2016年北京中考一模数学压轴试题汇编(几何、新定义)
北京市各区2016年中考数学一模汇编尺规作图

北京市2016年各区中考一模汇编平面几何之尺规作图1【2016丰台一模,第09题】如图,△ABC 中,AC <BC ,如果用尺规作图的方法在BC 上 确定一点P ,使PA +PC =BC ,那么符合要求的作图痕迹是A B C D2.【2016东城一模,第16题】 阅读下面材料: 在数学课上,老师提出如下问题甲、乙、丙、丁四位同学的主要作法如下:请你判断哪位同学的作法正确 ;这位同学作图的依据是请你判断哪位同学的作法正确 ; 这位同学作图的依据是 .PA +PC =BC .为圆心,BA 长为半径画弧,交就是所求的点.是所求的点.A BC3.【2016平谷一模,第16题】 阅读下面材料:在数学课上,老师提出如下问题:请回答:小米的作图依据是_________________________.4.【2016朝阳一模,第16题】阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.尺规作图:经过已知直线上一点作这条直线的垂线. 已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C .如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点;(2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ;(3)作直线CF .所以直线CF 就是所求作的垂线.请回答:小艾这样作图的依据是____________.5.【2016海淀一模,第16题】阅读下面材料在数学课上,老师提出如下问题:请回答:小云的作图依据是6.【2016西城一模,第14题】已知⊙O ,如图所示.(1)求作⊙O 的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2)若⊙O 的半径为4,则它的内接正方形的边长为_______________.7.【2016通州一模,第15题】在学习“用直尺和圆规作射线OC ,使它平分∠AOB ”时,教科书介绍如下: *作法:(1)以O 为圆心,任意长为半径作弧, 交OA 于D ,交OB 于E ;(2)分别以D,E为圆心,以大于12DE的同样长为半径作弧,两弧交于点C;(3)作射线OC.则OC就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.小华的思路是连接DC、EC,可证△ODC≌△OEC,就能得到∠AOC=∠BOC. 其中证明△ODC≌△OEC的理由是_______________________________________.详细解答1. C2.丁;垂直平分线上的点到线段两端的距离相等;等量代换3.全等三角形“SSS”判定定理;全等三角形对应角相等;两点确定一条直线.4.等腰三角形“三线合一”;两点确定一条直线.5.四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)6.7.8.SSS;。
北京2016届初三一模专题16--新定义综合题

2016届初三一模专题14---新定义综合题1顺义29.在平面直角坐标系xOy 中,点P (a ,b )的“变换点”Q 的坐标定义如下:当a b ≥时,Q 点坐标为(b ,-a ); 当a b <时,Q 点坐标为(a ,-b ).(1)求(-2,3),(6,-1)的变换点坐标;(2)已知直线l 与x 轴交于点A (4,0),与y 轴交于点B (0,2).若直线l 上所有点的变换点组成一个新的图形,记作图形W ,请画出图形W ,并简要说明画图的思路; (3)若抛物线234y x c =-+与图形W 有三个交点,请直接写出c 的取值范围.2房山29.在平面直角坐标系xoy 中,对于任意三点A ,B ,C 给出如下定义:如果正方形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在正方形的内部或边界上,那么称该正方形为点A ,B ,C 的外延正方形,在点A ,B ,C 所有的外延正方形中,面积最小的正方形称为点A ,B ,C 的最佳外延正方形.例如,图1中的正方形A 1B 1C 1D 1,A 2B 2C 2D 2 ,A 3B 3CD 3都是点A ,B ,C 的外延正方形,正方形A 3B 3CD 3是点A ,B ,C 的最佳外延正方形.(图1) (图2)(1)如图1,点A(-1,0),B(2,4),C(0,t)(t为整数).①如果t=3,则点A,B,C的最佳外延正方形的面积是;②如果点A,B,C的最佳外延正方形的面积是25,且使点C在最佳外延正方形的一边上,请写出一个符合题意的t值;(图3 )(图4)(2)如图3,已知点M(3,0),N(0,4),P(x,y)是抛物线y=x2-2x-3上一点,求点M,N,P的最佳外延正方形的面积以及点P的横坐标x的取值范围;(3)如图4,已知点E(m,n)在函数x6y=(x>0)的图象上,且点D的坐标为(1,1),设点O,D,E的最佳外延正方形的边长为a,请直接写出a的取值范围.3平谷29.对于两个已知图形G1,G2,在G1上任取..一点P,在G2上任取..一点Q,当线段PQ的长度最小时,我们称这个最小长度为G1,G2的“密距”,用字母d表示;当线段PQ 的长度最大时,我们称这个最大的长度为图形G1,G2的“疏距”,用字母f表示.例如,当(1,2)M,(2,2)N时,点O与线.段.MN..的“密距”点O与线.段.MN..的“疏距”为(1)已知,在平面直角坐标系xOy中,()2,0A-,()0,4B,()2,0C,()0,1D,①点O与线段AB的“密距”为,“疏距”为;②线段AB与△COD的“密距”为,“疏距”为;(2)直线2y x b=+与x轴,y轴分别交于点E,F,以()0,1C-为圆心,1为半径作圆,当⊙C与线段EF的“密距”0<d<1时,求⊙C与线段EF的“疏距”f的取值范围.4通县29. 对于⊙P 及一个矩形给出如下定义:如果⊙P 上存在到此矩形四个顶点距离都相等的点,那么称⊙P 是该矩形的“等距圆”.如图,在平面直角坐标系xOy 中,矩形ABCD的顶点A2),顶点C 、D 在x 轴上,且OC =OD. (1)当⊙P 的半径为4时,①在P 1(0,3-),P 2(3),P 3(-,1)中可以成为矩形ABCD 的“等距圆”的圆心的是_________________________; ②如果点P在直线13y x =-+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标;(2)已知点P 在y 轴上,且⊙P 是矩形ABCD 的“等距圆”,如果⊙P 与直线AD 没有公共点,直接写出点P 的纵坐标m 的取值范围.答案:1顺义答案:29.(1)(-2,3)的变换点坐标是(-2,-3),…………………………………….………..1分(6,-1)的变换点坐标是(-1,-6);………………………………………….…..2分.……4分画图的思路:1.由点A ,B 坐标,求出直线l 的解析式;2.求出直线l 上横纵坐标相等的点C 坐标,求出它的变换点'C 的坐标; 3.在直线l 上点C 两侧各选一点E ,F ,求出它们的变换点'E ,'F ;4.作射线''C E ,''C F .………………………………………………………….….…..6分 射线''C E 和''C F 组成的图形即为所求. (3)0c =或2512c =-.………………………………………...………...………..…..8分-----------------------2分----------------------------------3分(2)以ON 为一边在第一象限作正方形OKIN ,如图3① 点M 在正方形OKIN 的边界上,抛物线一部分在正方形OKIN 内,P 是抛物线上一点,∴正方形OKIN 是点M ,N ,P 的一个面积最小的最佳外延正方形 ∴点M ,N ,P 的最佳外延正方形的面积的最小值是16;∴点M ,N ,P 的最佳外延正方形的面积S 的取值范围是:S ≥16 -----------------5分满足条件的点P 的横坐标x 的取值范围是≠x 3 ------------------------------6分(3)6≥a ----------------------------------8分3平谷29.解:(1)4; (2)4 (2)当点F 在y 轴的正半轴时,如图1,EG =1,则EP =2,当d =0时,f =2; (5)当d =1时,由OP =1,得到OE∴OF ∴f ,∴2<f……………………………………………………………………6 当点F 在y 轴的负半轴时,当d =0时,如图2,f; (7)当d =1时,如图3,QH =1,则PH =2, ∵Rt △PHF ∽Rt △OEF , ∴PF= ∴OF=,f<综上所述,当0<d <1时,当点F 在y 轴的正半轴时,2<f,当点F 在yf< (8)4通县29. (1)当⊙P 的半径为4时,①P 1(0,3-),P 2(3); ………………… 2分; ②如果点P在直线1y x =+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标;解:由题意可知:B(2)、D0)发现直线1y x =+经过点B 、D. ………………… 3分;∴直线1y x =+与y 轴的交点E 为(0,1), ∵矩形ABCD 且OC =OD.∴点E 到矩形ABCD∴PE =4,△BFE ≌△DOE∴BF =OD OE =EF =1, ∴222221ED EO OD =+=+∴2ED =,………………… 4分;∴EB =ED =2,当点P 在x 轴下方时,可证△DNP ≌△DOE ,∴DN =OD OE =PN =1,∴点P 的坐标为(-1);………………… 5分; 当点P 在x 轴上方时,可证△EPM ∽△EBF ,∴PM =2BF =ME =2EF =2,∴点P 的坐标为(-,3). ………………… 6分;(2)11m <<m ≠1. ………………… 8分.。
北京市各区2016年中考数学一模汇编平面几何之三角形

309教育网
309教育资源库 北京市2016年各区中考一模汇编
平面几何之三角形
1.【2016东城一模,第20题】如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次)
.
2. 【2016丰台一模,第20题】如图,在ABC ∆中,AD 是BC 边上的高线,BE AC ⊥于点E ,∠BAD =∠CBE.
求证:AB AC =
.
3. 【2016平谷一模,第20题】如图,△ABC 中,AB =AC ,点D 是BC 上一点,DE ⊥AB 于E ,FD ⊥BC 于D ,G 是FC 的中点,连接GD .求证:GD ⊥DE . 432
1A
F
B C
D E G
4.【2016朝阳一模,第20题】如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF . 求证:BAC ∠= 2∠1.
1
F E C
B A。
北京市各区2016年中考数学一模汇编尺规作图

北京市2016年各区中考一模汇编平面几何之尺规作图1【2016丰台一模,第09题】如图,△ABC 中,AC <BC ,如果用尺规作图的方法在BC 上 确定一点P ,使PA +PC =BC ,那么符合要求的作图痕迹是A B C D2.【2016东城一模,第16题】 阅读下面材料: 在数学课上,老师提出如下问题甲、乙、丙、丁四位同学的主要作法如下:请你判断哪位同学的作法正确 ;这位同学作图的依据是请你判断哪位同学的作法正确 ; 这位同学作图的依据是 .PA +PC =BC .为圆心,BA 长为半径画弧,交就是所求的点.是所求的点.A BC3.【2016平谷一模,第16题】 阅读下面材料:在数学课上,老师提出如下问题:请回答:小米的作图依据是_________________________.4.【2016朝阳一模,第16题】阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.尺规作图:经过已知直线上一点作这条直线的垂线. 已知:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C .如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点;(2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ;(3)作直线CF .所以直线CF 就是所求作的垂线.请回答:小艾这样作图的依据是____________.5.【2016海淀一模,第16题】阅读下面材料在数学课上,老师提出如下问题:请回答:小云的作图依据是6.【2016西城一模,第14题】已知⊙O,如图所示.(1)求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法);(2)若⊙O的半径为4,则它的内接正方形的边长为_______________.7.【2016通州一模,第15题】在学习“用直尺和圆规作射线OC,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O为圆心,任意长为半径作弧,交OA于D,交OB于E;(2)分别以D,E为圆心,以大于12DE的同样长为半径作弧,两弧交于点C;(3)作射线OC.则OC就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.小华的思路是连接DC、EC,可证△ODC≌△OEC,就能得到∠AOC=∠BOC. 其中证明△ODC≌△OEC的理由是_______________________________________.详细解答1. C2.丁;垂直平分线上的点到线段两端的距离相等;等量代换3.全等三角形“SSS”判定定理;全等三角形对应角相等;两点确定一条直线.4.等腰三角形“三线合一”;两点确定一条直线.5.四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)6.7.8.SSS;。
北京市各区2016年中考数学一模汇编直线

北京市2016年各区中考一模汇编
直线
1.【2016东城一模,第10题】
如图,点A 的坐标为(0,1),点B 是x 轴正半轴上
的一动点,以AB 为边作等腰Rt △ABC ,使
∠BAC =90°,设点B 的横坐标为x ,设点C 的纵坐标
为y ,能表示y 与x 的函数关系的图象大致是
2.【2016东城一模,第12题】
请你写出一个一次函数,满足条件:○
1经过第一、三、四象限;○2与y 轴的交点坐标为(0,-1). 此一次函数的解析式可以是.
3.【2016通州一模,第05题】
在一定温度下向一定量的水中不断加入食盐(NaCl ),那么能表示食盐溶液的溶质质量分数y 与加入的食盐(NaCl )的量x 之间的变化关系的图象大致是
4.【2016通州一模,第12题】
写出图象经过点(-1,1)的一个函数的表达式是____________________________.
5.【2016西城一模,第13题】
已知函数满足下列两个条件:①当0x >时,y 随x 的增大而增大;②它的图象经过点()1,2,请写出一个符合上述条件的函数的表达式______________.
D.C.
B.A.x
y
O
详细解答1. A
2.
-1
y x
=答案不唯一
3. C
4.
1
y
x
=-、y x
=- (答案不唯一);
5.y=2x (答案不唯一);。
2016北京中考一模函数压轴题

朝阳27.在平面直角坐标系xOy 中,抛物线经过点(0,–3),(2,–3). (1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.大兴27.抛物线21(3)3(0)y mx m x m =+-- 与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,OB=OC . (1)求这条抛物线的表达式;(2)将抛物线y 1向左平移n (n >0)个单位,记平移后y 随着x 的增大而增大的部分为P ,若点C 在直线23=-+y x t 上,直线2y 向下平移n 个单位,当平移后的直线与P 有公共点时,求n 的取值范围.c bx x y ++=2c bx x y ++=2东城27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.=2-y的图象(抛物线)与x轴交于A(1,0),且当+x+bxx=和2=时所对应的函数值相等.x-(1)求此二次函数的表达式;(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.丰台27. 已知抛物线21(2)262y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求m 的值;(2)求A ,B ,C 三点的坐标;(3)过点C 作直线l ∥x 轴,将该抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新的图象,记为G .请你结合图象回答: 当直线b x y +21=与图象G 只有一个公共点时,求b 的取值范围.海淀27.在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含C ,D 两点).若过点A 的直线与图象G 有两个交点,结合函数的图象,求k 的取值范围.xOy 224y mx mx m =-+-+(0)y kx b k =≠xyO怀柔27.在平面直角坐标系中,二次函数y=x 2+mx+2m-7的图象经过点(1,0). (1)求抛物线的表达式;(2)把-4<x<1时的函数图象记为H ,求此时函数的取值范围;(3)在(2)的条件下,将图象H 在x 轴下方的部分沿x 轴翻折,图象H 的其余部分保持不变,得到一个新图象M .若直线y=x+b 与图象M 有三个公共点,求b 的取值范围.门头沟27.已知关于x 的一元二次方程mx 2+(3m +1)x +3=0. (1)求证该方程有两个实数根;(2)如果抛物线y =mx 2+(3m +1)x +3与x 轴交于A 、B 两个整数点(点A 在点B 左侧),且m 为正整数,求此抛物线的表达式;(3)在(2)的条件下,抛物线y =mx 2+(3m +1)x +3与y 轴交于点C ,点B 关于y 轴的对称点为D ,设此抛物线在-3≤x ≤12之间的部分为图象G ,如果图象G 向右平移n (n >0)个单位长度后与直线CD 有公共点,求n 的取值范围.y平谷27.已知:直线:与过点(0,﹣2),且与平行于轴的直线交于点,点关于直线的对称点为点B .(1)求两点的坐标;(2)若抛物线经过A ,B 两点,求抛物线解析式;(3)若抛物线的顶点在直线上移动,当抛物线与线段有一个公共点时,求抛物线顶点横坐标的取值范围.石景山27.在平面直角坐标系xOy 中,抛物线C :142++=x mx y . (1)当抛物线C 经过点()5,6-A 时,求抛物线的表达式及顶点坐标; (2)当直线1+-=x y 与直线3+=x y 关于抛物线C 的对称轴对称时,求m 的值;(3)若抛物线C :142++=x mx y )0(>m 与x 轴的交点的横坐标都在1-和0之间(不包括1-和0),结合函数的图象,求m 的取值范围.顺义27.在平面直角坐标系xOy 中,抛物线22y ax x =-的对称轴为1x =-. (1)求a 的值及抛物线22y ax x =-与x 轴的交点坐标;(2)若抛物线22y ax x m =-+与x 轴有交点,且交点都在点A (-4,0),B (1,0)之间,求m 的取值范围.通州27.已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C .(1)求二次函数的表达式及顶点坐标;(2)将二次函数2y x mx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G . 已知直线l :y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,请直接写出b 的取值范围;(3)如果点()1,P x c 和点()2,Q x c 在函数2y x mx n =++的图象上,且12x x <,2PQ a =. 求21261x ax a -++的值;西城27.在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,. (1)求抛物线1C 的表达式;(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE V 的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.延庆27.已知:抛物线y=x²+bx+c 经过点A (2,-3)和B (4,5). (1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G 1,求图象G 1的表达式; (3)设B 点关于对称轴的对称点为E ,抛物线G 2:y =ax 2(a≠0) 与线段EB 恰有一个公共点,结合函数图象,求a 的取值范围燕山27.抛物线1C :)3)(1(a x x a y -+=(0>a )与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C (0,-3).(1) 求抛物线1C 的解析式及A ,B 点坐标;(2) 将抛物线1C 向上平移3个单位长度,再向左平移n (0n >)个单位长度,得到抛物线2C .若抛物线2C 的顶点在△ABC 内,求n 的取值范围.。
2016数学一模新定义题型

新定义题型(2016东城一模)29. 对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线.(1)当⊙O 的半径为1时,○1分别判断在点D (,14),E (0,-3),F (4,0)中,是⊙O 的相邻点 有__________;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程.○3点P 在直线3y x =-+上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y x =+x 轴,y 轴分别交于点M ,N ,若线段..MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.图1 备用图1备用图229.解:(1)①D ,E . …………2分②连接OD ,过D 作OD 的垂线交⊙O 于A ,B 两点. …………4分 (2)∵⊙O 的半径为1,所以点P 到⊙O 的距离小于等于3,且不等于1时时,符合题意.∵ 点P 在直线3y x =-+上,∴03p x ≤≤. …………6分 (3)09C x ≤≤. …………8分(2016西城一模)29.在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”.(1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是 ; ②线段11A B AB ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为 ;(2)如图2,已知点(C,C与y轴相切于点D.若E的半径为32,圆心E在直:上,且E上的所有点都是关于C的“阴影点”,求圆心E的横线l y=+坐标的取值范围;(3)如图3,M的半径是3,点M到原点的距离为5.点N是M上到原点距离最近∆的“阴影的点,点Q和T是坐标平面内的两个动点,且M上的所有点都是关于NQT∆的周长的最小值.点”,直接写出NQT(2016海淀一模)29.在平面直角坐标系中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若为直线PC与⊙C的一个交点,满足,则称为点P关于⊙C的限距点,右图为点P及其关于⊙C的限距点的示意图.(1)当⊙O的半径为1时.①分别判断点M ,N,T 关于⊙O的限距点是否存在?若存在,求其坐标;②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点存在,求点的横坐标的取值范围;(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r.请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P关于⊙C的限距点存在,且随点P的运动所形成的路径长为,则r 的最小值为__________.若点P关于⊙C的限距点不存在,则r的取值范围为________.29.解:(1)①点M,点T关于⊙O的限距点不存在;点N关于⊙O的限距点存在,坐标为(1,0).………………………2分②∵点D的坐标为(2,0),⊙O半径为1,DE,DF分别切⊙O于点E,点F,∴切点坐标为13()22,,13()22,-.……………3分如图所示,不妨设点E的坐标为13()22,,点F的坐标为13()22,-,EO,FO的延长线分别交⊙O于点'E,'F,则13'()22E--,,13'()22F-,.设点P关于⊙O的限距点的横坐标为x.xOyP'2r PP r'≤≤P'P'(3,4)5(,0)2(1,2)P'P'P'P'rπP'Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P 关于⊙O 的限距点的横坐标x 的范围为112x -≤≤-或x =1. ……………………6分(2)问题1:………………8分 问题2:0 < r <16. ………………7分(2016通州一模)29. 对于⊙P 及一个矩形给出如下定义:如果⊙P 上存在到此矩形四个顶点距离都相等的点,那么称⊙P 是该矩形的“等距圆”.如图,在平面直角坐标系xOy中,矩形ABCD 的顶点A2),顶点C 、D 在x 轴上,且OC =OD. (1)当⊙P 的半径为4时,①在P 1(0,3-),P 2(3),P 3(-,1)中可以成为矩形ABCD 的“等距圆”的圆心的是_________________________; ②如果点P在直线13y x =-+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标;(2)已知点P 在y 轴上,且⊙P 是矩形ABCD 的“等距圆”,如果⊙P 与直线AD 没有公共点,直接写出点P 的纵坐标m 的取值范围.29. (1)当⊙P 的半径为4时,①P 1(0,3-),P 2(3); ………………… 2分; ②如果点P 在直线1y x =+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标;解:由题意可知:B(,2)、D,0)发现直线13y x =-+经过点B 、D. ………………… 3分;∴直线13y x =-+与y 轴的交点E 为(0,1), ∵矩形ABCD 且OC =OD.∴点E 到矩形ABCD∴PE =4,△BFE ≌△DOE∴BF =OD ,OE =EF =1, ∴222221ED EO OD =+=+∴2ED =,………………… 4分;∴EB =ED =2,当点P 在x 轴下方时,可证△DNP ≌△DOE , ∴DN =OD ,OE =PN =1,∴点P 的坐标为(-1);………………… 5分; 当点P 在x 轴上方时,可证△EPM ∽△EBF , ∴PM =2BF =ME =2EF =2,∴点P 的坐标为(-,3). ………………… 6分; (2)11m -<<+m ≠1. ………………… 8分.(2016顺义一模)29.在平面直角坐标系xOy 中,点P (a ,b )的“变换点”Q 的坐标定义如下:当a b ≥时,Q 点坐标为(b ,-a );当a b <时,Q 点坐标为(a ,-b ). (1)求(-2,3),(6,-1)的变换点坐标;(2)已知直线l 与x 轴交于点A (4,0),与y 轴交于点B (0,2).若直线l 上所有点的变换点组成一个新的图形,记作图形W ,请画出图形W ,并简要说明画图的思路; (3)若抛物线234y x c =-+与图形W 有三个交点,请直接写出c 的取值范围. 29.(1)(-2,3)的变换点坐标是(-2,-3),…………………………………….………..1分(6,-1)的变换点坐标是(-1,-6);………………………………………….…..2分分画图的思路:1.由点A ,B 坐标,求出直线l 的解析式;2.求出直线l 上横纵坐标相等的点C 坐标,求出它的变换点'C 的坐标; 3.在直线l 上点C 两侧各选一点E ,F ,求出它们的变换点'E ,'F ; 4.作射线''C E ,''C F .………………………………………………………….….…..6分 射线''C E 和''C F 组成的图形即为所求. (3)0c =或2512c =-.………………………………………...………...………..…..8分(2016朝阳一模)29.在平面直角坐标系xOy 中,A (t ,0),B (,0),对于线段AB 和x 轴上方的点P 给出如下定义:当∠APB=60°时,称点P 为AB 的“等角点”.(1)若,在点302C ⎛⎫⎪⎝⎭,,D ⎫⎪⎪⎝⎭,32E ⎛⎫ ⎪⎪⎝⎭中,线段AB 的“等角点”是 ;(2)直线MN 分别交x 轴、y 轴于点M 、N ,点M 的坐标是(6,0),∠OMN=30°.①线段AB 的“等角点”P 在直线MN 上,且∠ABP =90°,求点P 的坐标; ②在①的条件下,过点B 作BQ ⊥P A ,交MN 于点Q ,求∠AQB 的度数; ③若线段AB 的所有“等角点”都在△MON 内部,则t 的取值范围是 .3t 32t28.解:(1)如图,补全图1. …………….………………………………………………1分∠DBA=. ……………….………………………………………………2分(2) 过点P 作PE ∥AC 交AB 于点E . ………………………………………………3分 ∴PEB CAB ∠=∠.∵ AC =BC ,∴CAB CBA ∠=∠. ∴PEB PBE ∠=∠. ∴PE PB =.又∵BPD DPE EPA DPE α∠+∠=∠+∠=, ∴BPD EPA ∠=∠. ∵PD PA =,∴△PDB ≌△PAE .…………………………………………………………4分 ∵11(180)9022PBA PEB αα∠=∠=︒-=︒-, ∴180PBD PEA PEB ∠=∠=︒-∠=α2190+︒.∴DBA PBD PBA α∠=∠-∠=. …………………………………………5分 (3)求解思路如下:a .作AH ⊥BC 于H ;b .由∠C =30º,AC =2,可得AH =1,CH =3,BH =23-, 勾股定理可求AB ; ………………………………………6分c .由∠APC =135 º,可得∠APH =45 º,AP =2 ;d .由∠APD =∠C =30º,AC =BC ,AP =DP ,可得△PAD ∽△CAB ,由相似比可求AD 的长. ……………7分 29.解:(1)C ,D . ……….…………….………….…….………….………………2分 (2)①如图,︒90PEDC BAHABC DP∵∠APB=60°,∠ABP =90°, ∴∠PAB =30°,又∵∠OMN=30°,∴,.PA PM AB BM == ……………3分∵∴BM =∴∴P(61). .………..……….….………….………….…………4分 ②∵BQ ⊥AP ,且∠APB =60º,∴∠PBQ =30º. ∴∠ABQ =60º.∴∠BMQ =∠MQB =30º. ……5分 ∴BQ = BM =AB .∴△ABQ 是等边三角形.∴∠AQB =60º. ………………………………………………………6分同理,当点N 在x 轴下方时,可得P(1),∠AQB =90º. ………7分③142t -<<…………………………………………………8分(2016房山一模)29.在平面直角坐标系xoy 中,对于任意三点A ,B ,C 给出如下定义:如果正方形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在正方形的内部或边界上,那么称该正方形为点A ,B ,C 的外延正方形,在点A ,B ,C 所有的外延正方形中,面积最小的正方形称为点A ,B ,C 的最佳外延正方形.例如,图1中的正方形A 1B 1C 1D 1,A 2B 2C 2D 2 ,A 3B 3CD 3都是点A ,B ,C 的外延正方形,正方形A 3B 3CD 3是点A ,B ,C 的最佳外延正方形.,3=AB .1=PB NMNM(图1) (图2) (1)如图1,点A (-1,0),B (2,4),C (0,t )(t 为整数).① 如果t =3,则点A ,B ,C 的最佳外延正方形的面积是 ; ② 如果点A ,B ,C 的最佳外延正方形的面积是25,且使点C 在最佳外延正方形的一边上,请写出一个符合题意的t 值 ;(图3 ) (图4)(2)如图3,已知点M (3,0),N (0,4),P (x ,y )是抛物线y=x 2-2x -3上一点,求点M ,N ,P 的最佳外延正方形的面积以及点P 的横坐标x 的取值范围;(3)如图4,已知点E (m ,n )在函数x6y (x >0)的图象上,且点D 的坐标为(1,1),设点O ,D ,E 的最佳外延正方形的边长为a ,请直接写出a 的取值范围.29.解:(1)① 16 ; ---------------------------------2分② 5或-1 ; ----------------------------------3分xy12345–1–2–3–4–512345–1–2–3–4–5B 1C 1B 2C 2C B 3oA 2D 3A 1A 3D 1D 2A By12345–1–2–3–4–512345–1–2–3–4–5Do(2)以ON 为一边在第一象限作正方形OKIN ,如图3①点M 在正方形OKIN 的边界上,抛物线一部分在正方形OKIN 内,P 是抛物线上一点, ∴正方形OKIN 是点M ,N ,P 的一个面积最小的最佳外延正方形 ∴点M ,N ,P 的最佳外延正方形的面积的最小值是16;∴点M ,N ,P 的最佳外延正方形的面积S 的取值范围是:S ≥16 -----------------5分满足条件的点P 的横坐标x 的取值范围是≠x 3 ------------------------------6分(3)6≥a ----------------------------------8分(2016丰台一模)29. 如图,点P ( x , y 1)与Q (x , y 2)分别是两个函数图象C 1与C 2上的任一点. 当a ≤ x ≤ b 时,有-1 ≤ y 1 - y 2 ≤ 1成立,则称这两个函数在a ≤ x ≤ b 上是“相邻函数”,否则称它们在a ≤ x ≤ b 上是“非相邻函数”. 例如,点P (x , y 1)与Q (x , y 2)分别是两个函数y = 3x +1与y = 2x - 1图象上的任一点,当-3 ≤ x ≤ -1时,y 1 - y 2 = (3x + 1) - (2x - 1) = x + 2,通过构造函数y = x + 2并研究它在-3 ≤ x ≤ -1上的性质,得到该函数值的范围是-1 ≤ y ≤ 1,所以-1 ≤ y 1 - y 2 ≤ 1成立,因此这两个函数在-3 ≤ x ≤ -1上是“相邻函数”.(1)判断函数y = 3x + 2与y = 2x + 1在-2 ≤ x ≤ 0上是否为“相邻函数”,并说明理由; (2)若函数y = x 2 - x 与y = x - a 在0 ≤ x ≤ 2上是“相邻函数”,求a 的取值范围;(3)若函数y =xa与y =-2x + 4在1 ≤ x ≤ 2上是“相邻函数”,直接写出a 的最大值与最小值. 29.解:(1)是“相邻函数”. ----------- 1分 理由如下:12(32)(21)1y y x x x -=+-+=+,构造函数1y x =+.∵1y x =+在20x -≤≤上随着x 的增大而增大,∴当0x =时,函数有最大值1,当2x =-时,函数有最小值-1,即11y -≤≤. ∴1211y y -≤-≤. ----------- 3分 即函数32y x =+与21y x =+在20x -≤≤上是“相邻函数”. (2)2212()()2y y x x x a x x a -=---=-+,构造函数22y x x a =-+.∵222(1)(1)=-+=-+-y x x a x a , ∴顶点坐标为(1,1)-a .又∵抛物线22y x x a =-+的开口向上,∴当1x =时,函数有最小值1a -,当0x =或2x =时,函数有最大值a ,即1a y a -≤≤,∵函数2y x x =-与y x a =-在02x ≤≤上是 “相邻函数”, ∴1211y y -≤-≤,即1,1 1.≤⎧⎨-≥-⎩a a∴01a ≤≤. ----------- 6分(3)a 的最大值是2,a 的最小值1. ----------- 8分(2016门头沟一模)29.如图1,P 为∠MON 平分线OC 上一点,以P 为顶点的∠APB 两边分别与射线OM 和ON 交于A 、B 两点,如果∠APB 在绕点P 旋转时始终满足OA ·OB =OP 2,我们就把∠APB 叫做∠MON 的关联角.图1 图2 图3(1)如图2,P 为∠MON 平分线OC 上一点,过P 作PB ⊥ON 于B ,AP ⊥OC 于P ,那么∠APB ∠MON 的关联角(填“是”或“不是”).(2)① 如图3,如果∠MON =60°,OP =2,∠APB 是∠MON 的关联角,连接AB ,求△AOB 的面积和∠APB 的度数;A BO MNCPA N M O CPBAOM CNP B② 如果∠MON =α°(0°<α°<90°),OP =m ,∠APB 是∠MON 的关联角,直接用含有α和m 的代数式表示△AOB 的面积. (3)如图4,点C 是函数2y x=(x >0)图象上一个动点,过点C 的直线CD 分别交x 轴和y 轴于A ,B 两点,且满足BC =2CA ,直接写出∠AOB 的关联角∠APB 的顶点P 的坐标.图429.(本小题满分8分) 解:(1)是.……………………………………………………………………………1分(2)① 如图,过点A 作AH ⊥OB 于点H .∵∠APB 是∠MON 的关联角,OP =2,∴OA ·OB =OP 2=4.在Rt △AOH 中,∠AOH =90°, ∴sin AH AOH OA∠=,∴sin AH OA AOH =⋅∠.∴S △AOB 111sin sin60222OB AH OB OA AOH OB OA =⋅⋅=⋅⋅∠=⋅⋅︒,2211sin 60222OP =⋅⋅︒=⨯=3分 ∵∠APB 是∠MON 的关联角,∴OA ·OB =OP 2,即OA OPOP OB=. ∵点P 为∠MON 的平分线上一点, ∴ ∠AOP =∠BOP =160302⨯︒=︒.∴△AOP ∽△POB . ∴∠OAP =∠OPB .∴∠APB =∠OPB +∠OPA =∠OAP +∠OPA =180°-30°=150°.……5分 ② S △AOB 21sin 2m α=⋅⋅.……………………………………………………6分(3)P点的坐标为⎝⎭,⎝⎭.…………………………………8分(2016平谷一模)29.对于两个已知图形G 1,G 2,在G 1上任取..一点P ,在G 2上任取..一OxyCH A O M C N P B点Q ,当线段PQ 的长度最小时,我们称这个最小长度为G 1,G 2的“密距”,用字母d 表示;当线段PQ 的长度最大时,我们称这个最大的长度为图形G 1,G 2的“疏距”,用字母f 表示.例如,当(1,2)M ,(2,2)N 时,点O 与线.段.MN ..的“密距”为5,点O 与线.段.MN ..的“疏距”为22.(1)已知,在平面直角坐标系xOy 中,()2,0A -,()0,4B ,()2,0C ,()0,1D , ①点O 与线段AB 的“密距”为,“疏距”为; ②线段AB 与△COD 的“密距”为,“疏距”为;(2)直线2y x b =+与x 轴,y 轴分别交于点E ,F ,以()0,1C -为圆心,1为半径作圆,当⊙C 与线段EF 的“密距”0<d <1时,求⊙C 与线段EF 的“疏距”f 的取值范围.29.解:(1)①455;4;……………………………………………………………………2 ②355;25;…………………………………………………………………4 (2)当点F 在y 轴的正半轴时,如图1,EG =1,则EP =2,当d =0时,f =2; (5)当d =1时,备用图yxGE COFyxHECO FyxQHECO F由OP =1,得到OE ,∴OF ,∴f ,∴2<f +2.……………………………………………………………………6 当点F 在y 轴的负半轴时,当d =0时,如图2,f ; (7)当d =1时,如图3,QH =1,则PH =2, ∵Rt △PHF ∽Rt △OEF ,∴PF =∴OF =,f <综上所述,当0<d <1时,当点F 在y 轴的正半轴时,2<f +2,当点F 在y f < (8)(2016怀柔一模)29.给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值时,就称该最小值为两个图形G 1和G 2之间的“近距离”;如果线段PQ 的长度存在最大值时,就称该最大值为两个图形G 1和G 2之间的“远距离” . 请你在学习,理解上述定义的基础上,解决下面问题: 在平面直角坐标系xOy 中,点A (-4, 3),B (-4,-3),C (4,-3),D (4, 3). (1)请在平面直角坐标系中画出四边形ABCD ,直接写出线段AB 和线段CD 的“近距离”和“远距离”. (2)设直线b x y +=34(b>0)与x 轴,y 轴分别交于点E ,F ,若线段EF 与四边形ABCD 的“近距离”是1,求它们的“远距离” ;(3)在平面直角坐标系xOy 中,有一个矩形GHMN ,若此矩形至少有一个顶点在以O 为圆心,2为半径的圆上,其余各点可能在圆上或圆内.将四边形ABCD 绕着点O 旋转一周,在旋转的过程中,它与矩形GHMN 的“远距离”的最大值是 ;“近距离”的最小值是 .29.解:(1)画图. ………………………………1分 “近距离”是 8 . ………………………………2分 “远距离”是 10 . ……………………………3分 (2)①当EF 在矩形ABCD 内部时, ∵“近距离”=1, ∴F (0,2).把F (0,2)代入b x y +=34中,∴b=2. ∴直线EF 的表达式为234+=x y .∴E (23-,0).∵EC=4157, FC=41, ∴FC >EC .∴“远距离”为41 . ……………………………5分 ②当EF 在矩形ABCD 外部时, 由题意可知:E (215-,0), F (0,10), y–1–2–3–4–5–6–7–812345678–1–2–3–4–5–6–712345678910O∴EC=4565, FC=185. ∴FC >EC .∴远距离”为185 . ……………………………6分 综上所述,“远距离”为41或185.(3)最大值是 7 . …………………………7分 最小值是 1 . ……………………………8分(2016大兴一模)29. 设在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值和它对应,那么就说y 是x 的函数,记作()=y f x .在函数()=y f x 中,当自变量=x a 时,相应的函数值y 可以表示为()f a .例如:函数2()23=--f x x x ,当4=x 时,2(4)42435=-⨯-=f 在平面直角坐标系xOy 中,对于函数的零点给出如下定义:如果函数()=y f x 在≤≤a x b 的范围内对应的图象是一条连续不断的曲线,并且().()0f a f b ,那么函数()=y f x 在≤≤a x b 的范围内有零点,即存在c (≤≤a c b ),使()f c =0,则c 叫做这个函数的零点,c 也是方程()0=f x 在≤≤a x b 范围内的根.例如:二次函数2()23=--f x x x 的图象如图所示 观察可知:(2)0-f ,(1)0,f 则(2).(1)0-f f .所以函数2()23=--f x x x 在21-≤≤x 范围内有零点. 由于(1)0-=f ,所以,1-是2()23=--f x x x 的零点,1-也是方程2230--=x x 的根.(1) 观察函数1()=y f x 的图象,回答下列问题:①()().f a f b ______0(“<”“>”或“=”)②在≤≤a x b 范围内1()=y f x 的零点的个数是 _____.(2)已知函数222()1)2)==---y f x a x a a 的零点为1x ,2x且121x x .①求零点为1x ,2x (用a 表示);②在平面直角坐标xOy 中,在x 轴上A, B 两点表示的数是零点1x ,2x ,点 P 为线段AB 上的一个动点(P 点与A 、B 两点不重合),在x 轴上方作等边△APM 和等边△BPN ,记线段MN 的中点为Q ,若a 是整数,求抛物线2y 的表达式并直接写出线段PQ 长的取值范围.29.(1)①< ;………………………………………………… 1分①1个 ………………………………………………… 2分(2)①① x 1、x 2是零点① 令221)2)0a x a a ---=. 方程可化简为 222(1)(2)0x a x a a +-+-=. 解方程,得x a =- 或2x a =-+. ① x 1 < x 2 ,2a a -<-+,① 1x a =- ,22x a =-+.………………………… 4分 ①① x 1 < 1 < x 2 ,① 12a a -<<-+.① 11a -<<.① a 是整数,① a = 0 ,所求抛物线的表达式为x x y 32322+-=. …………………………5分线段PQ 的长的取值范围为:2≤PQ <1. (8)(2016延庆毕业)28. 在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果()()0'0y x y y x ⎧⎪=⎨-⎪⎩≥<,那么称点Q 为点P 的“妫川伴侣”. 例如:点(5,6)的“妫川伴侣”为点(5,6),点(-5,6)的“妫川伴侣” 为点(-5,-6).(1)① 点(2,1)的“妫川伴侣”为 ;② 如果点A (3,-1),B (-1,3)的“妫川伴侣”中有一个在函数3y x=的图象上,那么这个点是 (填“点A ”或“点B ”).(2)①点M *(-1,-2)的“妫川伴侣”点M 的坐标为 ;② 如果点N *(m +1,2)是一次函数y = x + 3图象上点N 的“妫川伴侣”, 求点N 的坐标.(3)如果点P 在函数24y x =-+(-2<x ≤a )的图象上,其“妫川伴侣”Q 的纵坐标y ′的取值范围是-4<y ′≤4,那么实数a 的取值范围是 .()28. 解:(1)①(2,1);…………………………………………………………………1分② 点B .…………………………………………………………………………2分 (2)① M (-1,2);…………………………………………………………………3分② 当m +1≥0,即m ≥-1时,由题意得N (m +1,2). ∵点N 在一次函数y =x +3图象上, ∴m +1+3=2,解得m =-2(舍). ……………………………………………………………4分 当m +1<0,即m <-1时,由题意得N (m +1,-2). ∵点N 在一次函数y =x +3图象上, ∴m +1+3=-2,解得m =-6. ……………………………………………………………………5分 ∴N (-5,-2).………………………………………………………6分(3)2≤a <22.……………………………………………………………………7分(2016燕山一模)29.在平面直角坐标系xOy 中,给出如下定义:若点P 在图形M 上,点Q 在图形N 上,称线段PQ 长度的最小值为图形M ,N 的密距,记为d (M ,N ).特别地,若图形M ,N 有公共点,规定d (M ,N )=0. (1) 如图1,∽O 的半径为2,①点A (0,1),B (4,3),则d (A ,∽O )= ,d (B ,∽O )= . ②已知直线l :b x y +=43与∽O 的密距d (l ,∽O )=56,求b 的值.(2) 如图2,C 为x 轴正半轴上一点,∽C 的半径为1,直线33433+=x y -与x 轴交于点D ,与y 轴交于点E ,线段..DE 与∽C 的密距d (DE ,∽C )<21.请直接写出圆心C 的横坐标m 的取值范围.E1yxODC图2图112yxOA B29.解:(1) ①d (A ,∽O )=1,d (B ,∽O )=3. …………………………2分②如图,设直线l :b x y +=43与x 轴,y∽P (-b 34,0),Q(0,b ).过点O 作OH ∽l 于点H ,OH 交∽O 于点G , 当0>b 时,OQ =b ,PQ =b 35,sin ∠OPQ =PQ OQ =53, ∽OH =OP •sin ∠OPQ =b 34×53=b 54. ………………………3分∵ d (l ,∽O )=GH =56, ∽OH =OG +GH =2+56=516, ………………………4分即b 54=516, ∽4=b . ………………………5分 当0<b 时,同理可得4-=b .∽4±=b . ………………………6分 (3)2111<<m . ………………………8分(2016石景山一模)29.在平面直角坐标系xOy 中,图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若1x m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最 大值为n ,则图形W 在y 轴上的投影长度n l y =.如右 图,图形W 在x 轴上的投影长度213=-=x l ;在y 轴 上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W为∽OAB ,则=x l ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为∽OCD .当y x l l =时,求点D 的坐标.(3)若图形W 为函数2x y =)(b x a ≤≤的图象,其中0a b ≤<.当该图形满足1≤=y x l l 时,请直接写出a 的取值范围.29.解:(1)4,3. ……………………………………………………………………2分(2)设点(),26D x x -+.①当0x ≤时,4,26x y l x l x =-=-+. ∽xy l l =,∽624+-=-x x , ∽02>=x (舍去).②当04x <<时,4,26x y l l x ==-+. ∽xy l l =,∽624+-=x , ∽1=x 或5=x (舍去). ∽()1,4D .③当4x ≥时,,26x y l x l x ==-. ∽xy l l =,∽62-=x x , ∽6=x . ∽()6,6D -.综上满足条件的D 点的坐标为()1,4或()6,6-.……………………6分(3) 102a ≤<. ……………………………………………………………8分。
2016-2017学年北京市中考数学一模分类28题几何综合题

(东城28.) 在等腰△ABC中,(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.①根据题意在图2中补全图形;②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE。
经过与同学们的充分讨论,形成了几种证明的思路:思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;……请参考以上思路,帮助小玉证明CD=BE。
(只需要用一种方法证明即可)(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________。
(直接给出结论无须证明)图1 图2 图3(西城28).在△ABC 中,AB =BC ,BD ⊥AC 于点D . (1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路。
图2图1D FEDCB AACB(海淀28).在ABCD 中,点B 关于AD 的对称点为B ',连接AB ',CB ',CB '交AD 于F 点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年中考一模压轴题汇编28.在△ABC 中,AB =AC ,∠BAC =90︒,点D 在射线BC 上(与B 、C 两点不重合),以AD 为边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G . (1)若点D 在线段BC 上,如图1.①依题意补全图1;②判断BC 与CG 的数量关系与位置关系,并加以证明;(2)若点D 在线段BC 的延长线上,且G 为CF 中点,连接GE ,ABGE 的长为_______,并简述求GE 长的思路.图1 备用图29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C不重合的点,点P 关于⊙C 的限距点的定义如下:若P '为 直线PC 与⊙C 的一个交点,满足2r PP r '≤≤,则称P ' 为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限 距点P '的示意图.(1)当⊙O 的半径为1时.①分别判断点M (3,4),N 5(,0)2,T 关 于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的 边上.若点P 关于⊙O 的限距点P '存在,求点P '的横坐标的取值范围;(2)保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答. 温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.28.在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q .(1)如图1,当点P 与点B 重合时,QPM V 的形状是_____________________; (2)当点P 在线段CB 的延长线上时,如图2. ①依题意补全图2;②判断QPM V 的形状,并加以证明;(3)点P '与点P 关于直线AB 对称,且点P '在线段BC 上,连接AP ',若点Q 恰好在直线AP '上,正方形ABCD 的边长为2,请写出求此时BP 长的思路.(可以不写出计算结果)NAC DC图1 图2 图329.在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是 ; ②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为;(2)如图2,已知点(C,C e 与y 轴相切于点D .若E e 的半径为32,圆心E 在直线l y =+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围; (3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是Me 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT ∆的“阴影点”,直接写出NQT ∆的周长的最小值.CBCB28. 如图,等边△ABC ,其边长为1, D 是BC 中点,点E ,F 分别位于AB ,AC 边上,且∠EDF =120°.(1)直接写出DE 与DF 的数量关系;(2)若BE ,DE ,CF 能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE +AF 的长是否为定值?如果是,请求出该值,如果不是,请说明理由.备用图29. 对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线.(1)当⊙O 的半径为1时,○1分别判断在点D (21,14),E(0,),F (4,0)中,是⊙O 的相邻点 有__________;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程.○3点P 在直线3y x =-+上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围; (2)⊙C 的圆心在x 轴上,半径为1,直线y x =+与x 轴,y 轴分别交于点M ,N ,若线.段.MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.图1 备用图128.在等腰三角形ABC中,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转,旋转角与∠C相等,得到线段PD,连接DB.(1)当∠C=90º时,请你在图1中补全图形,并直接写出∠DBA的度数;(2)如图2,若∠C=α,求∠DBA的度数(用含α的代数式表示);(3)连接AD,若∠C =30º,AC=2,∠APC=135º,请写出求AD长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy中,A(t,0),B(t+,0),对于线段AB和x轴上方的点P给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若t=-在点32C⎛⎫⎪⎝⎭,,2D⎛⎫⎪⎪⎝⎭,3,22E⎛⎫- ⎪⎪⎝⎭中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥PA,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.图1PCB APCB A图2EA CD B 28.在正方形ABCD 中,E 为边CD 上一点,连接BE .(1)请你在图1画出△BEM ,使得△BEM 与△BEC 关于直线BE 对称;(2)若边AD 上存在一点F ,使得AF+CE=EF ,请你在图2中探究∠ABF 与∠CBE 的数量关系并证明;(3)在(2)的条件下,若点E 为边CD 的三等分点,且CE<DE ,请写出求cos ∠FED 的思路.(可以不写出计算结果.........).图1 图2 备用图29.在平面直角坐标系xOy 中,图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最大值为n ,则图形W 在y 轴上的投影长度n l y =.如右图,图形W 在x 轴上的投影长度213=-=x l ;在y 轴上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=x l ,=y l . (2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当y x l l =时,求点D 的坐标.(3)若图形W 为函数2x y =)(b x a ≤≤的图象,其中0a b ≤<.当该图形满足1≤=y x l l 时,请直接写出a 的取值范围.AC DB28.已知:在△ABC 中,∠BAC =60°.(1)如图1,若AB =AC ,点P 在△ABC 内,且∠APC =150°,PA =3,PC =4,把△APC 绕着点A 顺时针旋转,使点C 旋转到点B 处,得到△ADB ,连接DP ①依题意补全图1; ②直接写出PB 的长;(2)如图2,若AB =AC ,点P 在△ABC 外,且PA =3,PB =5,PC =4,求∠APC 的度数;(3)如图3,若AB =2AC ,点P 在△ABC 内,且PA =3,PB =5,∠APC =120°,请直接写出PC 的长.ABB图1 图2 图329.在平面直角坐标系xOy 中,点P (a ,b )的“变换点”Q 的坐标定义如下;当时b a ≥,Q 点坐标为(b ,-a );当a <b 时,Q 点的坐标为(a ,-b ). (1)求(-2,3),(6,-1)的变换点坐标;(2)已知直线l 与x 轴交于点A (4,0),与y 轴交于点B (0,2).若直线l 上所有点的变换点组成一个新的图形,记作图形W .请画出图形W ,并简要说明画图的思路; (3)若抛物线c x y +-=243与图形W有三个交点,请直接写出c 的取值范围.28.如图1,在四边形ABCD 中,BA =BC ,∠ABC =60°,∠ADC =30°,连接对角线BD .(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.①依题意补全图1;②试判断AE与BD的数量关系,并证明你的结论;(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.(图1)(图2)29.在平面直角坐标系xoy中,对于任意三点A,B,C给出如下定义:如果正方形的任何一条边均与某条坐标轴平行,且A,B,C三点都在正方形的内部或边界上,那么称该正方形为点A,B,C的外延正方形,在点A,B,C所有的外延正方形中,面积最小的正方形称为点A,B,C的最佳外延正方形.例如,图1中的正方形A1B1C1D1,A2B2C2D2,A3B3CD3都是点A,B,C的外延正方形,正方形A3B3CD3是点A,B,C的最佳外延正方形.(图1)(图2)(图3 )(图4)(1)如图1,点A(-1,0),B(2,4),C(0,t)(t为整数).①如果t=3,则点A,B,C的最佳外延正方形的面积是;②如果点A,B,C的最佳外延正方形的面积是25,且使点C在最佳外延正方形的一边上,请写出一个符合题意的t值;(2)如图3,已知点M(3,0),N(0,4),P(x,y)是抛物线y=x2-2x-3上一点,求点M,N,P的最佳外延正方形的面积以及点P的横坐标x的取值范围;(3)如图4,已知点E(m,n)在函数x6y (x>0)的图象上,且点D的坐标为(1,1),设点O,D,E的最佳外延正方形的边长为a,请直接写出a的取值范围.28.在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接AD ,BD ,CD ,其中CD 交直线AP 于点E .设∠PAB =α,∠ACE =β,∠AEC =γ.(1) 依题意补全图1;(2) 若α=15°,直接写出β和γ的度数; (3) 如图2,若60°<α<120°,①判断α,β的数量关系并加以证明;②请写出求γ大小的思路.(可以不写出计算结果.........) 29.在平面直角坐标系xOy 中,给出如下定义:若点P 在图形M 上,点Q 在图形N 上,称线段PQ 长度的最小值为图形M ,N 的密距,记为d (M ,N ).特别地,若图形M ,N 有公共点,规定d (M ,N )=0. (1) 如图1,⊙O 的半径为2,①点A (0,1),B (4,3),则d (A ,⊙O )= ,d (B ,⊙O )= . ②已知直线l :b x y +=43与⊙O 的密距d (l ,⊙O )=56,求b 的值.(2) 如图2,C 为x 轴正半轴上一点,⊙C 的半径为1,直线33433+=x y -与x 轴交于点D ,与y 轴交于点E ,线段..DE 与⊙C 的密距d (DE ,⊙C )<21.请直接写出圆心C 的横坐标m 的取值范围.图1图2图2A BPCAB CP图128. 在矩形ABCD 中,将对角线CA 绕点C 逆时针旋转得到CE ,连接AE ,取AE 的中点F ,连接BF ,DF . (1)若点E 在CB 的延长线上,如图1.①依题意补全图1;②判断BF 与DF 的位置关系并加以证明;(2)若点E 在线段BC 的下方,如果∠ACE =90°,∠ACB =28°,AC =6,请写出求BF 长的思路.(可以..不写出计算结果.......)29. 如图,点P ( x , y 1)与Q (x , y 2)分别是两个函数图象C 1与C 2上的任一点. 当a ≤ x ≤ b 时,有-1 ≤ y 1 - y 2≤ 1成立,则称这两个函数在a ≤ x ≤ b 上是“相邻函数”,否则称它们在a ≤ x ≤ b 上是“非相邻函数”. 例如,点P (x , y 1)与Q (x , y 2)分别是两个函数y = 3x +1与y = 2x - 1图象上的任一点,当-3 ≤ x ≤ -1时,y 1 - y 2 = (3x + 1) - (2x - 1) = x + 2,通过构造函数y = x + 2并研究它在-3 ≤ x ≤ -1上的性质,得到该函数值的范围是-1 ≤ y ≤ 1,所以-1 ≤ y 1 - y 2 ≤ 1成立,因此这两个函数在-3 ≤ x ≤ -1上是“相邻函数”.(1)判断函数y = 3x + 2与y = 2x + 1在-2 ≤ x ≤ 0上是否为“相邻函数”,并说明理由; (2)若函数y = x 2 - x 与y = x - a 在0 ≤ x ≤ 2上是“相邻函数”,求a 的取值范围;(3)若函数y =x a与y =-2x + 4在1 ≤ x ≤ 2上是“相邻函数”,直接写出a 的最大值与最小值.28. 在正方形ABCD 中,点H 在对角线BD 上(与点B 、D 不重合),连接AH ,将HA 绕点H顺时针图1备用图ABC D A BCD旋转 90º与边CD (或CD 延长线)交于点P ,作HQ ⊥BD 交射线DC 于点Q. (1)如图1:①依题意补全图1;②判断DP 与CQ 的数量关系并加以证明;(2)若正方形ABCD 的边长为3,当 DP=1时,试求∠PHQ 的度数.29.给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值时,就称该最小值为两个图形G 1和G 2之间的“近距离”;如果线段PQ 的长度存在最大值时,就称该最大值为两个图形G 1和G 2之间的“远距离” .请你在学习,理解上述定义的基础上,解决下面问题:在平面直角坐标系xOy 中,点A (-4, 3),B (-4,-3),C (4,-3),D (4, 3).(1)请在平面直角坐标系中画出四边形ABCD ,直接写出线段AB 和线段CD 的“近距离”和“远距离”. (2)设直线b x y +=34(b>0)与x 轴,y 轴分别交于点E ,F ,若线段EF 与四边形ABCD 的“近距离”是1,求它们的“远距离” ;(3)在平面直角坐标系xOy 中,有一个矩形GHMN ,若此矩形至少有一个顶点在以O 为圆心,2为半径的圆上,其余各点可能在圆上或圆内.将四边形ABCD 绕着点O 旋转一周,在旋转的过程中,它与矩形GHMN 的“远距离”的最大值是 ;“近距离”的最小值是 .28.在正方形ABCD 中,连接BD .(1)如图1,AE ⊥BD 于E .直接写出∠BAE 的度数.(2)如图1,在(1)的条件下,将△AEB 以A 旋转中心,沿逆时针方向旋转30°后得到△AB'E',AB'与BD 交于M ,AE'的延长线与BD 交于N . ① 依题意补全图1;② 用等式表示线段BM 、DN 和MN 之间的数量关系,并证明.(3)如图2,E 、F 是边BC 、CD 上的点,△CEF 周长是正方形ABCD 周长的一半,AE 、AF 分别与BD 交于M 、N ,写出判断线段BM 、DN 、MN 之间数量关系的思路.(不必写出完整推理过程)EDACBNMEDAC BF图1 图229.如图1,P 为∠MON 平分线OC 上一点,以P 为顶点的∠APB 两边分别与射线OM 和ON 交于A 、B两点,如果∠APB 在绕点P 旋转时始终满足OA ·OB =OP 2,我们就把∠APB 叫做∠MON 的关联角.A BO MNCPA N M O CPBAOM CNP B图1 图2 图3(1)如图2,P 为∠MON 平分线OC 上一点,过P 作PB ⊥ON 于B ,AP ⊥OC 于P ,那么∠APB∠MON 的关联角(填“是”或“不是”). (2)① 如图3,如果∠MON =60°,OP =2,∠APB 是∠MON 的关联角,连接AB ,求△AOB 的面积和∠APB 的度数; ② 如果∠MON =α°(0°<α°<90°),OP =m ,∠APB 是∠MON 的关联角,直接用含有α和m的代数式表示△AOB 的面积.(3)如图4,点C 是函数2y x(x >0)图象上一个动点,过点C 的直线CD 分别交x 轴和y 轴于A ,B 两点,且满足BC =2CA ,直接写出∠AOB 的关联角∠APB 的顶点P 的坐标.OxyC图428.如图,在△ABC 中,∠ACB =90°,AC =BC=CD ,∠ACD =α,将线段CD 绕点C 顺时针旋转90°得到线段CE ,连接DE ,AE ,BD .(1)依题意补全图1;(2)判断AE 与BD 的数量关系与位置关系并加以证明; (3)若0°<α≤64°,AB =4,AE 与BD 相交于点G ,求点G 到直线AB 的距离的最大值.请写出求解的思路(可以不写出计算结果.........).29.对于两个已知图形G 1,G 2,在G 1上任取..一点P ,在G 2上任取..一点Q ,当线段PQ 的长度最小时,我们称这个最小长度为G 1,G 2的“密距”,用字母d 表示;当线段PQ 的长度最大时,我们称这个最大的长度为图形G 1,G 2的“疏距”,用字母f 表示.例如,当(1,2)M ,(2,2)N 时,点O 与线.段.MN ..的“密距”O 与线.段.MN ..的“疏距”为 (1)已知,在平面直角坐标系xOy 中,()2,0A -,()0,4B ,()2,0C ,()0,1D , ①点O 与线段AB 的“密距”为,“疏距”为 ; ②线段AB 与△COD 的“密距”为,“疏距”为 ;(2)直线2y x b =+与x 轴,y 轴分别交于点E ,F ,以()0,1C -为圆心,1为半径作圆,当⊙C 与线段EF 的“密距”0<d <1时,求⊙C 与线段EF 的“疏距”f 的取值范围.28. 在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:备用图图1 备用图图2图1A'B 如果()()0'0y x y y x ⎧⎪=⎨-⎪⎩≥<,那么称点Q 为点P 的“妫川伴侣”.例如:点(5,6)的“妫川伴侣”为点(5,6),点(-5,6)的“妫川伴侣” 为点(-5,-6).(1)① 点(2,1)的“妫川伴侣”为 ; ② 如果点A (3,-1),B (-1,3)的“妫川伴侣”中有一个在函数3y x=的图象上,那么这个点是 (填“点A ”或“点B ”).(2)①点M *(-1,-2)的“妫川伴侣”点M 的坐标为 ;② 如果点N *(m +1,2)是一次函数y = x + 3图象上点N的“妫川伴侣”,求点N 的坐标.(3)如果点P 在函数24y x =-+(-2<x ≤a )的图象上,其“妫川伴侣”Q 的纵坐标y ′的取值范围是-4<y ′≤4,那么实数a 的取值范围是 .29. 阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB =2,AC =4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。