【解题指南】将选项中的函数逐个代入f(2x)=2f(x)去验证.【解析】选C.f(x)=kx与f(x)=k|x|均满足:f(2x)=2f(x),故A,B,D满足条件.6.【解析】选D.(1)中的y=与y=x-5定义域不同.(2)中两个函数的定义域不同.(3)中第1个函数的定义域、值域都为R,而第2个函数的定义域是R,但值域是{y|y≥0}.(5)中两个函数的定义域不同,值域也不同.(4)中显然是同一函数.7.【解析】选A.偶函数的图象关于y轴对称,但不一定与y轴相交.反例:y=x0,故①错.奇函数的图象关于原点对称,但不一定经过原点,反例:y=x-1,故②错.③正确.若y=f(x)既是奇函数又是偶函数,由定义可得f(x)=0,但未必x∈R,反例:f(x)=+,其定义域为{-1,1},故④错.8.【解析】选A.当f(0)=1时,f(1)的值为0或-1都能满足f(0)>f(1);当f(0)=0时,只有f(1)=-1满足f(0)>f(1);当f(0)=-1时,没有f(1)的值满足f(0)>f(1),故有3个.9.【解析】选B.由得-2≤x≤2.【拓展提升】复合函数的定义域的求解策略若已知f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不等式a≤g(x)≤b解出即可;若已知f(g(x))的定义域为[a,b],求f(x)的定义域,相当于当x∈[a,b]时,求g(x)的值域(即f(x)的定义域).10.【解析】选 A.f(x)=2x+6,x∈[1,2]的最大值为10,最小值为8;f(x)=x+7,x∈[-1,1]的最大值为8,最小值为6,所以f(x)的最大值为10,最小值为6.11.【解析】选C.①f(0)=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.12.【解析】选B.因为对任意的实数a,b都有f(a+b)=f(a)·f(b)且f(1)=2,由f(2)=f(1)·f(1),得=f(1)=2,由f(4)=f(3)·f(1),得=f(1)=2,……由f(2014)=f(2013)·f(1),得=f(1)=2,∴+++…+=1007×2=2014.13.【解题指南】求函数的定义域就是求使解析式有意义的自变量的取值集合,本小题涉及分式,要注意分母不能等于0,偶次根式被开方数是非负数.【解析】由得函数的定义域为{x|x≥-1,且x≠0}.答案:{x|x≥-1,且x≠0}14.【解析】f(-3)=f(-3+2)=f(-1)=f(-1+2)=f(1)=1+1=2.答案:215.【解析】f(x)的对称轴为x=-1,当a>0时,f(x)max=f(2)=4,解得a=;当a<0时,f(x)max=f(-1)=4,解得a=-3.答案:-3或【误区警示】本题易忽视分类讨论,简单认为a>0,而导致错误.16.【解析】①要求函数f(x)为奇函数,②要求函数f(x)为减函数,(1)是奇函数但不是减函数,(2)是偶函数而且也不是减函数,只有(3)既是奇函数又是减函数.答案:(3)17.【解析】∵B={x|x2-5x+6=0}={3,2},C={x|x2+2x-8=0}={-4,2},∴由A∩C=∅知,-4∉A,2∉A,∅(A∩B)知,3∈A.∴9-3a+a2-19=0,解得a=5或a=-2.当a=5时,A={x|x2-5x+6=0}=B,与A∩C=∅矛盾.当a=-2时,经检验,符合题意.18.【解析】已知f(x-1)=x2-4x,令x-1=t,则x=t+1,代入上式得,f(t)=(t+1)2-4(t+1)=t2-2t-3,即f(x)=x2-2x-3(x∈R).因此f(2x+1)=(2x+1)2-2(2x+1)-3=4x2-4.【一题多解】∵f(x-1)=(x-1)2-2(x-1)-3,∴f(x)=x2-2x-3(x∈R),因此,f(2x+1)=(2x+1)2-2(2x+1)-3=4x2-4. 19.【解析】(1)设每天来回y次,每次挂x节车厢,由题意y=kx+b,当x=4时,y=16,当x=7时,y=10,得到16=4k+b,10=7k+b.解得:k=-2,b=24,∴y=-2x+24.(2)设每天来回y次,每次挂x节车厢,由题意知,每天挂车厢最多时,运营人数最多,设每天运营S节车厢,则S=xy=x(-2x+24)=-2x2+24x=-2(x-6)2+72,所以当x=6时,S max=72,此时y=12,则每日最多运营人数为110×72=7 920(人).答:这列火车每天来回12次,才能使运营人数最多,每天最多运营人数为7 920人.20.【解析】(1)函数f(x)在[1,+∞)上是增函数.任取x1,x2∈[1,+∞),且x1<x2,f(x 1)-f(x2)=-=,∵x1-x2<0,(x1+1)(x2+1)>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)在[1,+∞)上是增函数.(2)由(1)知函数f(x)在[1,4]上是增函数,最大值f(4)=,最小值f(1)=.【拓展提升】定义法证明函数单调性时常用变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进行因式分解.(2)通分:当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.(3)配方:当原函数是二次函数时,作差后可考虑配方,便于判断符号.21.【解析】(1)令x=y=0,则f(0)=f(0)+f(0)⇒f(0)=0.(2)令y=-x,则f(0)=f(x)+f(-x)⇒f(-x)=-f(x),所以f(x)为R上的奇函数.(3)令x=y=1,则f(1+1)=f(2)=f(1)+f(1)=2,∴f(2a)>f(a-1)+2⇔f(2a)>f(a-1)+f(2)⇒f(2a)>f(a+1).又因为f(x)是R上的增函数,所以2a>a+1⇒a>1,所以a的取值范围是(1,+∞).22.【解析】(1)由题意设f(x)=a(x-1)2+1,代入(2,3)得a=2,所以f(x)=2(x-1)2+1=2x2-4x+3.(2)对称轴为x=1,所以2a<1<a+1,所以0<a<.(3)f(x)-2x-2m-1=2x2-6x-2m+2,由题意得2x2-6x-2m+2>0对于任意x∈[-1,1]恒成立,所以x2-3x+1>m对于任意x∈[-1,1]恒成立,令g(x)=x2-3x+1,x∈[-1,1],则g(x)min=-1,所以m<-1.关闭Word文档返回原板块。
人教A版数学必修一必修1 质量评估检测.docx

高中数学学习材料马鸣风萧萧*整理制作必修1 质量评估检测时间:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A ={x|x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( ) A .{-2,-1} B .{-2} C .{-1,0,1} D .{0,1}解析:因为集合A ={x |x >-1},所以∁R A ={x |x ≤-1},则(∁R A )∩B ={x |x ≤-1}∩{-2,-1,0,1}={-2,-1}.答案:A2.(2014·天水高一检测)下列四组函数,表示同一函数的是( ) A .f (x )=x 2,g (x )=xB .f (x )=x ,g (x )=x 2xC .f (x )=ln x 2,g (x )=2ln xD .f (x )=log a a x (a >0,a ≠1),g (x )=3x 3解析:A 中,f (x )与g (x )的值域不同;B 中,f (x )与g (x )的定义域不同;C 中,f (x )与g (x )的定义域不同.故D 正确.答案:D3.(2014·厦门高一检测)函数f (x )=x -4lg x -1的定义域是( )A .[4,+∞)B .(10,+∞)C .(4,10)∪(10,+∞)D .[4,10)∪(10,+∞)解析:由题意可知⎩⎨⎧x >0,lg x -1≠0,x -4≥0,解得x ≥4且x ≠10.答案:D4.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A .y =1x B .y =e -xC .y =-x 2+1D .y =lg|x |解析:A 项,y =1x 是奇函数,故不正确;B 项,y =e -x 为非奇非偶函数,故不正确;C ,D 两项中的两个函数都是偶函数,且y =-x 2+1在(0,+∞)上是减函数,y =lg|x |在(0,+∞)上是增函数,故选C.答案:C5.(2014·荆州高一检测)已知f (x )是函数y =log 2x 的反函数,则y =f (1-x )的图象是( )ABCD解析:由题意可知f (x )=2x ,∴f (1-x )=21-x =⎝ ⎛⎭⎪⎫12x -1.显然其过点(0,2),故选C.答案:C6.(2014·临沂高一检测)设函数y =x 2与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:设f (x )=x 2-⎝ ⎛⎭⎪⎫12x -2,则f (0)=-4<0,f (1)=1-2=-1<0,f (2)=4-1=3>0,f (3)=172>0,f (4)=634>0,∴f (x )在(1,2)内有零点,即x 0∈(1,2). 答案:B7.设a =log 123,b =log 1213,c =⎝ ⎛⎭⎪⎫120.3,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c解析:∵a =log 123<0,b =log 1213=log 23>1,c =⎝ ⎛⎭⎪⎫120.3∈(0,1),∴b >c >a .故选B.答案:B8.(2014·潍坊高一检测)已知f (x )为奇函数,且当x <0时,f (x )=x 2+3x +2,则当x ∈[1,3]时,f (x )的最小值是( )A .2 B.14C .-2D .-14解析:当x <0时,f (x )=⎝ ⎛⎭⎪⎫x +322-14,在[-3,-1]内,当x =-3时,f (x )有最大值2.∵f (x )为奇函数,∴其图象关于原点对称,∴f (x )在[1,3]内的最小值为-2.答案:C9.已知x 2+y 2=1,x >0,y >0,且log a (1+x )=m ,log a 11-x=n ,则log a y 等于( )A .m +nB .m -n C.12(m +n ) D.12(m -n )解析:由m -n =log a (1+x )-log a 11-x=log a (1-x 2)=log a y 2=2log a y ,∴log a y=12(m -n ),故选D.答案:D10.若实数x ,y 满足|x |-ln 1y =0,则y 关于x 的函数的图象大致是( )AB CD解析:把|x |-ln 1y =0变形得y =⎝ ⎛⎭⎪⎫1e |x |,即y =⎩⎨⎧e -x,x ≥0,e x ,x <0,故选B.答案:B11.已知f (x )是奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则x ·f (x )<0的解集是( )A .{x |x <-3或0<x <3}B .{x |-3<x <0或x >3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}解析:由f (x )是奇函数知, f (3)=-f (-3)=0,∵f (x )在(0,+∞)内单调增, ∴f (x )在(-∞,0)内也单调增, 其大致图象如右图.由图象知,x ·f (x )<0的解集为(-3,0)∪(0,3),故选D. 答案:D12.(2014·福州高一检测)衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50解析:由已知得49a =a ·e -50k ,∴e -k =⎝ ⎛⎭⎪⎫49150设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -kt 1,∴827=(e -k )t 1=⎝ ⎛⎭⎪⎫49t 150,∴t 150=32,t 1=75.答案:C二、填空题:本大题共4小题,每小题5分,共20分.13.若函数f (x )=⎩⎨⎧log 3x (x >0),16x (x ≤0),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=____.解析:∵f ⎝ ⎛⎭⎪⎫13=log 313=-1,f (-1)=116,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=116. 答案:11614.若幂函数f (x )的图象经过点(3,9),那么函数f (x )的单调增区间是__________.解析:设f (x )=x α,由题意可知f (3)=9,即3α=9,α=2,∴f (x )=x 2,∴f (x )的单调增区间为[0,+∞).答案:[0,+∞)15.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为__________(m).解析:设矩形花园的宽为y m ,则x 40=40-y40,即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20 m 时,面积最大.答案:20 16.如果函数f (x )对其定义域内的任意两个实数x 1,x 2都满足不等式f ⎝⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2,则称函数f (x )在定义域上具有性质M .给出下列函数:①y =x ;②y =x 2;③y =2x ;④y =log 2x .其中具有性质M 的是__________(填上所有正确答案的序号).解析:根据函数图象的上凸与下凹判断.函数y =x 与函数y =log 2x 的图象是上凸的,故f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2;函数y =x 2与函数y =2x的图象是下凹的,故f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.答案:②③三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知全集U =R .集合A ={x |-1≤x <3},B ={x |x -k ≤0}. (1)若k =1,求A ∩(∁U B );(2)若A ∩B ≠∅,求k 的取值范围.解析:(1)当k =1时,B ={x |x -1≤0}={x |x ≤1}. ∴∁U B ={x |x >1},∴A ∩(∁U B )={x |1<x <3}. (5分)(2)∵A ={x |-1≤x <3),B ={x |x ≤k },A ∩B ≠∅, ∴k ≥-1.(10分)18.(本小题满分12分)已知函数f (x )=a x (a >0且a ≠1). (1)若f (x 0)=2,求f (3x 0)的值;(2)若f (x 2-3x +1)≤f (x 2+2x -4),求x 的取值范围. 解析:(1)f (3x 0)=a 3x 0=()ax 03=23=8.(4分) (2)当0<a <1时,f (x )=a x 在R 上单调递减, ∴x 2-3x +1≥x 2+2x -4,5≥5x ,解得x ≤1; 当a >1时,f (x )=a x 在R 上单调递增. ∴x 2-3x +1≤x 2+2x -4,5≤5x ,解得x ≥1. ∴当0<a <1时,x 的取值范围是(-∞,1];当a >1,x 的取值范围是[1,+∞).(12分) 19.(本小题满分12分)已知定义R 上的函数f (x )=2x +a2x (a 为常数). (1)若f (x )为偶函数,求a 的值;(2)当f (x )满足(1)的条件的时,用单调性的定义判断函数在[0,+∞)上的单调性,并判断f (x )在(-∞,0]上的单调性(不必证明).解:(1)由题意,得f (-x )=f (x ),即2-x +a 2-x =2x +a2x ,所以(a -1)⎝ ⎛⎭⎪⎫2x -12x =0,又对任意的x ∈R 都成立,所以a =1.(4分)(2)由(1)可得f (x )=2x+12x ,在[0,+∞)上任取x 1,x 2,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2x 1+12x 1-⎝ ⎛⎭⎪⎫2x 2+12x 2=(2x 1-2x 2)·2x 1+x 2-12x 1+x 2.因为0≤x 1<x 2,所以2x 1+x 2>1,2x 1-2x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以f (x )在[0,+∞)上单调递增.因为偶函数在对称的区间上单调性相反,所以f (x )在(-∞,0]上单调递减.(12分)20.(本小题满分12分)已知函数f (x )=2x +2ax +b ,且f (1)=52、f (2)=174. (1)求a ,b 的值;(2)判断f (x )的奇偶性并证明;(3)判断并证明函数f (x )在[0,+∞)上的单调性.解析:(1)⎩⎪⎨⎪⎧ f (1)=52,f (2)=174⇒⎩⎪⎨⎪⎧2+2a +b =52,22+22a +b=174⇒⎩⎨⎧a =-1,b =0.(4分) (2)f (x )为偶函数,(5分) 证明如下:由(1)可知f (x )=2x +2-x ,定义域为R ,关于原点对称, ∵f (-x )=2-x +2x =f (x ), ∴f (x )为偶函数.(8分)(3)函数f (x )在[0,+∞)上是增函数.(9分) 证明如下:任取x 1<x 2,且x 1,x 2∈[0,+∞), f (x 1)-f (x 2)=()2x 1+2-x 1-()2x 2+2-x 2=()2x 1-2x 2·⎝ ⎛⎭⎪⎫12x 1-12x 2 =()2x 1-2x 2·2x 1+x 2-12x 1+x 2, ∵x 1<x 2且x 1,x 2∈[0,+∞),∴2x 1-2x 2<0,2x 1+x 2>1, ∴f (x 1)-f (x 2)<0,∴f (x )在[0,+∞)为增函数.(12分)21.(2014·台州高一检测,12分)函数f (x )=2x -ax 的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)若函数y =f (x )在定义域上是减函数,求a 的取值范围.解析:(1)此时,f (x )=2x -1x 单调递增,显然函数y =f (x )的值域为(-∞,1].(4分)(2)若函数y =f (x )在定义域上是减函数,则任取x 1,x 2∈(0,1]且x 1<x 2都有f (x 1)>f (x 2)成立,即(x 1-x 2)·⎝ ⎛⎭⎪⎫2+a x 1x 2>0,只要a <-2x 1x 2即可,由于x 1x 2∈(0,1]且x 1<x 2,故-2x 1x 2∈(-2,0),所以a ≤-2,故a 的取值范围是(-∞,-2].(12分)22.(2014·桂林高一检测,12分)已知f (x )是定义在R 上的偶函数,且x ≤0时,f (x )=log 12(-x +1).(1)求f (0),f (1);(2)求函数f (x )的解析式;(3)若f (a -1)<-1,求实数a 的取值范围.解析:(1)因为当x ≤0时,f (x )=log 12(-x +1),所以f (0)=0.(2分) 又函数f (x )是定义在R 上的偶函数,所以f (1)=f (-1)=log 12[-(-1)+1]=log 122=-1,即f (1)=-1.(4分) (2)令x >0,则-x <0,从而f (-x )=log 12(x +1)=f (x ),∴x >0时,f (x )=log 12(x +1). ∴函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12(x +1),x >0,log 12(-x +1),x ≤0.(8分)(3)设x 1,x 2是任意两个值,且x 1<x 2≤0, 则-x 1>-x 2≥0, ∴1-x 1>1-x 2.∵f (x 2)-f (x 1)=log 12(-x 2+1)-log 12(-x 1+1)=log 121-x 21-x 1>log 121=0,∴f (x 2)>f (x 1),∴f (x )=log 12(-x +1)在(-∞,0]上为增函数.(10分)又f(x)是定义在R上的偶函数,∴f(x)在[0,+∞)上为减函数,由f(a-1)<-1,f(1)=-1,得f(|a-1|)<f(1).∴|a-1|>1,a<0或a>2.故a的取值范围为(-∞,0)∪(2,+∞).(12分)。
高中数学(人教A版)必修一模块质量评估 Word版含解析

温馨提示:
此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭文档返回原板块。
模块质量评估
(第一至第三章)
(分钟分)
一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的)
.(·聊城高一检测)设集合{<}{>},则∩( )
.∅.{<<}
.{<<} .{<<}
【解析】选.集合{>},所以∩{<<}.
.(·定州高一检测)已知函数()
则( )
【解析】选().
【补偿训练】(·陕西高考)设()则(()) ( )
...
【解题指南】直接利用分段函数,由里及外逐步求解即可.
【解析】选()
则(())().
.函数的图象大致是( )
【解析】选.函数定义域为≠,因为()(),所以函数为奇函数,当
→∞时函数值为正数,所以正确.
.若奇函数()在[]上为增函数,且有最小值,则它在[]上( )
.是减函数,有最小值.是增函数,有最小值
.是减函数,有最大值.是增函数,有最大值
【解题指南】利用奇函数在其关于原点对称的区间上单调性相同,然后借助函数图象即可找出正确答案.
【解析】选.奇函数在其对称区间上有相同的单调性,故也是增函数且有最大值.
.(·佳木斯高一检测)对于幂函数(),若<<,则。
高中数学模块质量评估新人教A版必修1(2021年整理)

2018-2019学年高中数学模块质量评估新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学模块质量评估新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学模块质量评估新人教A版必修1的全部内容。
模块质量评估本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6,7,8,9},M={1,3,5,6},N={1,2,4,7,9},则M ∪(∁U N)等于()A.{3,5,8} B.{1,3,5,6,8}C.{1,3,5,8} D.{1,5,6,8}解析:∵∁U N={3,5,6,8},∴M∪(∁U N)={1,3,5,6,8}.故选B。
答案:B2.如图,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(∁I A∩B)∩C B.(∁I B∪A)∩CC.(A∩B)∩∁I C D.(A∩∁I B)∩C解析:阴影部分位于集合A与集合C的内部,且位于集合B的外部,因此可表示为(A∩∁I B)∩C.答案:D3.已知函数f(x)=7+a x-1的图象恒过点P,则P点的坐标是( )A.(1,8) B.(1,7)C.(0,8) D.(8,0)解析:过定点则与a的取值没有关系,所以令x=1,此时f(1)=8。
所以P点的坐标是(1,8).故选A。
答案:A4.下列各组函数中,表示同一函数的是()A.y=x2和y=(x)2B.y=lg(x2-1)和y=lg(x+1)+lg(x-1)C.y=log a x2和y=2log a xD.y=x和y=log a a x解析:要表示同一函数必须定义域、对应法则一致,A、B、C中的定义域不同,故选D。
2019年人教A版必修一高中数学单元质量评估(一)及答案

单元质量评估(一)(第一章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={x|-1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}【解析】选C.因为A={0,1,2},B={x|-1<x<2},所以A∩B={0,1}.2.(2015·天津高一检测)设集合M={2,0,x},集合N={0,1},若N⊆M,则x的值为( ) A.2 B.0C.1D.不确定【解析】选C.因为N⊆M,所以集合N中元素均在集合M中,所以x=1.3.在下列由M到N的对应中构成映射的是( )【解析】选C.选项A中,集合M中的数3在集合N中没有数与之对应,不满足映射的定义;选项B中,集合M中的数3在集合N中有两个数a,b与之对应;选项D中,集合M中的数a在集合N中有两个数1,3与之对应,不满足映射的定义.4.已知函数f(x)=ax3+bx(a≠0),满足f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【解析】选 C.方法一:f(-3)=a(-3)3+b(-3)=-33a-3b=-(33a+3b)=3,所以33a+3b=-3.f(3)=33a+3b=-3.方法二:显然函数f(x)=ax3+bx为奇函数,故f(3)=-f(-3)=-3.【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( ) A.5 B.10C.8D.不确定【解析】选B.因为f(x)是偶函数,所以f(-4)=f(4)=5,所以f(4)+f(-4)=10. 5.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大致图象是( )【解析】选A.选项A图象为减函数,k<0,且在y轴上的截距为正,故b>0,满足条件,而B,C,D均不满足条件.6.若f(x)=则f的值为( )A.-B.C.D.【解析】选C.因为<1,所以应代入f(x)=1-x2,即f=1-=.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+1【解析】选B.由f(g(x))=f(2x+1)=6x+3=3(2x+1),知f(x)=3x.8.(2015·西城区高一检测)下列四个图形中,不是以x为自变量的函数的图象是( )【解析】选 C.由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A,B,D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.9.已知集合A={x|x2+x+1=0},若A∩R=∅,则实数m的取值范围是( )A.m<4B.m>4C.0<m<4D.0≤m<4【解析】选D.因为A∩R=∅,所以A=∅,即方程x2+x+1=0无解,所以Δ=()2-4<0,所以m<4.又因为m≥0,所以0≤m<4.10.(2015·赣州高一检测)函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( ) A.(-∞,0]和(-∞,1] B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)【解析】选 C.函数f(x)=|x|的单调递增区间为[0,+∞),函数g(x)=x(2-x)=-(x-1)2+1的单调递增区间为(-∞,1].11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个【解析】选B.若a,b同奇偶,有12=1+11=2+10=3+9=4+8=5+7=6+6,前面的每种可以交换位置,最后一种只有1个点(6,6),这时有2×5+1=11;若a,b一奇一偶,有12=1×12=3×4,每种可以交换位置,这时有2×2=4,所以共有11+4=15个.12.(2015·西安高一检测)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)【解析】选 D.由f(x)为奇函数,可知=<0.而f(1)=0,则f(-1)=-f(1)=0.又f(x)在(0,+∞)上为增函数,所以当0<x<1时,f(x)<0=f(1),此时<0;又因为f(x)为奇函数,所以f(x)在(-∞,0)上为增函数,所以当-1<x<0时,f(x)>0=f(-1),此时<0,即所求x的取值范围为(-1,0)∪(0,1).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·开封高一检测)已知集合A={x|1≤x<2},B={x|x<a},若A∩B=A,则实数a的取值范围是.【解析】因为A∩B=A,所以A B,所以a≥2.答案:a≥214.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.【解析】若集合{x|ax=1}是任何集合的子集,则它是空集,即方程ax=1无解,所以a=0.答案:015.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-⎧⎨⎩≤≤≤≤【解析】当x∈[0,1]时,-x∈[-1,0],f(-x)=-x+1,又因为f(x)为偶函数,所以f(x)=f(-x)=1-x.答案:1-x16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).【解析】若a+b≤0,则a≤-b,b≤-a,又因为f(x)为R上递减的奇函数,所以f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+ f(-b),④正确;又因为f(-b)=-f(b),所以f(b)f(-b)=-f(b)f(b)≤0,③正确.其余错误.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.(1)分别求A∩B,(RðB)∪A.(2)已知C={x|a<x<a+1},若C⊆B,求实数a取值构成的集合.【解析】(1)A∩B={x|3≤x<6}.因为ðB={x|x≤2或x≥9},R所以(ðB)∪A={x|x≤2或3≤x<6或x≥9}.R(2)因为C⊆B,如图所示:所以解得2≤a≤8,所以所求集合为{a|2≤a≤8}.18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.【解析】(1)因为f(x)=,所以f(3)==-,所以点(3,14)不在f(x)的图象上.(2)f(4)==-3.(3)令=2,即x+2=2x-12,解得x=14.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b 的值.【解析】因为函数f(x)的对称轴方程为x=-2,所以函数f(x)在定义域[-2,b](b>-2)上单调递增,所以函数f(x)的最小值为f(-2)=a-4=-2,所以a=2.函数f(x)的最大值为f(b)=b2+4b+2=b.所以b2+3b+2=0,解得b=-1或b=-2(舍去),所以b=-1.20.(12分)(2015·烟台高一检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并用定义证明.【解析】(1)由f(1)=2,f(2)=-1,得a+b=2,2a+b=-1,即a=-3,b=5,故f(x)=-3x+5,f(m+1)=-3(m+1)+5=-3m+2.(2)函数f(x)在R上单调递减,证明如下:任取x1<x2(x1,x2∈R),则f(x2)-f(x1)=(-3x2+5)-(-3x1+5)=3x1-3x2=3(x1-x2),因为x1<x2,所以f(x2)-f(x1)<0,即f(x2)<f(x1),所以函数f(x)在R上单调递减.【拓展延伸】定义法证明函数单调性时常用变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进行因式分解.(2)通分:当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.(3)配方:当原函数是二次函数时,作差后可考虑配方,便于判断符号.21.(12分)(2015·葫芦岛高一检测)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.【解析】(1)取x=y=0,则f(0+0)=2f(0),所以f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),所以f(-x)=-f(x)对任意x∈R恒成立,所以f(x)为奇函数.(2)任取x1,x2∈(-∞,+∞),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,所以f(x2)<-f(-x1),又f(x)为奇函数,所以f(x1)>f(x2),所以f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,所以对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),因为f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2×3=-6,所以f(-3)=-f(3)=6,所以f(x)在[-3,3]上的值域为[-6,6].22.(12分)定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.【解题指南】(1)结合已知等式利用赋值法求解.(2)利用赋值法并结合奇偶性定义判断.(3)结合(2)的结论及已知条件得f=1,再利用奇偶性和单调性脱去符号“f”,转化为一次不等式求解.【解析】(1)令x=y=0,得2f(0)=f(0),所以f(0)=0.(2)令y=-x,得f(x)+f(-x)=f(0)=0,即f(x)=-f(-x),所以f(x)为奇函数.(3)因为f=-1,f(x)为奇函数,所以f=1,所以不等式f(2x-1)<1等价于f(2x-1)<f,又因为f(x)在(-1,1)上是减函数,所以2x-1>-,-1<2x-1<1,解得<x<1.所以不等式的解集为.【误区警示】解答本题(3)时易忽视函数定义域而得出解集为的错误.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】f(a)= =3.
则a-1=9,a=10.
答案:10
14.(2016·淮安高一检测)集合A={1,2,4,6,7},B={3,4,5,7},则A∩B=.
【解析】因为集合A={1,2,4,6,7},B={3,4,5,7},
所以集合A∩B={4,7}.
A.c≤3B.3<c≤6
C.6<c≤9D.c>9
【解题指南】根据题意先由等式关系求a,b的值,然后再由不等关系求c的范围.
【解析】选C.由f(-1)=f(-2)=f(-3)得,
解得
所以f(x)=x3+6x2+11x+c,
由0<f(-1)≤3,得0<-1+6-11+c≤3,
解得6<c≤9.
5.(2016·浏阳高一检测)设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是图中的()
【解析】选A.因为f(x+2)的图象关于x=0对称,
所以f(x)的图象关于x=2对称,
又f(x)在区间(-∞,2)上是增函数,
则其在(2,+∞)上为减函数,
作出其图象大致形状如图所示.
由图象知,f(-1)<f(3).
【拓展延伸】比较函数值大小常用的方法
(1)利用函数的单调性,但需将待比较函数值调节到同一个单调区间上.
(2)利用数形结合法比较.
(3)对于选择、填空题可用排除法、特值法等比较.
12.(2016·石家庄高一检测)已知f(x)= 是定义在R上的减函数,则a的取值范围是()
A. B.
C. D.
【解析】选A.因为函数是定义在R上的减函数,所以需满足: ⇒ ≤a< .
二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)
C.f(-3)<f(5)D.f(0)>f(1)
【解析】选D.因为函数f(x)在[-5,5]上是偶函数,
所以f(-4)<f(-2)⇔f(4)<f(2).
又f(x)在[0,5]上是单调函数.
所以f(x)在[0,5]上递减,从而f(0)>f(1).
9.(2016·德阳高一检测)函数y= (x>0)的值域为()
温馨提示调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
单元质量评估(一)
(第一章)
(90分钟120分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)
1.(2015·北京高考)设集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()
答案:{4,7}
15.若y=f(x)在(-∞,0)∪(0,+∞)上为奇函数,且在(0,+∞)上为增函数,f(-2)=0,则不等式x·f(x)<0的解集为.
【解题指南】根据题目中的条件画出函数的大致图象,然后结合图象求解不等式.
【解析】根据题意画出f(x)大致图象:
由图象可知-2<x<0或0<x<2时,x·f(x)<0.
A.(-1,+∞)B.(-1,2)
C.{y|y≠2}D.{y|y>2}
【解析】选B.因为y= = =2- ,
因为x>0,所以x+1>1,
所以 ∈(0,3),
所以函数值域为(-1,2).
10.(2016·平湖高一检测)已知函数y=f(x)和函数y=g(x)的图象如图所示:则函数y=f(x)g(x)的图象可能是()
【解析】选B.对A,函数定义域不是M;对C,此图象不是函数图象;对D,函数值域不是N;只有B选项符合要求.
6.(2016·天水高一检测)偶函数y=f(x)在区间[0,4]上单调递减,则有()
A.f(-1)>f >f(-π)
B.f >f(-1)>f(-π)
C.f(-π)>f(-1)>f
D.f(-1)>f(-π)>f
【解析】选A.因为f(x)是偶函数,
则f(-1)=f(1),f(-π)=f(π),
又y=f(x)在区间[0,4]上单调递减,
所以f(1)>f >f(π),
从而f(-1)>f >f(-π).
7.(2016·德阳高一检测)已知f(x)= 则f(3)为()
A.2B.3C.4D.5
【解析】选A.由函数解析式可得f =f =f =7-5=2.
A.y=- B.y=|x+1|-1
C.y=x|x|D.y=x2
【解析】选C.A函数为奇函数;B.非奇非偶函数;C.y=x|x|= 根据函数的性质易知其满足条件;D.显然函数为偶函数.
4.(2014·浙江高考)已知函数f(x)=x3+ax2+bx+c且0<f(-1)=f(-2)=f(-3)≤3,则()
【解析】选B.当x<0时f >0,g <0,
所以y=f g <0,
当x>0时f >0,g >0,
所以y=f g >0,因此B正确.
11.定义在R上的函数f(x)在区间(-∞,2)上是增函数,且f(x+2)的图象关于x=0对称,则()
A.f(-1)<f(3)B.f(0)>f(3)
C.f(-1)=f(3)D.f(0)=f(3)
A.{x|-3<x<2}B.{x|-5<x<2}
C.{x|-3<x<3}D.{x|-5<x<3}
【解析】选A.如图,
得A∩B={x|-3<x<2}.
【补偿训练】(2016·唐山高一检测)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=()
A.{1,2,3}B.{1,2,4}
【补偿训练】设函数f(x)= 则f(f(3))=()
A. B.3C. D.
【解析】选D.f(3)= ,f(f(3))= +1= .
8.已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-4)<f(-2),则下列不等式一定成立的是()
A.f(-1)<f(3)B.f(2)<f(3)
C.{2,3,4}D.{1,2,3,4}
【解析】选D.A∩B={1,2},(A∩B)∪C={1,2,3,4}.
2.设a,b∈R,集合{a,1}={0,a+b},则b-a=()
A.1B.-1C.2D.-2
【解析】选A.由题意得
所以b-a=1.
3.(2016·重庆高一检测)下列函数中,既是奇函数又是增函数的是()
答案:(-2,0)∪(0,2)
16.(2016·石家庄高一检测)函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的递减区间是.