从函数的观点看方程及不等式

合集下载

3.3从函数的观点看一元二次方程和一元二次不等式 2023-2024学年高中数学苏教版必修第一册

3.3从函数的观点看一元二次方程和一元二次不等式  2023-2024学年高中数学苏教版必修第一册
2
m+n
mn
=
1
2
1
=.
-1
2
1
1
m+n=2,mn=-1.所以m
1
+n
=
探究一
求二次函数的零点
例1已知函数y=x2-x-2a.
(1)若a=1,求函数f(x)的零点;
(2)若y有零点,求实数a的取值范围.
解 (1)当a=1时,y=x2-x-2.
令y=x2-x-2=0,得x=-1或x=2.
即函数y的零点为-1和2.
(3)求实根.求出相应的一元二次方程的根或根据判别式说明方程无实根.
(4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图.
(5)写解集.根据图象写出不等式的解集.
变式训练1解下列不等式:
(1)2x2-3x-2>0;
(2)x2-4x+4>0;
(3)-x2+2x-3<0;
(4)-3x2+5x-2>0.
车距为1.44个车身长,那么在交通繁忙时,应规定最高车
速为多少,才使此处的车流量最大?
知识点拨
从函数观点看一元二次不等式
1.一元二次不等式的概念
只含有一个未知数,并且未知数的最高次数是2的整式不等式叫作一元二
次不等式.
2.三个“二次”的关系
判别式Δ=b2-4ac Δ>0
Δ=0
方程ax2+bx+c=0 有两个相异的实数 有两个相等的实数
提示 不存在.理由如下,结合二次函数图象可知,若一元二次不等式ax2+x1>0的解集为R,则 > 0,
1 + 4 < 0,

基于课程标准的单元教学设计——以《从函数观点看一元二次方程和一元二次不等式》为例

基于课程标准的单元教学设计——以《从函数观点看一元二次方程和一元二次不等式》为例

基于课程标准的单元教学设计 ———以《从函数观点看一元二次方程和一元二次不等式》为例吕建林(江苏省南京市第一中学,210019)基金项目:南京市教育科学“十三五”规划2020年度立项课题“指向数学抽象的高中数学单元教学设计实证研究”(编号L/2020/471)研究成果. 单元是基于一定目标与主题所构成的教材与经验的模块、单位,单元设计可以认为是对一个学习阶段的教与学活动的整体规划,主要包含学习主题、学习目标、学习内容、学习过程、评价任务、学后反思等要素.单元设计一般遵循“分析(Analysis)、设计(Design)、开发(Development)、实施(Implementa tion)、评价(Evaluation)”的程序.《从函数观点看一元二次方程和一元二次不等式》是高中数学必修课程预备知识板块中的重要内容.本单元是在学生学习了一元一次方程、一元一次不等式、一次函数、二次函数的基础上,学习从函数的观点看一元二次方程和一元二次不等式,体会函数、方程、不等式的统一性,为今后应用函数的方法解决有关问题奠定知识技能和学习方法的基础.1 学习目标的制定和学习内容的确立制定学习目标,可使学习者明确学习要求,了解学习路径和方法.本单元学习目标(见表1)是从“三个一次”入手,感受用函数观点看待问题的方法;结合一元二次不等式的求解探索,体会“三个二次”的关系,学会用函数观点认识和解决一元二次方程和不等式问题.单元学习目标采用三维叙写的书写方式,呈现“知识与技能→过程与方法→习惯与素养”的发展路径.为落实学习目标,需要选定与之相匹配的学习内容.本单元学习内容(见图1)的选择与划分体现“观察—计算—研究”与“图像—代数—数形结合”的双向沟通,便于学生深度学习,自主建构.横向:呈现一次到二次、具体到一般的双重递进,便于学生类比迁移、拓展延伸.纵向:挖掘函数、方程、不等式三者的数形关联,便于学生数形结合,聚焦函数观点.表1 本单元学习目标课标要求学习目标用函数理解方程和不等式是数学的基本思想方法.本单元的学习,可以帮助学生用二次函数认识一元二次方程和一元二次不等式.通过梳理初中数学的相关内容,理解函数、方程和不等式之间的联系,体会数学的整体性. 1、通过求解实际问题,知道函数零点即对应方程的根,会结合一元一次函数图像分析得出一元一次不等式的解集,感受用函数观点看待问题的方法.2、会从实际情境中抽象出一元二次不等式模型,能运用函数观点,结合图像发现一元二次函数的零点与一元二次方程根的关系,会通过代数方法求具体的一元二次不等式的解集,提高数学运算能力.3、会用一元二次函数图像求一元二次不等式的解集,体会数学的整体性,养成借助直观理解概念、进行逻辑推理的思维习惯.2 任务情境的设计和学习路径的规划学科素养往往体现在真实的问题解决之中.要让学生置身于真实、有意义的任务情境,在“真做事”的过程中用数学的眼光观察世界,体会求解一元二次不等式的真实需求,感受探求一般的一元二次不等式解法的必要性;用数学的思维思考世界,主动联系已有的“三个一次”的经验,将之运用于“三个二次”相关任务,体会函数的思想方法.生活中与一元二次不等式有关的问题很多,例如:为达成单元目标,笔者创设了设计房屋雨水槽的真实情境,从具体规格要求出发,衍生出三项任务,引发学生思考和探究.详见表2:表2 本单元任务情境和学习路径任务任务情境探索路径核心素养任务一设计符合底面积要求的、截面为矩形的雨水槽现实问题抽象为熟悉的数学问题雨水槽底面积要求→解一元一次不等式数学建模、数学抽象任务二对比截面分别为矩形和等腰梯形的雨水槽设计方案,并做出选择具体问题转化为未知的数学问题雨水槽造型选择→解具体的一元二次不等式数学抽象、数学运算、直观想象任务三探寻一般的一元二次不等式的解集特殊问题拓展为一般问题解具体的一元二次不等式→解一般的一元二次不等式数学抽象、直观想象、数学运算 学习任务可通过“情境—问题—问题解决—总结”的程序来落实.任务达成基于富有层次的活动驱动,应围绕任务设计独立探究或小组合作活动,并酌情穿插问答以支持学生学习.以任务二中的探究活动为例:【活动】雨季将至,为了提前做好房屋排水工作,某小区住户准备更换自家房屋的雨水槽.该住户测量了自家房檐的长度,购买了一块长380厘米,宽30厘米的长方形铝板来自制雨水槽.为了与屋檐下预留的雨水槽位置相匹配,雨水槽底面的面积不得超过5700平方厘米.经市场调查,雨水槽横截面的造型一般有两种.方案一:矩形;方案二:底角为53°的倒置等腰梯形,上不封顶.当地气象台预计,今年雨季的降雨量大约会比往年增加5%.为保证排水量,物业要求雨水槽的横截面积不得小于100平方厘米.住户根据屋檐特点,希望雨水槽深度尽可能小,请帮他选择一个设计方案.(铝板厚度忽略不计)活动过程中,教师可提出以下问题,为学生提供学习支架:【问题1】针对“雨水槽的横截面积不得小于100平方厘米”的要求,在方案一中,你能列出对应的关系式并进行求解吗?方案二呢?【问题2】借鉴任务一中对一元一次不等式求解的研究过程和结论,你能进一步求解问题1吗?学生可将问题1中的一元二次不等式转化成两个一次不等式联立的不等式组解决.问题2则启发学生联系“三个一次”的研究经验,用函数观点分析求解,完成探究任务.3 评价任务的设计和素养水平的考察每项学习任务都可以成为评价的工具.在一段学习活动结束时,也应设计一些练习检测,进行及时的、有针对性的测评,便于学生了解自己的学习状况,便于教师了解学生学会与否,为开展下一步的教学活动提供证据,从而落实“学—教—评一致”的设计要求.为检测学习目标2的达成情况,笔者选择了一个判定交通事故责任人的问题,考察学生能否从实际情境中抽象出一元二次不等式模型,会不会求解一元二次不等式,分析不等式解集并说明结论,检测相关素养的发展水平.详见表3:表3 问题及核心素养考查说明问题及指向解答与说明核心素养水平 汽车刹车距离与其行驶速度有关.在一条限速30km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不妙,同时刹车,但还是发生了碰擦.事发后交警现场测得甲车的刹车距离略超过8m,乙车的刹车距离略超过6m,又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间有如下关系:S甲=0.01x2+0.2x,S乙=0.005x2+0.05x.问:应负超速行驶主要责任的是谁?(检测表1中学习目标2) 由题意,对于甲车,有0.01x2+0.2x>8,即x2+20x-800>0,解得x>20或x<-40(不符合实际意义,舍去),这表明甲车的车速超过20km/h.但根据题意刹车距离略超过8m,由此估计甲车车速不会超过限速30km/h.对于乙车,有0.005x2+0.05x>6,即x2+10x-1200>0,解得x>30,或x<-40(不符合实际意义,舍去),这表明乙车的车速超过30km/h,即超过规定限速,乙应负主要责任. 1.数学抽象(水平一):能从熟悉的汽车刹车情境中抽象出求解一元二次不等式问题;2.数学运算(水平一):会解简单的一元二次不等式,能用解集情况说明是否超速;3.逻辑推理(水平一):明确“主要责任”的问题内涵,有条理地表达观点.4 基于课程标准的单元教学设计反思基于新课程标准的教学有三大基本特征:素养为本的单元设计、真实情境的深度学习、问题解决的进阶测试.4.1 真实的任务情境有利于素养目标达成课程标准凝练了学科核心素养,明确了学生学习该学科课程后应达成的正确价值观念、必备品格和关键能力.崔允誋教授指出,关键能力即“能做事”,必备品格即“习惯做正确的事”,价值观念即“坚持把事做正确”.从具体的“做事”,能看出一个人的素养.改变高分低能、只会解题的现状,从让学生在真实情境中面对问题、思考和解决问题开始.(下转第51页)4 拉近现实联系,构建情趣飞扬的统计课堂随着大数据时代的来临和社会信息化水平的不断提高,无论是在学习、工作还是在生活中,人们都越来越离不开数据信息.统计必将在未来生活中发挥更多的作用,掌握统计知识、具备数据分析能力已成为每一位公民必备的基本素养.这样的发展趋势对教育教学提出了全新的挑战.而我们每一位小学数学教师,必然要直面统计教学的进一步发展,因为“生活已经先于数学课程,将统计推到了学生的面前”.因此,拉近统计与现实生活的联系,进一步构建情趣飞扬的统计课堂,培养学生获得数据、解释数据的能力,已成了必然的教学趋势.在寻找“生活中的平均数”学习环节,笔者借助互联网工具,收集了2019年两会中的统计数据,制作了简单的小视频《2018全民对账单》,通过呈现“网购花费”“收寄快递件数”“流量数”“收入结余金额”“国内旅游次数”“图书拥有量”“用水量”等与学生紧密联系的生活中的平均数,呈现了利用“互联网+”获得大数据的方式.在轻松愉悦的背景音乐中,孩子们不由自主地将各类“大数据”与自己本人以及家庭的生活数据相联系,他们的惊呼此起彼伏———“我的国内旅游次数超过了平均数量”“我的图书拥有量还不够,今年要加油多阅读”“我家的用水量比较少,我们是节约家庭”“我妈妈的网购花费远远超出了,真是太浪费了”……就是在这样尝试比较、解释数据的过程中,孩子们感受到了统计的作用,也在不知不觉中培养了生活的情趣.在后续学习环节中,笔者进一步引入“人均淡水资源”“中国儿童身高均值”等互联网数据,让学生在具体的情境中,继续通过对大数据的分析,进一步感受平均数在生活中的作用,思索平均数的统计意义与价值,体验用数学解决实际问题的学习乐趣和健康生活的积极情趣,真正创设了关注人的发展的生本课堂.总之,在“统计与概率”领域教学中,我们要立足发展学生的数据分析素养这一出发点,让学生经历统计的全过程,创设有效的统计情境,凸显统计教学的概念特点,感受统计与现实生活的联系,培养学生的生长兴趣、生性智趣、生命理趣和生活情趣,构建和谐宽松、智慧理性的“四趣”统计课堂檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸檸.(上接第37页) 从单元学习目标的确立到学习过程设计,再到检测与评价,都要体现“做事”的要求.价值观念、必备品格不是标签,也不能成为标签.让学生经历真实的“做事”,让素养在“做事”中发展、在“做事”时显现,素养目标就不会成为只说不做的标签.4.2 教学设计要努力创设真实任务情境数学来源于生产生活实践,良好的任务情境有利于让学生深入与自身经验相关的问题探究过程.本单元将“雨水槽设计”情境融入单元学习过程,学生从中发现数学问题,运用数学知识尝试解决,并产生用函数观点研究一元二次不等式解集的兴趣,获得用数形结合方法解一元二次不等式的能力,感受函数、方程、不等式的整体性,发展数学抽象、直观想象、数学运算等素养.教师应主动拓宽自身知识疆域,积极推进研学、社会实践活动,努力创设“真实的任务”,让学生有机会真正“做事”,帮助学生实现自主建构和社会建构.4.3 核心素养水平要在真实任务中评价杨向东教授指出,要站在素养发展的角度,而不仅仅是知识的角度,进行测评设计.练习与测评要指向本单元的核心知识、方法、能力与素养,力求检测学生相关核心素养的发展水平.每个学习目标都应有相应的评价任务,每个练习与测评都必须指向有关的学习目标,一个目标也可以通过多个问题来检测.真实情境中解决问题的能力就是素养.除了传统的纸笔测试题以外,应设计基于真实情境的评价任务,记录过程数据、开展表现评价,更全面地评估学生的发展状况.学习过程中也应适时嵌入评价任务,便于及时了解学习效果,及时发现并弥补缺漏,保障后续学习的顺利开展.参考文献:[1]钟启泉.学会“单元设计”[N].中国教育报,2015-06-12(09):1.[2]加涅等.王小明等,译.教学设计原理[M].5版.上海:华东师范大学出版社,2007:21-35.[3]中华人民共和国教育部.普遍高中数学课程标准[S].北京:人民教育出版社,2018.。

第4节 从函数的观点看一元二次方程和一元二次不等式

第4节 从函数的观点看一元二次方程和一元二次不等式

第4节从函数的观点看一元二次方程和一元二次不等式知识梳理1.一元二次不等式只含有一个未知数,并且未知数的最高次数为2的整式不等式叫作一元二次不等式.2.三个“二次”间的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x>x2或x<x1}⎩⎨⎧⎭⎬⎫x|x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅3.(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解集不等式解集a<b a=b a>b(x-a)·(x-b)>0{x|x<a或x>b} {x|x≠a}{x|x<b或x>a} (x-a)·(x-b)<0{x|a<x<b}∅{x|b<x<a} 4.分式不等式与整式不等式(1)f (x )g (x )>0(<0)⇔f (x )·g (x )>0(<0).(2)f (x )g (x )≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0. [微点提醒]1.绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞);|x |<a (a >0)的解集为(-a ,a ).记忆口诀:大于号取两边,小于号取中间.2.解不等式ax 2+bx +c >0(<0)时不要忘记当a =0时的情形.3.不等式ax 2+bx +c >0(<0)恒成立的条件要结合其对应的函数图象决定. (1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎨⎧a =b =0,c >0或⎩⎨⎧a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎨⎧a =b =0,c <0或⎩⎨⎧a <0,Δ<0.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( ) (3)不等式x 2≤a 的解集为[-a ,a ].( )(4)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R .( )解析 (3)错误.对于不等式x 2≤a ,当a >0时,其解集为[-a ,a ];当a =0时,其解集为{0},当a <0时,其解集为∅.(4)若方程ax 2+bx +c =0(a <0)没有实根,则不等式ax 2+bx +c >0(a <0)的解集为∅. 答案 (1)√ (2)√ (3)× (4)×2.(必修5P103A2改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B=( ) A.(-2,3) B.(-2,2) C.(-2,2]D.[-2,2]解析 因为A ={x |x ≤2},B ={x |-2<x <3}, 所以A ∩B ={x |-2<x ≤2}=(-2,2]. 答案 C3.(必修5P80A2改编)y =log 2(3x 2-2x -2)的定义域是________. 解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞4.(2018·烟台月考)不等式1-x2+x≥0的解集为( ) A.[-2,1]B.(-2,1]C.(-∞,-2)∪(1,+∞)D.(-∞,-2]∪(1,+∞)解析 原不等式化为⎩⎪⎨⎪⎧(1-x )(2+x )≥0,2+x ≠0,即⎩⎪⎨⎪⎧(x -1)(x +2)≤0,x +2≠0,解得-2<x ≤1. 答案 B5.(2019·北京海淀区调研)设一元二次不等式ax 2+bx +1>0的解集为{x |-1<x <2},则ab 的值为( )。

用函数观点看方程(组)与不等式(解答应用)

用函数观点看方程(组)与不等式(解答应用)

用函数观点看方程(组)与不等式(解答应用)一、解答题1.作出函数y=-x+5的图象,观察图象回答下列问题:(1)x___________时,-x+5≤0;(2)x___________时,-x+5≥0;(3)x___________时,-x+5<2;(4)x___________时,-x+5>3.2.若正比例函数2m -21)x -(2m y =中,y 随x 的增大而减小,求这个正比例函数.3.已知3x+y=2,当y 取何值时,-1<x ≤2?4.【2008·浙江台州】在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①___________;②___________;③___________;④___________;(2)如果点C 的坐标为(1,3),那么不等式11b x k b kx +≥+的解集是_________ .5.已知y+5与3x+4成正比例,当x=1时,y=2. (1)求y 与x 的函数关系式;(2)求当x=-1时的函数值;(3)如果y 的取值范围是0≤y ≤5,求x 的取值范围.6.已知一次函数y=(6+3m)x+(n-4)求:(1)m 为何值时,y 随x 的增大而减小;(2)m 、n 分别为何值时,函数的图象与y 轴的交点在x 轴的下方?(3)m 、n 分别为何值时,函数图象经过原点?7.一次函数y=-3x+12与x 轴的交点坐标是多少,当函数值大于0时,x 的取值范围是多少,当函数值小于0时,x 的取值范围是多少?8.【2007·山东日照】某水产品市场管理部门规划建造面积为24002m 的集贸大棚,大棚内设A 种类型和B 种类型的店面共80间,每间A 种类型的店面的平均面积为282m ,月租费为400元;每间B 种类型的店面的平均面积为202m ,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A 种类型店面的数量;(2)该大棚管理部门通过了解业主的租赁意向得知,A 种类型店面的出租率为75%,B 种类型店面的出租率为90%.为使店面的月租费最高,应建造A 种类型的店面多少间?9.用作图象的方法解方程组⎩⎨⎧==-12y -x 1y -x .10.作出函数y=-4x+2的图象,并回答下列问题:(1)x 取什么值时,y 大于-2?(2)x 取什么值时,y 小于-2?(3)x 取什么值时,y 等于0?11.已知2-2x y x 5y 21+=+=,.当x 取何值时,21y y ≥?12.作出函数12x 512-y +=的图象,观察图象并回答下列问题: (1)x 取何值时,y>0?(2)x 取何值时,y=0?(3)x 取何值时,y<0?13.利用图象求出二元一次方程2x-y=2的两个整数解.二、应用题14.【2008·四川广安】“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象.(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);(2)写出客车和出租车行驶的速度分别是多少?(3)试求出出租车出发后多长时间赶上客车?15.某辆汽车油箱中原有汽油100L,汽车每行驶50km耗油9L.设汽车行驶路程为xkm时,油箱剩余油量为yL.(1)求y与x之间的函数关系式.(2)汽车行驶多少千米时,油箱剩余油量不足55L?16.某校计划购买若干台微机,现从两家商场了解到同一型号的微机每台报价均为a元,甲商场经理说:“第一台按原价收费,其余每台优惠25%”,乙商场经理说:“每台优惠20%”.(1)分别写出两家商场收费的函数关系式;(2)试讨论该校到哪家商场买微机较优惠.17.如图,L1表示某机床公司一天的销售收入1y与机床销售量x之间的函数关y与机床销售量x之间的函数关系.系,L2表示该公司一天的销售成本2(1)1y关于x的函数关系式是______________,2y关于x的函数关系式是______________;(2)求出一天的销售利润y关于销售量x之间的函数关系式(销售利润=销售收入-销售成本);(3)要使一天的销售利润不低于3万元,则一天的销售量应是多少?18.【2008·湖南益阳】乘坐益阳市某种出租汽车.当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围.19.【2008·浙江衢州】1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/千克.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元(总毛利润=销售总收入-库存处理费)?(2)设椪柑销售价格定为x(0<x≤2)元/千克时,平均每天能售出y千克,求y关于x的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?20.文具商场画夹每个定价20元,水彩每盒5元. 为了促销,商场制定了两种办法:一种是买一个画夹送一盒水彩;另一种是画夹和水彩一律按九折付款. 小王需购画夹4个,水彩若干盒(不少于4盒),哪种方法对他来说更优惠?21.【2005·云南(课改实验区)】某单位团支部组织青年团员参加登山比赛.比赛奖次所设等级分为:一等奖1人,二等奖4人,三等奖5人.团支部要求一等奖奖品单价比二等奖奖品单价高15元,二等奖奖品单价比三等奖奖品单价高15元.设一等奖奖品的单价为x(元),团支部购买奖品总金额为y(元).(1)求y与x的函数关系式(即函数表达式);(2)因为团支部活动经费有限,购买奖品的总金额应限制在:500≤y≤600.在这种情况下,请根据备选奖品表提出购买一、二、三等奖奖品有哪几种方案?然后本着尽可能节约资金的原则,选出最佳方案,并求出这时全部奖品所需总金额是多少?备选奖品及单价如下表(单价:元)备选奖品足球篮球排球羽毛球拍乒乓球拍旱冰鞋运动衫象棋围棋单价(元) 84 79 74 69 64 59 54 49 4422.某移动通讯公司开设两种通讯业务:“全球通”用户先交25元月租费,5元来电显示费,然后每通话1分钟,再付话费0.20元;“乡情卡”不交月租费,而交5元来电显示费,每通话1分钟,付话费0.3元.若一个月通话x分钟,两种方式的费用分别为1y和2y元.(1)写出1y,2y与x之间的函数关系式;(2)一个月内通话多少分钟,两种通讯业务的费用相同;(3)某人估计一个月内通话400分钟,应选择哪种通讯业务合算.23.聊城市委、市政府为进一步改善投资环境和居民生活环境,并吸收更多的人来观光旅游,决定对古运河城区实施二期开发工程,现需要A ,B 两种花砖共50万块,全部由砖厂完成此项生产任务,该厂现有甲种原料180万千克,乙种原料145万千克.已知生产1万块A 砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B 砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元.(1)利用现有原料,该厂是否能按要求完成任务,若能,按A ,B 两种花砖的生产块数,有哪几种方案?请你设计出来(以万块为1个单位且取整数).(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?24.【2008·四川南充】某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配x(x ≥3)个乒乓球,已知A ,B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A 超市所有商品均打九折(按原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算?(2)当x=12时,请设计最省钱的购买方案.25.某单位急需汽车,但无力购买,单位领导想租一辆. 一国营汽车出租公司的出租条件为每百千米租费100元;一个体出租车司机的条件为每月付800元工资,另外每百千米付10元,问该单位租哪家的汽车合算?26.某服装厂现有甲种布料42m 、乙种布料30m ,现计划用这两种布料生产M 、L 两种型号的服装共40件.已知做一件M 型服装用甲种布料0.8m ,乙种布料1.1m ,可获利45元;做一件L 型服装用甲、乙两种布料分别为1.2m 和0.5m ,可获利30元.设生产M 型服装件数为x ,用这批布料生产这两种型号服装所获利润为y(元).(1)写出y(元)与x(件)的函数关系式,并求自变量x 的取值范围;(2)该厂在生产这批服装时,当M 型号的服装为多少时,能使该厂所获的利润最大?最大利润为多少?27.王颖和刘丽原有存款分别为80元和180元,从本月开始,王颖每月存款40元,刘丽每月存款20元.如果设两人存款时间为x(月),王颖的存款额是1y (元),刘丽的存款额为2y (元).(1)试写出1y 与x 及2y 与x 之间的关系式;(2)到第几个月时,王颖的存款额能超过刘丽的存款额?28.某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:煤的价格为400元/吨,生产1吨甲产品除原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完.设生产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的函数关系式;(2)写出y 与x 的函数关系式(不要求写自变量的范围);(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大?最大利润是多少?29.某工厂生产某种产品,每件产品的出厂价为1万元.其原材料成本价(含设备损耗等)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产生,为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理一吨废渣需付0.1万元的处理费.问:(1)设工厂每月生产x 件产品,每月利润为y 万元,分别求出用方案一和方案二处理废渣时,y 与x 之间的函数关系式;(利润=总收入-总支出)(2)若你作为工厂负责人,如何根据月生产量选择处理方案,既达到环保要求又合算?30.一个由父亲、母亲、叔叔和x 个孩子组成的家庭去某地旅游,甲旅行社的收费标准:如果买4张全票,则其余人按半价优惠;乙旅行社的收费标准是:家庭旅游算团体票,按原价43优惠,这两家旅行社的原价均为100元/人. (1)写出两家旅行社的收费总额y(元)与孩子数x(个)的函数关系式;(2)试比较随着孩子人数的变化,哪家旅行社的收费更优惠?31.某企业想租一辆车,现有甲、乙两家汽车出租公司,甲公司的出租条件是:每千米租车费为1.10元;乙公司的出租条件是:每月付800元的租车费,另外每千米付0.10元油费.该企业租哪家公司的车合算?32.如图表示一骑自行车者和一骑摩托者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80km ,请你根据图象解决下列问题:(1)请你分别求出表示自行车和摩托车行驶过程的函数关系式(不要求写出自变量的取值范围);(2)请你分别求出下列时间:①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.33.某班去商店为体育比赛优胜者买奖品,书包每个定价30元,文具盒每个定价5元,商店实行两种优惠方案:①买1个书包赠送一个文具盒;②按总价的九折付款.若该班需购书包8个,设实际购文具盒x 个(x ≥8),付款共y 元.(1)分别求出这两种优惠方案中,y 与x 之间的函数关系式;(2)若购文具盒30个,应选哪种优惠方案?付多少元;(3)比较购买同样多的文具盒时,按哪种优惠办法付款更省钱.34.(2006·苏州)司机在驾驶汽车时,发现紧急情况到踩下刹车这段时间之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”(如图所示).已知汽车的刹车距离s(单位:m)与车速v(单位:m/s)之间有如下关系:2kv tv s +=.其中t 为司机的反应时间(单位:s),k 为制动系数.某机构与测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=0.7s.(1)若志愿者未饮酒,且车速为11m/s ,则该汽车的刹车距离为_______m(精确到0.1m).(2)当志愿者在喝下一瓶啤酒半小时后,以17m/s 的速度驾车行驶,测得刹车距离为46m.假如该志愿者当初是以11m/s 的车速行驶,则刹车距离将比未饮酒时增加多少?(精确到0.1m)(3)假如你以后驾驶该型号的汽车以11m/s 至17m/s 的速度行驶,且与前方车辆的车距保持在40m 至50m 之间.若发现前方车辆突然停止,为防止“追尾”.则你的反应时间应不超过多少秒?(精确到0.01s)35.【2009·山东潍坊】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱,供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)关于x(个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.36.【2009·内蒙古赤峰】“教师节”快要到了,张爷爷用120元钱,为“光明”幼儿园购买价格分别为8元、6元和5元的图书20册,(1)若设8元的图书购买x 册,6元的图书购买y 册,求y 与x 之间的函数关系式.(2)若每册图书至少要购买2册,求张爷爷有几种购买方案?并写出y 取最大值和y 取最小值时的购买方案.37.某市自来水公司收费标准如下:每户每月用水不超过53m 收费1.5元/3m ,若超过53m ,超过的部分收费2元/3m .小明家某月水费不超过12元,若设小明家该月的用水量为x 3m .(1)x 应满足什么条件?写出其关系式.(2)x 可能取6,8吗?(3)它最多不超过多少立方米?38.【2009·广西南宁】南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y 甲(元)与铺设面积x(2m )的函数关系如图所示;乙工程队铺设广场砖的造价y 乙(元)与铺设面积x(2m )满足函数关系式:y 乙=kx .(1)根据图写出甲工程队铺设广场砖的造价y 甲(元)与铺设面积x(2m )的函数关系式;(2)如果狮山公园铺设广场砖的面积为16002m ,那么公园应选择哪个工程队施工更合算?39.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别是40和80元;从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.(1)设从乙仓库调往A县的农用车x辆,求总运费y关于x的函数关系式;(2)若要求总运费不超过900元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少元?40.某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000kg以上(含3000kg)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所买的水果x(千克)之间的函数关系式,并写出自变量x的取值范围;(2)当购买量在什么范围内时,选择哪种购买方案付款最少?并说明理由.41.通过电话拨号上网的费用由电话费和上网费两部分组成.以前我市通过拨号上网的费用为电话费0.18元/3分钟,上网费为7.2元/时,后根据信息产业部调整上网资费的要求,自2001年起上网费用调整为电话费0.22元/3分钟,上网费为每月不超过60小时,按4元/时计算,超过60小时部分,按8元/时计算.试根据以上信息提出你的问题,并做出解答.42.(2003·大连)某水产养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg,或将当日所捕捞的水产品40kg进行精加工.已知每千克水产品直接出售可获得利润6元,精加工后再出售,可获利润18元.设每天安排x名工人进行水产品精加工.(1)每天做水产品精加工所得利润y(元)与x的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使一天所获利润最大?最大利润是多少?43.A、B两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾,A商场所有商品8折出售,在B商场消费金额超过200元后,可在这家商场7折购物,试问如何选择商场来购物更经济?44.某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费50元,另外,每通话1分钟交费0.4元;B类收费标准如下:没有月租费,但每通话1分钟收费0.6元,完成下列各题.(1)写出每月应缴费用y(元)与通话时间x(分钟)之间的关系式;(2)若每月通话时间为300分钟,你选择哪类收费方式?(3)每月通话时间多长时,按A、B两类收费标准缴费,所缴话费相等?(4)你选择哪类收费标准?45.某自行车保管站在某个星期日接受保管的自行车共有3500辆,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元.(1)若设一般车停放的辆数为x,总保管费的收入为y元,试写出y与x的关系式;(2)若估计前来停放的3500辆自行车,变速车的辆数不少于25%,但不大于40%,试求该保管站这个星期日保管费收入总数的范围.设定间隔行数:46.(2003·四川)东风商场文具部的某种毛笔每支零售价为25元,书法练习本每本售价5元.该商场为促销制定了两种优惠办法,甲:买一支毛笔就赠一本书法练习本;乙:按购买金额九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x本(x≥10).(1)写出每种优惠办法实际付款金额y甲(元)、y乙(元)与x(本)之间的函数关系式.(2)比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱?(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种毛笔10支和书法练习60本设计一种最省钱的购买方案.47.某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%.乙商场的优惠条件是:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式.(2)什么情况下到甲商场购买更优惠?(3)什么情况下到乙商场购买更优惠?(4)什么情况下两家商场的收费相同?48.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000kg以上(含3000kg)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量x的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由.49.某单位要制作一批宣传材料.甲公司提出每份材料收费20元,另收3000元设计费;乙公司提出每份材料收费30元,不收设计费.(1)什么情况下选择甲公司比较合算?(2)什么情况下选择乙公司比较合算?(3)什么情况下两公司的收费相同?50.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1.0元,卖不掉的报纸还可以以每份0.2元的价格退回报社,在一个月内(以30天计算),有20天每天可以卖出100份,其余10天每天只能卖60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为自变量x ,每月所得利润为y.从节约资源的角度出发,在保证利润的前提下,问:(1)写出y 与x 之间的函数关系,并指出自变量x 的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?(3)报亭每天应该从报社订购多少份报纸,才能使每月获得的利润不少于560元?51.【2009·山东泰安】某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件.(1)求A 、B 两种纪念品的进价分别为多少?(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?52.折线ABC 是某人乘出租汽车所付的费用y(元)与乘车的里程数x(km)之间的函数关系的图象,如图.(1)观察图象,乘车3km 和6km 各需付乘车费用多少元?(2)当x ≥3时,求乘车费用y(元)与乘车的里程数x(km)之间的函数关系式;(3)某乘客所付车费在14~18元之间,求他乘车路程的范围.53.我市某中学要印刷本校高中招生的录取通知书,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元,按六折优惠.且甲乙两厂都规定:一次印刷数量至少500份.(1)分别求两个印刷厂收费y(元)与印刷数量x(份)的函数关系,并指出自变量x 的取值范围;(2)如何根据印刷的数量选择比较合算的方案?如果这个中学要印刷2000份录取通知书,那么应选择哪一个厂?需要多少费用?54.某企业为解决部分职工(人数多于100)午餐,联系了两家快餐公司.两家公司的报价、质量和服务承诺都相同,且都表示对职工优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上部分按报价的80%收费.问应选择哪家公司较好.55.声音在空气中的传播速度y(m/s)(简称音速)与气温x(℃)的关系是:331x 53y +=.求音速超过340m/s 时的气温.56.下图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数),两地间的距离是80km.请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数表达式;(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式.①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.57.某座水库的最大库容量是26.2万立方米,库区面积为100平方公里,其中林地占60%,经测定,每次降雨,林地有10%的降水流入水库,非林地有85%的降水进入水库.预测今后一段时间内库区连续降雨,且单位面积降水量相同,设降水总量为Q万立方米,进入水库的水量为y万立方米.(1)用含Q的代数式分别表示在降雨期间林地、非林地进入水库的水量.(2)预计今后x天内降水总量Q(万立方米)与天数x的函数关系式为Q=3+2x,写出y关于x的函数关系式.(3)若水库原有水量20万立方米,在降雨的第2天就开闸泄洪,每天泄洪量为0.2万立方米,问连续降雨几天后,该水库会发生险情(水库里水量超过最大库容量就有危险).58.为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户五月份用电115度,交电费是69元,六月份用电140度,交电费是94元.(1)求a、b的值;(2)设该用户每月用电量为x(度),应付电费为y(元).①分别求0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?59.小刚有60枚1角和5角的硬币. 这些硬币的总值小于20元. 那他最少拥有多少枚1角硬币呢?60.某企业生产每种吉祥物所需材料及所获利润如下表:。

初中数学北师大八年级上册 二元一次方程组蹇蕾8稿从函数观点看方程和不等式

初中数学北师大八年级上册 二元一次方程组蹇蕾8稿从函数观点看方程和不等式

从函数观点看方程和不等式-----在整体观下,以内部关联建构新知一、教材分析(七中育才汇源校区、蹇蕾)《义务教育数学课程标准(2023版)》站在知识整体的平台上,关注知识的结构和体系,要求处理好局部知识与整体知识的关系,感受数学的整体性,对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解.函数、方程、不等式的知识是初中数学教学的重要内容,既是学习的重点,也是学习的难点.三者知识交汇也是中考、高考考查的热点问题,它们是刻画现实世界中变化规律的重要数学模型,蕴含着丰富的数学思想和方法.因此,用联系的观点研究它们是很.有必要的.函数、不等式、方程它们是动与静的关系,是变量与常量的关系,静是点,动是线,常量是变量的瞬间.在变化中,在规律中,在动静之中函数、方程、不等式既各自独立又相互联系,共同组成了“数与代数”的核心内容.二、学情分析1.经验基础:从学生认知来看,学生已经学习了二元一次方程(组)、一元一次不等式相关的概念和解法、函数图象的定义及画法、一次函数的定义及图象的性质、一次函数y=kx+b图象上的点的坐标与一次函数y=kx+b中两个变量的对应关系,这些知识和方法为本节课的学习作了铺垫,同时,学生初步具有利用数形结合思想解决问题的意识和能力.故本节课仅研究一次函数与对应的二元一次方程(组)与一元一次不等式的联系.2.困难预测:(1)函数的学习刚刚开始,学生对函数这一抽象概念的理解还不够深刻,运用函数解决一些问题存在困难. (2)学生很难用自己的语言表达函数与方程、不等式的关系.(3)整合内容较多,如果学生若没有理解到问题本质,容易混淆.3.预测学后:学生能够体会数形结合的优势,将抽象的方程、不等式用直观的图形表示出来,通过不同的途径解决问题,建立一次函数与方程、不等式的联系,发展了几何直观,强化数学数形结合思想、转化思想.并为后继各类函数与方程、不等式的学习奠定基础.三、教学目标(1)通过观察一次函数图象,求方程的解和不等式的解集,体会一次函数与方程、不等式的内在联系.(2)经历探究一次函数与方程、不等式的关系的过程,初步感受三者的辩证与统一,感受数学知识与方法的内在联系,体会数形结合的数学思想,发展几何直观.四、教学内容本节课是在八年级上学完一次函数后,安排的一节整合课.从教学内容来看,本节课要探究一次函数与方程、不等式的关系,会用一次函数的图象求二元一次方程组的近似解和一元一次不等式的解集.通过问题探究,建立函数图象点的坐标与方程的解、不等式解集的关系,为今后研究更加复杂的函数相关问题奠定基础.本节课的设计原因:(1)从教材知识顺序方面:在八上第四章一次函数的学习之前,整体做了课程的顺序的调整,先学习了八上第五章的二元一次方程组的解法,八年级下第二章一元一次不等式的解法,再来学习函数,这样在确立解析式、求自变量的取值范围等函数问题就比较方便.在三个概念刚刚学完之后,就将三者联系起来看,可以从整体上连贯的把握知识之间的内在联系,同时加深对函数的理解.(2)从教材相关内容的整体安排来看:关于方程、不等式、函数部分的教材,内容螺旋上升,逐步深化,同一类问题从不同角度理解分析,实现了从“四基”到“四能”(四基:基础知识、基本技能、基本数学思想方法、基本活动经验,四能:提出问题、发现问题、分析问题、解决问题的能力),实现了从初步感知→梯度深化→寻求关联→构建体系→探寻本质.,脱节,对于函数与方程、不等式之间的联系缺乏深刻认识,导致学生在学习过程中对模块间内容不能形成系统,对知识的要求达成率就会降低.所以,一次函数学完后再将函数、方程、不等式三部分内容整合起来,有利于从整体上把握数学知识结构,有利于全面提高学生的数学素养,从函数的观点研究方程和不等式,感受三者之间的内在联系,并学会从“数”和“形”两个不同的角度去分析观察同一对象,发展几何直观.(3)从思想方法方面:初高中各类函数(正比例函数、反比例函数、一次函数、二次函数、幂函数、指数函数、对数函数、三角函数和反三角函数)与方程(一元一次,一元二次,二元一次方程组)、不等式(组)之间都可以产生联系,研究问题的思路、本质、方法都是类似的,今天课程的学习也为后面进一步研究奠定基础. 北师大版高中教材对于“方程、不等式、函数”内容的编排如下:五、教学重、难点: 教学重点:(1)一次函数与二元一次方程(组)的联系 (2)一次函数与一元一次不等式的联系 教学难点:能从函数的角度理解方程、不等式六、问题群设置1、主问题:一次函数与对应的方程、不等式有什么联系?2、子问题群(1)对同一个关系式两种表达形式(一次函数及对应的二元一次方程)该如何理解? (2) 一次函数与对应的二元一次方程有什么联系? (3)一次函数与对应的二元一次方程组有什么联系? (4)一次函数与相关的一元一次不等式有什么联系? 七、教学过程一、引入课题1、下面的图你可以看到什么?2、y=−x+5又可以看作什么?3、请把二元一次方程−2x+y=−1和2x+3y=2化成对应的一次函数. 教师组织学生欣赏图片,学生回答问题.教师提出问题, y=−x+5是什么?因为最近一直在学一次函数,可能大部分学生第一反应是一次函数,如果学生看不出来是方程,教师可以马上将式子变形为x+y=5,加以引导.教师同时强调任何一个二元一次方程都可以化成一个一次函数.引导学生理解二元一次方程和一次函数可以在形式上达到一致,为后继学习做铺垫.让同学感受同一个事物可以从不同角度来看,视角不同,感官不同.二、联想探究探究一、借二元一次方程,初论以形助数1、方程x+y=5有多少个解,请试着写出几个,2、画出函数y=-x+5的图象,3、你能说说二元一次方程和对应的一次函数有联系吗?如果有,是什么?为什么?二元一次方程的解是对应的一次函数图象上点的坐标. 学生写出二元一次方程的解,画出y=-x+5的图象后,教师引导学生从联系的眼光看两者,小组讨论二元一次方程和对应的一次函数有联系吗?如果有,是什么?为什么?鼓励学生用自己的语言表述出这种关系,并能深入本质,找到产生这种联系的原因.本节课的暗线是y=−x+5,既是方程又是函数,以它为基础,不断变化演绎深化,直击问题本质.第一部分内容是基础,同时让学生初步体会用联系的眼光寻找一次函数和二元一次方程的关系,初步体会数形结合思想.探究二、用二元一次方程组,再论以形解数请用不同的方法解方程组{x+y=5−2x+y=−1二元一次方程组的解是对应的两个一次函数图象的交点坐标.灵活用1:探究一的学习,学生初步有了从函数角度来看方程的意识,教师组织学生以小组为单位先讨论解法,再自己操作.然后教师再请学生讲解.学生可能谈到代数方法,也可能通过图象法解决.当学生说出交点坐标就是方程组的解时,教师继续追问,为什么你觉得交点就是方程组的解呢?直在y=−x+5的基础上又加y=2x−1,变成二元一次方程组去研究,过渡的很自然.已有的结论也作为新知探索的基石,继续寻找方程组的解和函数交点坐标之间的关系.灵活用1的安O x y请用不同方法解下列方程组:(1) {x +y =5x −y =3 (2) {x +y =52x +2y =2 (3) {x +y =52x +2y =10你能用函数的观点解释以上方程组的解吗? 二元一次方程组 两个一次函数 一个解 一个交点(两直线相交) 解 无数解 无数交点(两直线重合) 交点 无解 无交点(两直线平行) 数 形 探究三、引一元一次不等式,实现梯度深化 已知{y =−x +5y >0,求x 的取值范围.灵活用2:一次函数y =kx +b (k ≠0)的图象如图, 当y <0时,x 的取值范围是__________ 在已有函数图象不变的情况上,请你尝试改编题目. 延伸拓展1:如图,已知:函数y 1=-x +b 和y 2=ax ﹣3的图象交于点P (2,3),则不等式-x +b >ax ﹣3的解集是__________延伸拓展2:如图所示,函数y 1=|x |和y 2=x +的图象相交于(﹣1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是 . 击问题本质. 学生先独立完成,再请学生用不同方法讲解,最后请学生总结通过解以上三个方程组,又有什么发现和体悟. 教师引导学生用不同的方法解决. 从代数角度考虑,求x 范围就是解一元一次不等式-x+5>0;从函数角度就是一次函数y 值大于0,即图象上的点的纵坐标大于0时,对应点的横坐标的取值范围.学生先独立完成灵活用2,再尝试改编题目,对学生的能力提出更高的要求.当然也有学生可能先求出一次函数解析式,转化成不等式,解不等式.教师予以鼓励,但也请学生自己感受图象法的直观.学生独立思考,再分享自己的方法.教师引导学生用函数的观点应该如何来看这个不等式呢? 非一次函数与不等式的问题,是否也可以观察图象解决问题,根据学情,灵活把握时间,可以当场处理,也可以留到课下完成.排,让学生进一步理解方程组的解和对应函数交点坐标的关系,是对探究二的深化.让学生体会到还可以形解数,数形结合的思想.从函数的角度看可以看方程,还可以看不等式.利用图象将一次函数与一元一次不等式联系起来 学生利用所学,通过图象直观解决不等式问题,加深对一次函数与不等式之间的关系的理解,发展几何直观.进一步深化问题,若两个一次函数相交,借助于函数图象求不等式的解集,让学生进一步体会从图象上去解不等式非常直观.延伸拓展,可以进一步提高学生思维,这道题用代数方法做就非常复杂,如果用图象法就非常容易了,是一道非常好的数形结合的例子.三、揽全局,形通法学到这里,请同学们回顾一下,本堂课什么地方给你的感受是很深的?或者你有什么样的感悟要与大家分享?四、布置作业八、基于单元整体教学的1设计思路和突破点.1.以数学问题驱动知识建构“如果将数学看成人类的一种创造性活动,那么,‘问题’在很大程度上就可被看成这种活动的实际出发点”,因此,以问题解决驱动数学思维与知识建构,是行之有效的教学方法.本节内容的呈现顺序依次是一次函数与二元一次方程的关系、一次函数图象上的点与二元一次方程解的关系、两个一次函数图象的交点与二元一次方程组的解的关系,一次函数与一元一次不等式的关系,这是“由易到难、拾级而上”的呈现方式.三个探究活动,使知识的发生发展浑然一体,使学生已有水平和教师要求学生达到的水平之间产生认知冲突,从而激发学生的探究欲望,产生数学学习的动力.当学生的思维处于困顿、愤悱之时,教者通过追问,将问题分解、后退至知识关联之处、学生可认知之处,进而有效驱动学生知识建构与思维发展.这是一种自上而下的、在问题解决中建构知识、发展思维的教学策略,这样既能引发学生认知冲突,又能兼顾学生认知的整体性和思维的发展性.2.以内部关联促进数学理解郑毓信教授认为:数学是外部力量与内部因素相互作用的结果.而以数学内部的关联促进数学理解不失为一种重要的教学方法.本节教学设计是在学生操作后提出一系列层层深入的问题,进而引发认知冲突,然后回到知识的本源,从知识间内在的、本质的关联出发探究:一次函数就是二元一次方程、函数图象上点的坐标与函数两个变量的关系、两个一次函数图象的公共点的坐标同时满足两个函数关系式,学生自然而然意识到:求交点坐标就是求联列两个一次函数得到的二元一次方程组的解,从而突破学习难点,促进学生对数学本质的理解.这正是外部力量与内部因素相互作用、从内部关联突破难点.有了前面两个活动的铺垫,学生通过类,也很自然的从函数的角度去理解不等式问题,找到问题的本源.3.以活动促进学生有效学习在学生学习活动方式上,宜采用独立思考、小组交流、班级展示、教师指导、教师讲解等多种形式,既为学生提供自主学习交流的时间和机会,充分发挥学生的主体作用,又要注重教师的及时指导与适时点拨,帮助学生实现认识上的提升.。

第10讲 从函数观点看一元二次方程和一元二次不等式(原卷版)新高一数学暑假衔接课(苏教版2019必修

第10讲 从函数观点看一元二次方程和一元二次不等式(原卷版)新高一数学暑假衔接课(苏教版2019必修

第10讲从函数观点看一元二次方程和一元二次不等式知识点一二次函数的零点1.一般地,一元二次方程ax 2+bx +c =0(a ≠0)的根就是二次函数y =ax 2+bx +c (a ≠0)当函数值取零时自变量x 的值,即二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标,也称为二次函数y =ax 2+bx +c (a ≠0)的零点.2.函数的零点不是点,而是一个实数,是函数的图象与x 轴交点的横坐标,也是函数值为零时自变量x 的值,也是函数相应的方程的实数根.知识点二一元二次方程的根、二次函数的图象、二次函数的零点之间的关系当a >0时,一元二次方程ax 2+bx +c =0的根、二次函数y =ax 2+bx +c 的图象、二次函数y =ax 2+bx +c 的零点之间的关系如表所示:判别式Δ=b 2-4acΔ>0Δ=0Δ<0方程ax 2+bx +c =0的根有两个相异的实数根x 1,2=-b ±b 2-4ac2a有两个相等的实数根x 1=x 2=-b 2a没有实数根二次函数y =ax 2+bx +c 的图象二次函数y =ax 2+bx +c 的零点有两个零点x 1,2=-b ±b 2-4ac2a有一个零点x =-b 2a无零点知识点三一元二次不等式及解法1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的整式不等式,称为一元二次不等式.2.一元二次不等式的解法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:①化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);②求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c的图象简图;③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方法求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m<x<n.知识点四二次函数与一元二次方程、不等式的解的对应关系考点一:求二次函数的零点例1(1)二次函数y=x2-7x+12的零点为________;(2)若函数y1=x2-ax-b的图象如图所示,则函数y2=bx2-ax-1的零点是________.【总结】变式求下列函数的零点.(1)y=3x2-2x-1;(2)y=ax2-x-a-1(a∈R);(3)y=ax2+bx+c,其图象如图所示.考点二:函数的零点个数的判断与证明例2若a>2,求证:函数y=(a-2)x2-2(a-2)x-4有两个零点.【总结】变式(1)求函数y=(a-2)x2-2(a-2)x-4有零点的充要条件.(2)求证:函数y=ax2-x-a(a∈R)有零点.考点三:二次函数零点的分布探究例3(1)判断二次函数y=-x2-2x+1在(-3,-2)是否存在零点;(2)若二次函数y=(a-2)x2-2(a-2)x-4(a≠2)的两个零点均为正数,求实数a的取值范围.【总结】变式已知函数y=x2-x-a2+a(a∈R).(1)若该函数有两个不相等的正零点,求a的取值范围;(2)若该函数有两个零点,一个大于1,另一个小于1,求a的取值范围.考点四:不含参数的一元二次不等式的解法例4解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)4x2+4x+1>0.【总结】变式(1)不等式-2x 2+x +3<0的解集是()A .{x |x <-1}B |xC |-1<x D |x <-1或x (2)解不等式:-2<x 2-3x ≤10.考点五:含参数的一元二次不等式的解法例5(1)解关于x 的不等式ax 2-(a +1)x +1<0;(2)已知关于x 的不等式(m 2+4m -5)x 2-4(m -1)x +3>0对一切实数x 恒成立,求实数m 的取值范围.【总结】变式已知函数y =x 2+bx +c (b ,c ∈R),且y ≤0的解集为[-1,2].(1)求函数y 的解析式;(2)解关于x 的不等式m (x 2-x -2)>2(x -m -1)(m ≥0).考点六:一元二次不等式解集逆向应用例6(多选)已知不等式ax 2+bx +c >0的解集为x |-12<x <2,则下列结论正确的是()C.c>0D.a+b+c>0【总结】变式若不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2-x-c的图象为()1.函数y=x2-4x+3的零点为()A.(1,0)B.(1,3)C.1和3D.(1,0)和(3,0)2.函数y=x2-2x+2的零点个数是()C.2D.33.已知p:关于x的方程ax2+bx+c=0有两个异号实数根,q:ac<-1,则p是q的________条件.4.讨论函数y=(ax-1)(x-2)(a∈R)的零点.5.不等式x(x-9)<x-21的解集为()A.(3,7)B.(-∞,3)∪(7,+∞)C.(-7,-3)D.(-∞,-7)∪(-3,+∞)6.已知a<0,则关于x的不等式x2-4ax-5a2<0的解集是()A.{x|x>5a或x<-a}B.{x|x<5a或x>-a}C.{x|-a<x<5a}D.{x|5a<x<-a}7.(多选)关于x的不等式ax2+bx+c<0的解集为(-∞,-2)∪(3,+∞),则下列正确的是() A.a<0B.关于x的不等式bx+c>0的解集为(-∞,-6)C.a+b+c>0D.关于x的不等式cx2-bx+a>08.写出一个解集为(-2,3)的一元二次不等式________.9.已知y=(x-a)(x-2).(1)当a=1时,求不等式y>0的解集;(2)解关于x的不等式y<0.1.若x 1,x 2是二次函数y =x 2-5x +6的两个零点,则1x 1+1x 2的值为()A .-12B .-13C .-16D .562.函数y =x 2-(a +1)x +a 的零点个数为()A .1B .2C .1或2D .03.关于x 的函数y =x 2-2ax -8a 2(a >0)的两个零点为x 1,x 2,且x 2-x 1=15,则a =()A .52B .72C .154D .1524.不等式9x 2+6x +1≤0的解集是()A |x B |-13≤xC .∅D |x 5.若一元二次不等式kx 2-2x +k <0的解集为{x |x ≠m },则m +k 的值为()A .-1B .0C .-2D .26.已知函数y =x 2-6x +5-m 的两个零点都大于2,则实数m 的取值范围是()A .[-4,-3)B .(-4,-3]C .(-4,-3)D .(-∞,-4)∪(-3,+∞)7.(多选)若关于x 的一元二次方程(x -2)·(x -3)=m 有实数根x 1,x 2,且x 1<x 2,则下列结论中正确的是()A.当m=0时,x1=2,x2=3B.m>-14C.当m>0时,2<x1<x2<3D.当m>0时,x1<2<3<x28.若一元二次不等式kx2-2x+k<0的解集为{x|x≠m},则m+k的值为()A.-1B.0C.-2D.29.(多选)函数y=(x-2)(x-4)-1有两个零点x1,x2,且x1<x2,下列关于x1,x2的关系中错误的有() A.x1<2且2<x2<4B.x1>2且x2>4C.x1<2且x2>4D.2<x1<4且x2>410.函数y=x2+x+m的两个零点都是负数,则m的取值范围为________.11.求下列函数的零点.(1)y=x-2x-3;(2)y=x2-(3a-1)x+(2a2-2).12.已知函数y=ax2+bx+1有两个零点x1,x2,则“|a|≥1”是“|x1|+|x2|≤2”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件13.(多选)对于函数y=ax2-x-2a,下列说法中正确的是()A.函数一定有两个零点B.a>0时,函数一定有两个零点C.a<0时,函数一定有两个零点D.函数的零点个数是1或214.一元二次不等式x2-(a+1)x+a<0(a>1)的解集中有3个整数,则实数a的取值范围为________.15.已知函数y=2ax-a+3在(-1,1)上有零点,则实数a的取值范围是________________.16.解关于x的不等式x2-(3a-1)x+(2a2-2)>0.17.若函数y=x2-2ax+a2-1的两个零点分别为m,n,且m<-1,n>12,求实数a的取值范围.18.已知二次函数y=x2-4x+2k.(1)若二次函数y=x2-4x+2k有零点,求实数k的取值范围;(2)如果k是满足(1)的最大整数,且二次函数y=x2-4x+2k的零点是二次函数y=x2-2mx+3m-1的一个零点,求m的值及二次函数y=x2-2mx+3m-1的另一个零点.。

怎样教“用函数的观点看方程(组)与不等式”

怎样教“用函数的观点看方程(组)与不等式”

怎样教“用函数的观点看方程(组)与不等式”?作者:向利平曾辉来源:《湖南教育·下》2012年第01期人教版初中教材用三个课时的篇幅安排了“用函数的观点看方程(组)与不等式”的内容。

该教学内容的安排,有利于学生进一步体会函数的价值,整体上理解方程、不等式与函数的联系,构建统一的知识体系。

但一些老师由于没能很好地领会教材安排这一教学内容的意图,对本教学内容的教育价值理解不够,在教学该内容时,把目标仅定位在“估计方程、不等式解”的结果上,而对学习“用函数的观点看方程(组)与不等式”的必要性渗透不够,对估计解的过程及过程中隐含的数学思想和方法挖掘、提炼不够,致使实际操作中往往是蜻蜒点水、草草收场,给习题课让路。

本文试图从“教学内容分析”、“教学难点分析”两个方面阐述该教学内容的地位和作用,通过具体的教学案例说明该教学内容应该教什么和怎么教,以求引发更深层次的思考:在数学教学中,除了知识和技能以外,我们还应该教给学生些什么?一、教学内容分析看似简单的教学内容实际上蕴含丰富的教育价值。

“用函数的观点看方程(组)与不等式”这一教学内容从函数的角度对学过的一元一次方程、一元一次不等式和二元一次方程组重新进行了分析。

这种认识不是原来水平上的回顾与复习,而是站在更高的起点上的动态分析,用函数把三个不同的数学模型有机地结合和统一起来。

揭示三个不同数学模型间的内在联系,有利于学生从整体上把握数学知识间的联系,体会数学知识、研究方法的发展过程,进而提高学生的数学素养。

用函数的观点看方程(组)与不等式,实质上就是借助函数的图像(几何图形)研究方程(组)的解和不等式的解集。

这一教学内容是渗透数形结合思想、使学生体会数学的和谐美等方面很好的教学素材。

用函数的观点看方程(组)与不等式是后续学习用二次函数的观点看一元二次方程,高中阶段函数的零点、二分法求方程的近似解、一元二次不等式的解法、线性规划、曲线与方程等内容的基础。

第1讲-用一次函数看方程、不等式

第1讲-用一次函数看方程、不等式

y2 1 1 O -2 -1x第1讲-用一次函数看方程、不等式序号知识点典型练习1从函数的角度看解一元一次方程:以x 为未知数的一元一次方程可以变形为ax +b =0(a ≠0)的形式,解一元一次方程相当于在一次函数y =ax +b 的函数值为0时,求自变量x 的值.1.若关于x 的方程kx +b =0的解是x =2,则一次函数y =kx +b 与x 轴的交点坐标是 .2从函数的角度看解一元一次不等式:以x 为未知数的一元一次不等式可以变形为ax +b >0或ax +b <0(a ≠0)的形式,解一元一次不等式相当于在一次函数y =ax+b 的值大于0或小于0时,求自变量x 的取值范围.一般地,已知函数值范围求自变量x 的范围或者已知自变量范围求函数值范围时,可以通过观察图象得到(数形结合). 2.如图,一次函数y =kx +b 的图象与x 轴交于点A (-1,0)则关于x 的不等式kx +b >0的解集是 .3从函数的角度看解二元一次方程组: 由含有未知数x 和y 的两个二元一次方程组成的二元一次方程组对应两个一次函数,也对应两条直线.从“数”的角度看,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,相当于确定两条相应的直线的交点坐标. 3.已知直线y =k 1x +b 1与y =k 2x +b 2的交点坐标为(1,4),则方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解为 .4.(1)直线y =x +3与x 轴的交点坐标 ,所以相应的方程x +3=0的解是 .(2)如图,直线y =kx +b :①关于x 的方程kx +b =0的解是 , ②关于x 的不等式kx +b <0的解集是 ; ③当x <0时,函数值y 的取值范围是 .5.若关于x 的方程kx +b =0的解是x =-4,则一次函数y =kx +b 的图象与x 轴的交点坐标为 .-21O yx-3Oxy -6 y 1=kx yy 2=ax+bx -2O -4 P6.已知一次函数y =kx +b 的图象,如图所示,当x <0时,y 的取值范围是( ).A .y >0B .y <0C .-2<y <0D .y <-27.如图,已知一次函数图象y =-2x -6,利用图象回答: (1)不等式-2x -6>0解集是 ,不等式-2x -6<0解集是 ;(2)函数图象与坐标轴围成的三角形的面积为 ; (3)当y =-4时,则x = ,当y =2时,则x = ;(4)如果y 的取值范围-4<y ≤2,则x 的取值范围 ;(5)如果x 的取值范围-3≤x ≤3,则y 的最大值是 ,最小值是 ; (6)若直线y =3x +4和直线y =-2x -6交于点A ,则点A 的坐标 .8.如图所示,已知直线y 2=ax +b 和直线y 1=kx 的图象交于点P ,利用图象回答:(1)关于二元一次方程组⎩⎨⎧y =ax+b ,y =kx的解是 ,则两直线的交点坐标是 ;(2)当y 2<y 1时,则x 的取值范围是 ; (3)当ax +b ≥kx 时,则x 的取值范围是 ; (4)当ax ≤kx -b 时,则x 的取值范围是 .9.(15海珠期末)直线y =x +1与直线y =-2x +a 的交点在第一象限,则a 的取值可以是( ). A .2B .1C .0D .-110.(15一中期末)如图,已知函数y1=3x+b和y2=ax-3的图象交于点P(-2,-5),则不等式3x+b>ax-3的解集为.11.(13太原期末改编)如图,直线l1:y1=x+1与直线l2:y2=mx+n相交于点P(1,b),直线y2与x轴交于点A(4,0).(1)求b的值并直接写出关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)求直线l2的表达式;(3)判断直线l3:y3=nx+m是否也经过点P?请说明理由.(4)若y3>y2>0,则x的取值范围是________________.12.已知一次函数y =kx+b的图象,如图所示,当y<0时,x的取值范围是().A.x>0B.x<0C.0<x<1D.x<113.(11广州)当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是().A.y≥-7B.y≥9 C.y>9D.y≤9 14.(15海珠期末)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是().A.B.C.D.15.如图,1l反映了某公司的销售收入与销售量的关系,2l反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量().A.小于3t B.大于3t C.小于4t D.大于4t第14题第15题16.(16天河期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<4时,y1<y2;④b<0.其中正确的结论的个是().A.4个B.3个C.2个D.1个-2yO1x17.(16南充)小朱和爸爸从家步行去公园,爸爸先出发一直匀速前行,小朱后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小朱所走路程s与时间t的函数关系式;(2)小朱出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小朱希望比爸爸早20min到达公园,则小朱在步行过程中停留的时间需作怎样的调整?18.(15衢州)高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,小卓卓和小越越相约到杭州市的某游乐园游玩,小卓卓乘私家车从衢州出发1小时后,小越越乘坐高铁从衢州出发,先到杭州火车站,然后再转出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当小越越达到杭州火车东站时,小卓卓距离游乐园还有多少千米?(3)若小卓卓要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?y (千米)游乐园t(小时)19.(14海珠期末)今年龙舟赛甲乙两队同时出发,其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在出发2.5小时到达终点.(假设乙队速度不变)(1)写出比赛全程多少千米?谁先到达终点?乙队花多少时间到达终点? (2)求乙队何时追上甲队?(3)求在比赛过程中,甲乙两队何时相距最远?20.(1)(12恩施州)如图,直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式组0<kx +b<13x 的解集为 .(1) (2)(2)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式组12x >kx +b >-2的解集为 .21.(15广雅期末)若直线y =-2x +m 与直线y =2x -1的交点在第四象限,则m 的取值范围是( ). A .m >-1 B .m <1C .-1<m <1D .-1≤m ≤1yA 2 1 xB 0 -1 -2 -3 -2-1 1 2 322.依照题意,解答下列问题:(1)如图①,已知直线y =2x +4与x 轴,y 轴分别交于A ,B 两点,请在图①中画出直线y =-12x +4,并探究两函数的图象与x 轴围成的三角形的特点;(2)如图②,已知点M 和点N 的坐标分别为(3,4)和(-2,-1),问在y 轴上是否存在一点P ,使△MNP 是以点M 或点N 为直角顶点的直角三角形?若存在,请求出P 的坐标;若不存在,请说明理由.y xB AO(图①))yx MN O(图②))第一讲-参考答案1.(2,0) 2.x >-13.⎩⎨⎧x =1,y =44.(1)(-3,0),x =-3; (2)①x =-2;②x <-2;③y <1. 5.(-4,0)6.D 7.(1)x <-3,x >-3; (2)9;(3)-1,-4; (4)-4≤x <-1;(5)0,-12;(6)(-2,-2).8.(1)⎩⎨⎧x =-4,y =-2,(-4,-2);(2)x >-4;(3)x ≤-4;(4)x ≥-4.9.A10.x >-211.(1)b =2,12x y =⎧⎨=⎩; (2)2833y x =-+;(3)由(2)可知m =23-,n =83,∴ y =83x -23,当x =1时,y =2.∴直线l 3:y =nx +m 也经过点P . (4)1<x <4.12.D 13.B 14.A 15.D 16.D17.解:(1)s =50(020)1000(2030)50500(3060)t t t t t ⎧⎪⎨⎪-⎩≤≤<≤<≤;(2)设小朱的爸爸所走的路程s 与步行时间t 的函数关系式为:s =kt +b ,则251000250k b b +=⎧⎨=⎩,解得30250k b =⎧⎨=⎩,则小朱的爸爸所走的路程与步行时间的关系式为:s =30t +250, 当50t -500=30t +250,即t =37.5min 时,小朱与爸爸第三次相遇; (3)30t +250=2500,解得,t =75,则小朱的爸爸到达公园需要75min , ∵小朱到达公园需要的时间是60min ,∴小朱希望比爸爸早20min 到达公园,则小朱在步行过程中停留的时间需减少5min .18.解:(1)v =2402-1=240(km/h ).答:高铁的平均速度是每小时240千米; (2)设乘坐高铁时路程与时间的关系式为y =kt +b ,当t =1时,y =0,当t =2时,y =240,得:⎩⎨⎧0=k +b 240=2k +b ,解得:⎩⎨⎧k =240b =-240,故把t =1.5代入y =240t -240,得y =120, 设乘坐私家车时路程与时间的关系式为y =at , 当t =1.5,y =120,得a =80,∴y =80t , 当t =2,y =160,216-160=56(千米), ∴小卓卓距离游乐园还有56千米; (3)把y =216代入y =80t ,得t =2.7,2.7-1860=2.4(小时),216 2.4=90(千米/时).∴小卓卓要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.19.解:(1)35千米;乙;3516小时; (2)对于乙队,x =1时,y =16,所以y =16x ,对于甲队,出发1小时后,设y 与x 关系为y =kx +b ,把x =1,y =20和x =2.5,y =35代入,得⎩⎨⎧20=k +b35=2.5k +b,则y =10x +10.联立方程组,⎩⎨⎧y =16x y =10x +10,得x =53,即:出发1小时40分钟后,乙队追上甲队; (3)1小时之内,两队相距最远距离是4千米,即当x =3516时,y 甲=10×3516+10=31.875,y 乙=35,y 甲-y 乙=35-31.875=3.125; 当x =1时,y 甲-y 乙=20-16=4;∵3.125<4,所以比赛过程中,甲、乙两队在出发后1小时相距最远.20.(1)3<x <6;(2)-1<x <2. 21.C22.(1)图略;用勾股定理的逆定理可以证明两函数与x 轴围成的三角形是一个直角三角形; (2)设P (0,y ),①当PM为斜边时,PN2+MN2=PM2,即(-2)2+(-1-y)2+25+25=32+(4-y)2,解得:y=-3,即P为(0,-3);②当PN为斜边时,PM2+MN2=PN2,即32+(4-y)2+25+25=(-2)2+(-1-y)2,解得:y=7,即P为(0,7);综上所述,在y轴上存在一点P,使△MNP是直角三角形,P为(0,-3)或(0,7).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从函数的观点看方程及不等式
新疆布尔津县初级中学 刘海燕
关键词:函数,方程(组),不等式(组),关系。

摘要:研究目的:加深对函数与方程(组),函数与不等式(组)的
理解。

研究内容:函数与方程(组),函数与不等式(组)之间的关系。

基本结论:它们可以相互转化。

数学是研究现实世界量的关系的学科———恩格斯。

由于数学概念﹑理论和方法都源于实际,是从现实世界的材料中抽象出来的。

数学内容之间相互联系,充满运动变化和对立统一的辨证关系。

函数和方程(方程组)及不等式的这种对应关系正是这种辨证关系的真实写照。

一、函数与方程的关系。

(一)、从关系式上看:一次函数的关系式为:y=ax+b(a ≠0),一元一次方程的一般形式为:ax+b=0(a ≠0) 从形式上可以看出,当把一次函数关系式中的因变量y 改写为整数0就可将函数式转化为方程式;反之,把一元一次方程一般式等号右边的0改写为一个变量y 就可将方程式转化为函数式。

同理,二次函数的关系式为y=ax 2+bx+c(a ≠0),一元二次方程的一般形式为ax 2+bx+c=0(a ≠0),当把二次函数关系式中的因变量y 改写为整数0就可将函数式转化为方程式;将方程式右边的0换成一个变量y 则方程式变为函数式。

(二)、从函数的图象与方程的解来看。

一次函数的图象是一条直线,这条直线必与x 轴相交,其交点坐标为(-a
b ,0),也就是当因变量y=0时其自变量x=-a
b ,这个x 的值就是方程ax+b=0(a ≠0)的解,换句话说方程ax+b=0(a ≠0)的解就是相对应函数的图象,直线y=ax+b 上无数个点中的与x 轴相交的那一点的横坐标;二次函数的图象是一条抛物线,这条抛物线与x 轴的位置关系有三种情况:当抛物线与x 轴有一个交点时,相对应的方程ax 2+bx+c=0(a ≠0)就有两个相等的实数根x 1=x 2=-a
b 2,当抛物线与x 轴有两个交点时,相对应的方程ax 2+bx+c=0(a
≠0)就有两个不相等的实数根x1=
a ac
b b
2
4 2-
+
-
,x2=
a ac
b b
2
4 2-
-
-
,当抛物线与x轴没有交点时,相对应的方程ax2+bx+c=0(a≠0)就没有实数根。

也就是说方程ax2+bx+c=0(a≠0)的解就是相对应抛物线y= ax2+bx+c=0(a≠0)上无数个点中的与x轴相交的那一点或两点的横坐标。

二、函数二元一次方程组的关系。

当把二元一次方程组中每个方程右边的0改写成变量y,就可将方程组转化为两个一次函数式。

其解恰好为这两个一次函数图象交点的坐标。

三、一次函数与一元一次不等式的关系。

(一)、从关系式上看:一次函数y=ax+b(a≠0)与一元一次不等式ax+b>0(a ≠0)或ax+b<0(a≠0)从形式上看,把函数式中的因变量y换成0,把等号改成不等号(≤,≥,<,>,≠)就可以将函数关系式转化为不等式,反之亦然。

(二)、从函数的图象与不等式的解集来看。

一次函数的图象必与x轴相交,其交点将这条直线分割成两条射线,其中一条在x轴的上方,另一条在x轴的下方,当ax+b≥0(a>0)时其解集为相对应直线y=ax+b在x轴上方的那条射线上的无数点的横坐标。

当ax+b≤0(a>0)时其解集为相对应直线y=ax+b在x轴下方的那条射线上的无数点的横坐标。

四、二次函数与一元二次不等式的关系。

二次函数的关系式为y=ax2+bx+c(a≠0),一元二次不等式的一般形式为ax2+bx+c>0(a≠0)或ax2+bx+c<0(a≠0)从形式上看,把函数式中的因变量y换成0,把等号改成不等号(≤,≥,<,>,≠)就可以将函数关系式转化为不等式,反之就可将不等式转化为函数关系式。

(二)、从函数的图象与不等式的解集来看。

二次函数的图象是一条抛物线,这条抛物线与x轴的位置关系有三种情况:当抛物线y=ax2+bx+c(a>0)与x轴有无交点时,相对应不等式ax2+bx+c>0(a>0)的解集为全体实数,而不等式ax2+bx+c<0(a>0)的解集为空集;当抛物线y=ax2+bx+c(a>0)与x轴有一个交点时,相对应不等式ax2+bx+c>0(a>0)的解集为除了抛物线与x轴的交点以外的所有点的横坐标,而不等式ax2+bx+c<0(a>0)的解集为空集;当抛物线y=ax2+bx+c(a>0)与x轴有两个交点时,相对应不等
式ax2+bx+c>0(a>0)的解集为在x轴上方的那两条曲射线上的无数点的横坐标(交点除外),而不等式ax2+bx+c<0(a>0)的解集为在x轴下方的那条曲线段上的无数点的横坐标(交点除外)。

当抛物线y=ax2+bx+c(a<0)与x轴有无交点时,相对应不等式ax2+bx+c>0(a>0)的解集为空集,而不等式ax2+b<0(a>0)的解集为全体实数;当抛物线y=ax2+bx+c(a<0)与x轴有一个交点时,相对应不等式ax2+bx+c>0(a>0)的解集空集,而不等式ax2+bx+c<0(a>0)的解集为除了抛物线与x轴的交点以外的所有点的横坐标;当抛物线y=ax2+bx+c(a<0)与x轴有两个交点时,相对应不等式ax2+bx+c>0(a>0)的解集为在x轴上方的那条曲线段上的无数点的横坐标(交点除外)。

而不等式ax2+bx+c<0(a>0)的解集为在x轴下方的那两条曲射线上的无数点的横坐标(交点除外)。

函数和方程(方程组)及不等式的这种对应关系,在现实世界中应用非常广泛,值得我们进一步研讨。

参考文献:无
作者简介:姓名:刘海燕,性别:女,年龄:37岁,籍贯:甘肃。

工作单位:布尔津初级中学教师,职称:中教一级,职务:教师,
学历:本科,学科:初中数学,研究方向:教育教学。

类别:A。

相关文档
最新文档