matlab经典教程 第二讲 2matlab符号计算2图文18 共32页

合集下载

第二讲 MATLAB基本运算

第二讲 MATLAB基本运算

g(1,:)=[]
%删除整个一行
2022/10/31
17
2.2 矩阵基础与操作(续)
矩阵连接(由小矩阵连接成大矩阵) 例如: ag=[a ones(size(a)); zeros(size(a)) -a]
ag1=[a;10 11 12], ag2=[a [10 11 12]']
2022/10/31
2022/10/31
19
2.2.2 向量(数组)的生成
向量是仅有一行或一列的矩阵,所以矩阵的创 建方法适用于向量 a=m:p:n %以m为起点n为终点生成步
长为p的均匀等分向量 a=m:n %p=1时可省略 linspace(m,n,s) %生成始于m终于n的s个线
性等分点 linspace(m,n) % s=100时可省略
第 2 章 MATLAB基本操作
2.1 MATLAB表达式 2.2 矩阵基础与操作 2.4 逻辑和关系运算 2.5 操作和特殊字符 2.6 基本矩阵和矩阵操作 2.7 基本数学函数
2022/10/31
1
2.1.1 变量
MATLAB 语言的变量名规则
以字母开头,后面可跟字母、数字、下划线 区分字母大小写 注:不需声明,不需指明类型
2022/10/31
3
2.1.3 数值
通过菜单可设置数值的输出格式 复数的产生
c=a+i*b %产生实部为a虚部为b的复数c real(c) %求复数c的实部 imag(c) %求复数c的虚部
2022/10/31
4
2.1.4 运算符
数学运算符 关系运算符 逻辑运算符 位运算符 集合运算符
2022/10/31
x1=a+b, x2=b*a, x3=a*c, x4=a*d, x5=a.*d y1=a-10, y2=diag(a), y3=diag([10 20 30]) z1=fliplr(e), z2=flipud(e), z3=reshape(e,4,2) z4=cat(1,e,f) z5=cat(2,e,f) z6=cat(3,e,f) z7=repmat(c,2,2), z8=fix(100*(10-20*rand(2,5)))/100

第2章 matlab的符号运算

第2章 matlab的符号运算

>>p0 = sym(‘(1+sqrt(5))/2’)
p0 = (1+sqrt(5))/2 >>pr = sym((1+sqrt(5))/2,'r') pr =7286977268806824*2^(-52) >>e32r = vpa(abs(p0-pr),16) e32r = 0
%广义有理表示
Matlab程序设计
Matlab程序设计
2.2 符号数字 sc = sym(‘Num’) %符号常数sc的值精确等于Num 例:a = pi + sqrt(5) %a为数值类常量 sa = sym(‘pi + sqrt(5)’) %sa为符号数字常量
% sa = pi + sqrt(5), sym型; eval(sa) 为5.3777, double型
k = sym('k','positive');
Matlab程序设计
2.4 符号变量
符号变量与符号参数的创建方法相同,但表达式或 方程中作用不同. 确定自由符号变量: findsym(EXPR , N) %确认EXPR中距离x最近的N个自由符号变
量, 略去N表示全部
例2.1-1 用符号计算研究方程uz2+vz+w=0的解 syms u v w z Eq=u*z^2+v*z+w; %符号方程 r_1=solve(Eq) %一个方程只能解一个未知数w(离x最近) findsym(Eq,1) %只找一个自由符号变量,则找到w r_2=solve(Eq,z)
3.3 符号表达式的操作 例:化简 S=(x2+y2)2+(x2-y2)2 syms x y; S=(x^2+y^2)^2+(x^2-y^2)^2 simple(S) %系统自动试探各种函数化简 simple(ans) %使用多次找到最少字母的简化式 例2.2-3:对符号矩阵进行特征向量分解. syms a b c d W [V,D]=eig([a b;c d]) [RVD,W]=subexpr([V;D],W)

MATLAB符号运算PPT课件

MATLAB符号运算PPT课件
sym函数用来建立单个符号量,一般调用格式为: 符号量名=sym('符号字符串') 该函数可以建立一个符号量,符号字符串可以是常量、变 量、函数或表达式。 应用sym函数还可以定义符号常量,使用符号常量进行 代数运算时和数值常量进行的运算不同。
2021/5/8
8
2.9 符号变量和符号达式
(2) syms 函数
符号变量和符号表达式在使用前必须说明
syms函数 如果一个数学符号表示式中有多个符号,

z = a*t^2+b*t+c 可以用多个符号变量定义语
句放在此式前面。
>> clear
>> syms a b c t
>> whos
Name Size
Bytes Class
a
1x1
126 sym object
运算复杂的数学式,这也是我们使用它的目的。
2021/5/8
5
2.8数值运算与符号运算
数值运算在运算前必须先对变量赋值,再参加 运算。
符号运算不需要对变量赋值就可运算,运算结 果以标准的符号形式表达。
2021/5/8
6
2.8数值运算与符号运算
在MATLAB中是将一符号表示式储存唯 一字串 (character string),即是以二个单 引号之内的表示式来定义其为 一符号式, 例如:
b
1x1
126 sym object
c
1x1
126 sym object
t
1x1
126 sym object
2021/5/8
12
2.10 符号表示式的运算
2.10.1 算术运算或四则运算

第2章 MATLAB的基本操作-符号运算

第2章 MATLAB的基本操作-符号运算
17

>>clear >> f1 =sym('(exp(x)+x)*(x+2)'); >> f2 = sym('a^3-1'); >> f3 = sym('1/a^4+2/a^3+3/a^2+4/a+ 5'); >> f4 = sym('sin(x)^2+cos(x)^2'); >> collect(f1) %合并同类项 ans = x^2+(exp(x)+2)*x+2*exp(x) >>expand(f1) %展开 ans = exp(x)*x+2*exp(x)+x^2+2*x >>factor(f2) %分解因式 ans = (a-1)*(a^2+a+1) >> [m,n]=numden(f3) %m为分子,n为分母 m= 1+2*a+3*a^2+4*a^3+5*a^4 n= a^4 >> simplify(f4) ans = 1
>>clear >>f1 = sym('1/(a-b) '); >>f2 = sym('2*a/(a+b) '); >>f3 = sym(' (a+1)*(b-1)* (a-b) '); >> f1+f2 %符号和 ans = 1/(a-b)+2*a/(a+b) >> f1*f3 %符号积 ans = (a+1)*(b-1) >> f1/f3 %符号商 ans = 1/(a-b)^2/(a+1)/(b-1)

MatLab教程第 2 章符号计算

MatLab教程第 2 章符号计算

第 2 章 符号计算所谓符号计算是指:解算数学表达式、方程不是在离散化的数值点上进行,而是凭借一系列恒等式,数学定理,通过推理和演绎,力求获得解析结果。

这种计算建立在数值完全准确表达和推演严格解析的基础之上,因此所得结果是完全准确的。

本书之所以把符号计算内容放在第2章,是出于以下考虑:一,相对于MATLAB 的数值计算“引擎”和“函数库”而言,符号计算的“引擎”和“函数库”是独立的。

二,在相当一些场合,符号计算解算问题的指令和过程,显得比数值计算更自然、更简明。

三,大多数理工科的本科学生在学过高等数学和其他专业基础课以后,比较习惯符号计算的解题理念和模式。

在编写本章时,作者在充分考虑符号计算独立性的同时,还考虑了章节的自完整性。

为此,本章不但全面地阐述符号计算,而且在最后一节还详细叙述了符号计算结果的可视化。

这样的安排,将使读者在阅读完本章后,就有可能运用MATLAB 的符号计算能力去解决相当一些具体问题。

2.1符号对象和符号表达式2.1.1 符号对象的创建和衍生 一 生成符号对象的基本规则 二符号数字【例2.1-1】符号(类)数字与数值(类)数字之间的差异。

a=pi+sqrt(5) sa=sym('pi+sqrt(5)') Ca=class(a) Csa=class(sa) vpa(sa-a)a =5.3777 sa =pi+sqrt(5) Ca = double Csa = sym ans =.138223758410852e-16三 符号参数 四符号变量【例2.1-2】用符号计算研究方程02=++w vz uz 的解。

(1)syms u v w z Eq=u*z^2+v*z+w;result_1=solve(Eq) % findsym(Eq,1)result_1 =-u*z^2-v*zans =w(2)result_2=solve(Eq,z)result_2 =1/2/u*(-v+(v^2-4*u*w)^(1/2))1/2/u*(-v-(v^2-4*u*w)^(1/2))【例2.1-3】对独立自由符号变量的自动辨认。

第二讲 MATLAB符号计算

第二讲 MATLAB符号计算

符号矩阵中元素的引用和修改
>> A=sym(’[1+x, sin(x); 5, exp(x)]’) >> A(1,2) >> A(2,2)=sym(’cos(x)’)
MATLAB 符号运算
符号矩阵的基本运算
符号矩阵的基本运算与数值矩阵的基本运算相类似。
1) 基本运算符:+、-、*、\、/、
2 n 1

1
>> syms n >> S=symsum(1/n^2,n,1,inf) >> S10=symsum(1/n^2,n,1,10)

S=1/6*pi^2 S10=1968329/1270080
例:求函数级数
S
n
n 1
x
2
>> syms n x >> S=symsum(x/n^2,n,1,inf)
x x x
MATLAB 符号运算
分式通分: numden
[N,D]=numden(f): N为通分后的分子,D为通分后的分母
MATLAB 符号运算
六大常见符号运算
因式分解、展开、合并、简化及通分等
计算极限 limit(f,x,a): 计算 lim f ( x )
x a
limit(f,a): 计算默认自变量趋向于a时f的极限 limit(f): 计算 a=0 时的极限 limit(f,x,a,’right’):右极限 limit(f,x,a,’left’):左极限
R
3*cos(x)^2-1 (x+1)^3 4*x^3-3*x
HOW
simplify combine(trig) factor expand
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档