分类整合的数学思想方法探讨
浅谈初中数学中的分类讨论思想

浅谈初中数学分类讨论思想在解题中的应用摘要:在初中数学解题中,分类讨论不仅是一种非常重要的数学思想,而且它还也是一种非常有效的解题策略,其主要体现在“集零为整,化整为零”思想和归类整理思想这两个部分。
在初中数学教学中,如果教师在进行初中数学的教学时,对分类讨论思想加以运用,可以使学生对数学知识有更加深入的认识和理解,同时它能够进一步的培养学生的思维能力。
本文主要是对分类讨论在初中数学解题的应用进行探讨。
关键词:分类讨论思想初中数学教学应用俗话说的好,“数学是思维的体操”,要想进行数学学习,就一定是离不开思维运用,在对数学进行每一步探索,都是需要思维来完成。
因此,在初中的数学教学中,教师要对学生慢慢的进行数学思想方法的渗透,使学生的思维能力得到进一步的提升,使其能够形成一个良好的数学思维习惯,这样不仅符合了新课改的新要求,而且其还是实施数学素质教育的一个很好的切入点。
一、分类讨论思想在初中数学解题中的重要作用简单的来说,分类讨论起本质上就是一种逻辑上划分的思维方式。
其在教学中的具体表现为对题目“化整为零”,一个一个的进行逐步击破,这样的就实现了积零为整的教学方式。
在目前,分类讨论思想已经成为一种非常重要的数学思想,其在我国数学教学中得到了广泛的应用。
它不仅只是一种独特的数学逻辑方法,而且在进行数学知识教学时其更是一种有效的解题策略。
由于分类讨论在对不同的问题进行综合考虑时,其在逻辑上具有优势,特别是在培养学生的学习能力以及提升学生的思维严谨性有很好的促进作用。
在对数学题进行解答时,如果因为题目的题意中存在着一些不确定因素,进而导致无法解答出来,这样的情况下,就可以将题目分为若干个小问题,对其进行分类讨论,使相对复杂的问题变得简单化,方便对其进行解答。
二、分类讨论思想在初中数学解题的应用1.在不等式中的运用不等式在初中数学中是一种比较基础和普遍的内容。
因为不等式要涉及到绝对值,所以就要进行转换符号,同时一个不等式可能会存在不止一个绝对值问题,遇到这样的情况,学生往往会变得无所适从,这也就影响着学生的学习成绩的提升,运用分类谈论思想,就能够对不等式进行很好的解答。
分类讨论思想在初中数学解题教学中的运用探究

分类讨论思想在初中数学解题教学中的运用探究一、分类讨论思想的基本概念分类讨论思想是指将问题或事物按某种特定的标准进行分类,然后依次讨论各个类别中的具体内容,最后综合分类的结果来得出结论的一种思维方法。
在数学解题中,分类讨论思想常常用于分析不同情况下的解题方法,进而得出最终的解题结论。
在解决一个较为复杂的数学问题时,我们可以先将问题进行分类,然后分别讨论各个类别中的解题方法,最后再将各个类别的解题结果进行合并,得出最终的解题结论。
1. 引导学生灵活分类在初中数学解题教学中,教师可以通过引导学生灵活分类来启发学生的思维,帮助他们更好地理解和掌握解题方法。
在解决“集合”的问题时,教师可以要求学生根据不同的条件将集合进行分类,然后分别讨论各个分类的特点和解题方法,最后再将各个分类的解题结果进行总结。
通过这种方式,学生可以更加清晰地理解集合的概念和解题方法,从而提高他们的解题能力。
2. 激发学生的探究兴趣3. 提高学生的综合分析能力4. 培养学生的逻辑思维能力三、思考与建议分类讨论思想在初中数学解题教学中的运用,为提高学生的解题能力和思维能力提供了有益的启示。
在实际教学中,教师们还需要注意以下几点:1. 灵活运用分类讨论思想在初中数学解题教学中,教师需要根据具体的教学内容和学生的实际情况,灵活运用分类讨论思想来解决数学问题。
只有灵活运用分类讨论思想,才能更好地激发学生的学习兴趣,提高他们的解题能力。
2. 注重引导学生分析问题3. 多种方式引导学生实践分类讨论思想在初中数学解题教学中的运用,有助于提高学生的解题能力和思维能力。
教师们需要灵活运用分类讨论思想,注重引导学生分析问题,通过多种方式引导学生实践,从而更好地提高学生的解题能力和思维能力。
相信随着教师们不断的探索和实践,分类讨论思想的应用将会为初中数学解题教学带来新的活力和效果。
七年级数学教学中分类讨论思想的应用分析

七年级数学教学中分类讨论思想的应用分析1. 引言1.1 研究背景随着教育理念的不断发展,传统的死记硬背已经不能满足学生的需求,而分类讨论思想的引入能够激发学生的学习兴趣,培养他们的自主学习能力。
通过将知识进行分类整合和讨论,学生可以更好地掌握知识结构,形成系统性的思维方式。
研究七年级数学教学中分类讨论思想的应用,既是对传统教学方法的一种完善和改进,也是为了更好地促进学生的全面发展。
通过对分类讨论思想在七年级数学教学中的具体应用和效果进行深入研究和探讨,可以为今后的教学实践提供有益的借鉴和指导。
1.2 研究意义数目统计等。
感谢理解!2. 正文2.1 七年级数学教学中的分类讨论思想七年级数学教学中的分类讨论思想是指在教学过程中将知识按照不同的特征进行分类,并通过讨论、比较和分析来帮助学生更深入地理解知识。
这种思想在数学教学中具有重要的作用,可以提高学生的思维能力、逻辑思维能力和问题解决能力。
在七年级数学教学中,分类讨论思想可以通过分类整理知识点,对于学生更好地理解数学概念和方法起到促进作用。
通过将知识点分门别类,帮助学生看清知识之间的联系和区别,从而提高他们对数学内容的整体把握能力。
分类讨论思想也能够激发学生的学习兴趣,开拓他们的思维,培养他们的分析问题和解决问题的能力。
通过在教学中灵活运用分类讨论思想,教师可以调动学生学习的积极性,帮助他们更深入地掌握数学知识,提高他们的学习效果。
分类讨论思想也可以培养学生的自主学习能力和团队合作精神,为他们未来的学习打下良好的基础。
七年级数学教学中的分类讨论思想不仅可以提高教学效果,还可以促进学生的全面发展。
教师应该在实践中不断总结经验,不断改进教学方法,以更好地发挥分类讨论思想的作用,为学生提供更高质量的数学教育。
2.2 分类讨论思想在数学教学中的应用分类讨论思想是指在教学过程中对知识进行分类比较和讨论,通过将不同概念进行归类、比较和分析,帮助学生更好地理解和掌握知识。
初中数学思想方法之分类讨论

初中数学思想方法之分类讨论数学是一门既抽象又具体的学科,它需要学生具备一定的思维方法和思想能力。
在初中数学中,分类讨论是一种常用的思想方法,它可以帮助学生分析问题、归纳规律并解决问题。
本文将详细介绍初中数学中分类讨论的基本思想和具体步骤,并通过例题来说明如何运用这种方法。
一、分类讨论的基本思想分类讨论是指将问题进行细化,将其分解成几个易于分析和解决的小问题,并分别进行讨论和解决。
通过这种方法可以更好地理解问题的本质,找到解题的关键点,并最终得到问题的解决办法。
分类讨论的基本思想包括以下几点:1.具体问题具体分析。
将问题进行细化后,每个小问题都有其独特的特点和解决思路,需要根据具体情况展开分析。
2.归纳总结。
在分析过程中,要总结出各个小问题之间的共同点和规律,以便更好地理解问题,并找到解决办法。
3.统一思考。
将各个小问题的解决办法进行归纳和整合,形成对大问题的解决思路。
二、分类讨论的具体步骤分类讨论的具体步骤可以简单概括为以下几点:1.理解问题。
仔细阅读题目,了解问题的背景和要求,确定需要解决的具体问题。
2.分析问题。
将大问题分解成几个小问题,每个小问题都有明确的目标和限制条件。
在分析过程中,可以通过画图、列举数据等方式进行辅助分析。
3.解决小问题。
按照特定的思路和方法,分别解决各个小问题。
在解决过程中,可以运用已经学过的数学知识、规律和公式。
4.总结归纳。
在解决小问题的过程中,要总结各个小问题之间的共同点和规律,归纳出解决大问题的关键思路和方法。
5.整合答案。
将各个小问题的解答整合成对大问题的解答。
在整合过程中,要仔细检查各个小问题的解答是否符合大问题的要求,并进行必要的修正和调整。
三、分类讨论的具体例题下面以一些常见的初中数学题目为例,说明如何运用分类讨论的方法解决问题。
例题1:现有一些白球和红球,共18个。
白球的个数不超过红球的个数。
问,最少有多少个红球?解题思路:根据题目要求和条件,可以将问题进行分类讨论。
高中数学x思想方法-分类讨论与整合

分类讨论与整合思想方法例题解析高考数学将分类与整合思想的考查放在了比较重要的位置,主要以解答题的形式出现.要求考生明确何种问题需要分类,如何分类,分类后如何研究,最后如何整合.考查的主要题型是含有字母参数的数学问题。
下面以引发分类讨论的不同渊源进行分类解析.1.由数学概念引起的讨论.如绝对值的定义、二次函数的定义、直线与平面所成的角、直线的倾斜角等. 例1 函数()243f x ax x =+-在[]0,2x ∈上有最大值()2f ,求实数a 的取值范围.分析:此函数的类型不确定,需要分类讨论. 当0a =时,)(x f 是一次函数且单调递增;当0a ≠时, )(x f 是二次函数,单调性与a 的取值有关,需要继续分类.用配方法或导数求二次函数的最值.解: (1)当0a =时,()43f x x =-在[]0,2x ∈上为单调增函数,最大值为()2f ,满足题意.(2)当0a ≠时,函数()2224433f x ax x a x a a ⎛⎫=+-=+-- ⎪⎝⎭,其对称轴为2x a =-.①当0a >时,()243f x ax x =+-在[]0,2x ∈上为单调增函数,最大值为()2f ,满足题意;②当0a <时,当22a-≥即10a -≤<时,()243f x ax x =+-在[]0,2x ∈上为单调增函数,最大值为()2f ,满足题意. 综上所述:当1a ≥-时,函数()243f x ax x =+-在[]0,2x ∈上有最大值()2f .点评:在该题的分类讨论中,有两个层次,第一层是确定函数类型,即是一次函数还是二次函数.第二层是二次函数的开口方向,即开口向上还是向下.由于每一类中的a 都符合题意,所以整合时,把每一类型中a 的范围取并集,得到最终答案.变式练习1. 已知等比数列{}n a 中,432,,a a a 分别是某等差数列的第5项,第3项,第2项,且164a =,公比1q ≠;设2log nn b a =,求数列{}||n b 的前n 项和n T .2. 由数学运算要求引起的分类讨论.如除法运算中除数不为零、偶次方根为非负、对数中真数与底数的要求、不等式中两边同乘以一个正数、负数对不等号方向的影响等.例2 设函数3()31()f x ax x x R =-+∈,若对于任意的[]1,1-∈x 都有0)(≥x f 成立,求实数a 的值为. 分析:对于任意的[]1,1-∈x 都有0)(≥x f 恒成立求参数的范围问题,可将参数a 分离出来.在分离a 时,需要对x 等于零, x 为正, x 为负分别进行.分离出a 之后,通过求导研究不等式右边关于x 的函数,判断其单调性并求出其最值.解:若0x =,则不论a 取何值,()f x ≥0显然成立,所以R a ∈;当0x > 即]1,0(∈x 时,()331f x ax x =-+≥0可化为:2331a x x ≥-,设()2331g x x x =-,则()()'4312x g x x -=, 所以()g x 在区间10,2⎛⎤ ⎥⎝⎦上单调递增,在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,因此()max 142g x g ⎛⎫== ⎪⎝⎭,从而a ≥4; 当x <0 即)0,1[-∈x 时,()331f x ax x =-+≥0可化为a ≤2331x x -,()()'4312x g x x -=0>,()g x 在区间[)1,0-上单调递增,因此4)1()(max =-=g x g ,从而a ≤4,综上所述得a =4.点评:本题是不等式恒成立问题,需要将参数分离出来,转化为研究函数的最值.在分离参数时,需要在不等式的两边同乘以式子3x .根据不等式的运算性质,需要明确所乘式子的符号,所以要对x 是否为零及其符号进行分类讨论.由于是对自变量x 展开讨论,所以在整合时,要把a 的三个范围取交集.变式练习2. 已知函数x x f a log )(=在],2[π上的最大值比最小值大1,则a 等于A .π2 B .2π C .π2或2π D .不同于A 、B 、C 答案3. 由函数的性质及定理、公式的限制引起的分类讨论例3.已知数列}{n a 、 3,2,1,),(,1:}{121=⋅===+n a a b a a a a b n n n n 其中且为常数满足(Ⅰ)若{}n a 是等比数列,试求数列{}n b 的前n 项和n S ;(Ⅱ)当{}n b 是等比数列时,甲同学说:{}n a 一定是等比数列;乙同学说:{}n a 一定不是等比数列,你认为他们的说法是否正确?为什么?分析: 在(Ⅰ)中,欲求数列{}n b 的前n 项和n S ,需要研究该数列的性质.由21a b b nn =+发现该数列为等比数列,但求和时要注意前n 项和公式的选择即对公比进行讨论. 在(Ⅱ)中,需要由{}n b 的性质进一步研究{}n a 的性质,对其是否为等比数列作出判断.解:(I )因为{}n a 是等比数列a a a ==21,1, 所以1,0-=≠n n a a a . 又211212112111,a aa a a a a a ab b a a a b a a b n n n n n n n n n n n n n ===⋅⋅==⋅=⋅=-+++++++则即}{n b 是以a 为首项,2a 为公比的等比数列. ⎪⎪⎪⎩⎪⎪⎪⎨⎧±≠---=-==∴)1(.1)1()1(,)1( ,22a a a a a n a n S n n (II )甲、乙两个同学的说法都不正确,理由如下: 设{}n b 的公比为q ,则022211≠===+++++a q a a a a a a b b nn n n n n n n 且又1253121,,,,,,1-==n a a a a a a a …是以1为首项,q 为公比的等比数列,n a a a a 2642,,,, …是以a 为首项,q 为公比的等比数列, 即{}n a 为: 22,,,,,1aq q aq q a .当2a q =时,{}n a 是等比数列;当2a q ≠时,{}n a 不是等比数列.注:该问亦可以用举特例的办法进行判断.点评:该题两问的解答中都对公比进行了讨论.第一问中,讨论的渊源是公比不同, 等比数列前n 项和公式形式不同.第二问中讨论的原因是, {}n b 的公比取值不同, {}n a 的性质不同.变式练习3: 解关于x 的不等)(222R a ax x ax ∈-≥-.4. 由图形的不确定性引起的分类讨论 例4 设21,F F 为椭圆14922=+y x 的两个焦点,P 是椭圆上的一点. 已知21,,F F P 是一个直角三角形的三个顶点,且 ||||21PF PF >,求||||21pF PF 的值. 分析:本题考查圆锥曲线的性质.因为21,,F F P 是一直角三角形的三顶点,且||||21PF PF >,则直角顶点有两种可能性:点2F 或点P ,故有两解.解: 由已知得6||||21=+PF PF ,2||21=F F .①若12F PF ∠为直角,则2212221||||||F F PF PF +=,解得314||1=PF ,34||2=PF ,所以||||21pF PF =27. ②若21PF F ∠为直角,则|F 1F 2|2=|PF 1|2+|PF 2|22221221||||||PF PF F F +=,得4||1=PF,2||2=PF ,故 2||||21=pF PF . 变式练习4. 设一双曲线的两条渐近线方程为052,02=-+=+-y x y x ,此双曲线的离心率为 .5. 由参数的变化引起的分类讨论.某些含参数的问题,由于参数的取值不同会导致所得结果不同,或者由于不同的参数值要运用不同的求解或证明方法.例5 设1-=x 是)()()(22R x e b ax x x f x ∈++=-的一个极值点,求a 与b 的关系式(用a 表示b )并求)(x f 的单调区间.分析:该题是一个非基本初等函数的单调性问题,考虑用导数解决,所以先对)(x f 求导,再得a 与b 的关系式.求得导函数的零点时,注意两个零点的大小对单调区间的影响.解: x e a b x a x x f --+-+-=22/])2([)(,由0)1(/=-f 得32-=a b∴x e a ax x x f --++=22)32()( ,x x e a x x e a x a x x f ---++-=-+-+-=222/)3)(1(]3)2([)(.令0)(/=x f 得a x x -=-=3,121 .由于1-=x 是)(x f 的极值点,故21x x ≠,即4≠a .① 当4<a 时,12x x >,故]3,1[a --为)(x f 的单调增区间;),3[]1,(+∞---∞a 和 为)(x f 的单调减区间.② 当4>a 时,12x x <,故]1,3[--a 为)(x f 的单调增区间;),1[]3,(+∞---∞和a 为)(x f 的单调减区间.点评:在综合问题中对参数分类讨论的考查,是分类讨论思想考查的重要形式之一.对参数的分类,要注意遵循分类讨论的基本原则:科学合理,不重不漏.变式练习5. 已知椭圆1522=+m y x 的离心率 510=e , 则m 的值为 A .3B .253或3C .5D .3155或156. 其它需要进行分类讨论的问题.譬如排列组合问题、实际应用问题等例6 某车间有10名工人,其中4人仅会车工,3人仅会钳工,另外 三人车工钳工都会,现需选出6人完成一件工作,需要车工、钳工各3人,问有 种选派方案?解析:如果先考虑钳工,因有6人会钳工,故有36C 种选法,但此时不清楚选出的钳工中有几个是车钳工都会的,因此也不清楚余下的七人中有多少人会车工,因此在选车工时,就无法确定是从7人中选,还是从六人、五人或四人中选.同样,如果先考虑车工也会遇到同样的问题.因此需对全能工人被选的人数进行分类:(1)选出的6人中不含全能工人,共有3433C C 种不同选法;(2)选出的6人中含有一名全能工人共有351323C C C 种不同选法;(3)选出的6人中含2名全能工人共有362313C C C 种不同选法;(4)选出的6人中含有3名全能工人共有3733C C 种不同选法.所以共有3433C C +351323C C C +362313C C C +3733C C =306种选派方案. 点评:分类讨论是解决排列组合问题中最常用的思想方法之一.在进行分类时,要注意选择最恰当的标准,使得所分的类尽量少.一般选择数量较少的那一种元素进行分类.变式练习6. 在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种一垄,为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有 种.变式练习答案及专题总结:1. 解:依题意得()032,32344342=+--+=a a a a a a a 即,211,0132,032212131===+-∴=+-∴q q q q q a q a q a 或解得 又1111,,6422n n q q a -⎛⎫≠∴==⨯ ⎪⎝⎭ 故()()17227,71log 64log 27||27,7n n n n n n b n b n n --⎡⎤⎧-≤⎪⎛⎫=⨯==-∴=⎢⎥⎨ ⎪->⎝⎭⎪⎢⎥⎩⎣⎦ ()()()()()()18767137,||6,22177677,||1,2122n n n n n n n b T n n n n n b T T +--∴≤===+---->==+=+当时当时 ()()()⎪⎪⎩⎪⎪⎨⎧>+--≤-=∴7,212767,213n n n n n n T n . 2. C. 解析:研究函数的最值需考察函数的单调性,而题中对数函数的增减性与底数a 的取值有关,故应对a 进行分类讨论.⑴当1>a 时, )(x f 在[2,π]上是增函数,最大值是)(πf ,最小值是)2(f ,据题意, 1)2()(=-f f π,即12log log =-a a π,∴2π=a ⑵当10<<a 时,)(x f 在[2,π]上是减函数,最大值是)2(f ,最小值是)(πf ,故1)()2(=-πf f ,即1log 2log =-πa a ,∴π2=a . 由⑴⑵知,答案为C.3. 解:原不等式可化为⇔ 02)2(2≥--+x a ax ,(1)0=a 时,x ≤-1,即x ∈(-∞,-1].(2)0≠a 时,不等式即为0)1)(2(≥+-x ax ,①0>a 时, 不等式化为0)1)(2(≥+-x ax , 当⎪⎩⎪⎨⎧->>120a a ,即0>a 时,不等式解为),2[]1,(+∞--∞a . 当⎪⎩⎪⎨⎧-≤>120aa ,此时a 不存在. ②0<a 时,不等式化为0)1)(2(≤+-x a x , 当⎪⎩⎪⎨⎧-<<120aa ,即02<<-a 时,不等式解为]1,2[-a . 当⎪⎩⎪⎨⎧-><120a a ,即a <-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a =-2时,不等式解为x =-1. 综上:当 a =0时,x ∈(-∞,-1); a >0时,x ∈),2[]1,(+∞--∞a ;当-2<a <0时,x ∈]1,2[-a ;当a <-2时,x ∈]2,1[a-; a =-2时,x ∈{x |x =-1}. 4. 255或.解析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.(1)当双曲线的焦点在直线3=y 时,双曲线的方程可改为1)3()1(222=---by a x ,一条渐近线的斜率为2=a b , ∴2=b .∴ 555222==+==a a a b a c e . (2)当双曲线的焦点在直线1=x 时,与(1)同理得双曲线的一条渐近线的斜率为2=b a ,此时25=e . 综上(1)(2)可知,双曲线的离心率等于255或. 5.B. 解析:题设不能确定5与m 中哪个较大,故应将5与m 的大小分类讨论.据题意5,0≠>m m ,⑴当5>m 时,5,5,22222-=-=∴==m b a c b m a ,m m a c 522-=∴ 又510=e ,325=m .⑵当50<<m 时,m b a c m b a -=-=∴==5,,522222m m a c -=∴522,3=m . 由⑴⑵知 325=m 或3=m .故选B. 6. 12. 解析:分类讨论:(1)先考虑作物A 种植在第一垄时,作物B 有3种种植方法;(2)再考虑作物A 种植在第二垄时,作物B 有2种种植方法;(3)又当作物A 种植在第三垄时,作物B 有1种种植方法.而作物B 种植的情况与作物A 相同,故满足条件的不同选垄方法共有(3+2+1)×2=12种.【命题预测】分类讨论的思想在高考中占有非常重要的地位,应用它求解能减少思维时间、提高书写的逻辑性和条理性,此类试题在高考试卷中的比例,总体上有逐年增加的趋势,这种趋势产生的根本原因是:分类讨论题往往覆盖知识点较多,有利于考查学生掌握的知识面;解分类讨论题需要学生有一定的分析能力,具有一定的逻辑划分思想和技巧,及较好的思维概括性,有利于对学生能力的考查;试卷中占有一定比例的分类讨论题,有利于拉开考生得分的距离,实现高考的选拔的目标。
分类与整合思想例析

分类与整合思想例析1.分类与整合的思想的含义分类与整合的思想,就是当问题所给的对象因一些不确定的因素而不能进行统一研究时 (如不能用同一种标准,或同一种运算,或同一个类型,或同一个定理,或同一种方法去解决等),就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的解题策略. 分类讨论既是一种重要的数学方法,也是一种重要的数学思想.由于有关分类讨论的数学问题具有明显的逻辑性、综合性、探索性,并能训练人的思维的条理性与概括性,因而在高考试题中往往占有较大的比重对问题实行分类与整合,确定分类标准后等于增加了一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度.2.运用分类与整合思想解题的基本步骤:确定标准→合理分类→逐类讨论→归纳总结。
(1)明确讨论的对象:即对哪个参数进行讨论;(2)对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准要统一、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决;(4)归纳总结:将各类情况总结归纳3.明确引起分类讨论的原因,有利于掌握分类整合的思想方法解决问题.分类讨论的主要原因有:(1)由数学概念引起的分类讨论:有些数学概念本身就是以分类形式定义的,如直线与平面所成的角、三角函数值所在象限的符号、绝对值等.有些数学概念本身也有一定的限制,如直线的斜率 ,二次曲线中又包括椭圆、双曲线及抛物线,如绝对值的定义、不等式的定义、二次函数的定义、直线与平面所成的角、直线的斜率与倾斜角、两条直线所成的角,指数函数,对数函数,空集,直线的截距式等.(2)由数学运算要求引起的分类讨论:如除法运算中除数不为零、偶次方根为非负、对数中真数与底数的要求、不等式中两边同乘以一个正数、负数对不等号方向的影响,三角函数的定义域,一元二次方程解的情况是按“∆”的正负给出的等;(3)由函数的性质、定理、公式的限制引起的分类讨论:有的数学性质、定理、公式是分类给出的,在不同的条件下有不同的结论,或者在一定的条件下才成立,这时要小心,应根据题目条件确定是否分类讨论。
分类与整合的思想

分类与整合的思想【知识归纳】所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略. 有关分类讨论的数学命题在高考试题中占有重要位置. 分类讨论是一种重要的数学思想方法,引起分类讨论的原因大致可归纳为如下几种: (1)由数学概念引起的分类讨论,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨论,如等比数列的前n 项和公式、函数的单调性等. (3)由数学运算引起的分类讨论,如除法运算中除数不为零、偶次方根为非负、对数运算中真数和底数的要求等.(4)由图形的不确定性引起的分类讨论,如角的终边所在象限、点、线、面的位置关系等. (5)由参数的变化引起的分类讨论,如含参数的方程不等式等.⑹较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的.2.分类方法:(1)概念和性质是分类的依据(2)按区域(定义域或值域)进行分类是基本方法(3)不定因素(条件或结论不唯一,数值大小的不确定,图形位置的不确定)是分类的突破口(4)二分发是分类讨论的利器(4)层次分明是分类讨论的基本要求;3.简化和避免分类讨论的优化策略:(1)直接回避.如运用反证法、求补法、消参法等方法有时可以避开烦琐讨论;(2)变更主元.如分离参数、变参置换,构造以讨论对象为变量的函数得便感形式解题时可避开讨论;(3)合理运算.如利用函数奇偶性、变量的对称轮换以及公式的合理选用等有时可以简化甚至避开讨论;(4)数形结合.利用函数图象、几何图形的直观性和对称特点有时可以简化甚至避开讨论.【基础演练】1. 已知集合A ={1.3.},B ={1,m} ,A B =A ,则m= .解析:因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m .2. 已知圆x 2+y 2=4,则经过点P (2,4),且与圆相切的直线方程为 .解析:由22+42>4得点P 在圆x 2+y 2=4外,由几何性质分析知过点P 且与圆相切的直线有两条,设直线斜率为k ,则切线方程为y -4=k (x -2),由圆心到切线的距离为2,解得k =34.由此可知斜率不存在时也满足题意,解得切线方程为3x -4y +10=0或x =2.3.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意.综上所述,a =-34.4. 若椭圆x 25+y 2m =1的离心率e =105,则m 的值是________.解析:当m >5时,105=m -5m,解得m =253; 当m <5时,105=5-m 5,解得m =3.答案:3或253 5. 一个均匀的正四面体上分别有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b ,c . 若方程x 2-bx -c =0至少有一根x ∈{1,2,3,4},就称该方程为“漂亮方程”,则方程为“漂亮方程”的概率是 ▲ .①若方程一根为x =1,则1-b -c =0,即b +c =1,不成立.②若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以⎩⎪⎨⎪⎧b =1,c =2.③若方程一根为x =3,则9-3b -c =0,即3b +c =9.所以⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.综合①②③④知,(b ,c )的所有可能取值为(1,2),(2,3),(3,4),所以,“漂亮方程”共有3个,方程为“漂亮方程”的概率为P =316. 6. 已知平面单位向量a ,b ,c 夹角两两相等,则|a +b +c |=________.解析:由题意知夹角为2π3或0.当夹角为2π3时,a +b =-c ,|a +b +c |=0;当夹角为0时,|a +b +c |=3|a |=3. 答案:0或3【考点例析】例题1(南京市、盐城市2013届高三期末)对于定义在区间D 上的函数()f x , 若任给0x D ∈, 均有0()f x D ∈, 则称函数()f x 在区间D 上封闭.(1)试判断()1f x x =-在区间[2,1]-上是否封闭, 并说明理由; (2)若函数3()1x ag x x +=+在区间[3,10]上封闭, 求实数a 的取值范围; (3)若函数3()3h x x x =-在区间[,](,)a b a b Z ∈上封闭, 求,a b 的值.解: (1)()1f x x =-在区间[2,1]-上单调递增,所以()f x 的值域为[-3,0]………2分 而[-1,0][2,1]⊄-,所以()f x 在区间[2,1]-上不是封闭的……………… 4分(2)因为,①当3a =时,函数()g x 的值域为{}3[3,10]⊆,适合题意……………5分 ②当3a >时,函数()g x 在区间[3,10]上单调递减,故它的值域为309[,]114a a++, 由309[,]114a a ++[3,10]⊆,得303119104aa +⎧≥⎪⎪⎨+⎪≤⎪⎩,解得,故331a <≤……………………7分③当3a <时,在区间[3,10]上有33()3311x a a g x x x +-==+<++,显然不合题意 …………………8分 综上所述, 实数a 的取值范围是331a ≤≤……………………………9分(3)因为3()3h x x x =-,所以2()333(1)(1)h x x x x '=-=+-,所以()h x 在(,1)-∞-上单调递增,在(1,1)-上递减,在(1,)+∞上递增.①当1a b <≤-时,()h x 在区间[,]a b 上递增,所以,此时无解………10分②当111a b ≤--<≤且时,因max ()(1)2h x h b =-=>,矛盾,不合题意…………11分③当11a b ≤->且时,因为(1)2,(1)2h h -==-都在函数的值域内,故22a b ≤-⎧⎨≥⎩, 又33()3()3a h a a a b h b b b⎧≤=-⎨≥=-⎩,解得202202a a b b -≤≤≥⎧⎨≤≤≤⎩或或,从而22a b =-⎧⎨=⎩ ………12分 ④当11a b -≤<≤时,()h x 在区间[,]a b 上递减,()()h b ah a b ≥⎧⎨≤⎩(*),而,a b Z ∈,经检验,均不合(*)式……………………………13分⑤当111a b -<≤≥且时,因min ()(1)2h x h a ==-<,矛盾,不合题意…………14分⑥当1b a >≥时,()h x 在区间[,]a b 上递增,所以()()h a ah b b ≥⎧⎨≤⎩,此时无解 ……………15分综上所述,所求整数,a b 的值为2,2a b =-=…………………16分变式题:设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意的x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________.解析:若x =0,则不论a 取何值,f (x )=1≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4; 当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,g ′(x )=3(1-2x )x 4>0,g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4.综上a =4.例题2 已知数列{a n }的前n 项和S n =n 2+1,数列{b n }是首项为1,公比为b 的等比数列.(1)求数列{a n }的通项公式;331 a≤≤ 33 ()3 11xaa gx xx +-==+++ () () haa hbb ≥ ⎧ ⎨≤ ⎩(2)求数列{a n b n }的前n 项和T n . 解:(1)当n =1时,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2-1=2n -1.所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.(2)当b =1时,a n b n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.此时T n =2+3+5+…+(2n -1)=n 2+1;当b ≠1时,a n b n =⎩⎪⎨⎪⎧2,n =1,(2n -1)b n -1,n ≥2. 此时T n =2+3b +5b 2+…+(2n -1)b n -1, ①两端同时乘以b 得,bT n =2b +3b 2+5b 3+…+(2n -1)b n . ②①-②得,(1-b )T n =2+b +2b 2+2b 3+…+2b n -1-(2n -1)b n=2(1+b +b 2+b 3+…+b n -1)-(2n -1)b n-b =2(1-b n )1-b-(2n -1)b n -b ,所以T n =2(1-b n )(1-b )2-(2n -1)b n 1-b -b1-b. 所以T n =⎩⎪⎨⎪⎧n 2+1,b =1,2(1-b n )(1-b )2-(2n -1)b n 1-b -b1-b ,b ≠1.变式题:三个互不相等的实数成等差数列,适当交换这三个数的位置后,变成一个等比数列,则此等比数列的公比是________.解析:设这三个数分别为a -d ,a ,a +d (d ≠0),由于d ≠0,所以a -d ,a ,a +d 或a +d ,a ,a -d 不可能成等比数列;若a -d ,a +d ,a 或a ,a +d ,a -d 成等比数列,则(a +d )2=a (a -d ),即d =-3a ,此时q =a a -3a =-12或q =a -3a a =-2;若a ,a -d ,a +d 或a +d ,a -d ,a 成等比数列,则(a -d )2=a (a+d ),即d =3a ,此时q =a -3a a =-2或q =a -3a a +3a=-12.故q =-2或-12.例题3 已知函数f (x )=12ax 2-2x sin 2α和函数g (x )=ln x ,记F (x )=f (x )+g (x ).(1)当α=π3时,若f (x )在[1,2]上的最大值是f (2),求实数a 的取值范围;(2)当a =1时,判断F (x )在其定义域内是否有极值,并予以证明;(3)对任意的α∈⎝⎛⎭⎫π6,23π,若F (x )在其定义域内既有极大值又有极小值,试求实数a 的取值范围. 解:(1)α=π3时,f (x )=12ax 2-32x .①当a =0时,f (x )=-32x ,不合题意;②当a <0时,f (x )=12ax 2-32x 在⎝⎛⎦⎤-∞,32a 上递增,在⎣⎡⎭⎫32a ,+∞上递减,而[1,2]⊆⎣⎡⎭⎫32a ,+∞,故不合题意;③当a >0时,f (x )=12ax 2-32x 在⎝⎛⎦⎤-∞,32a 上递减,在⎣⎡⎭⎫32a ,+∞上递增,f (x )在[1,2]上的最大值是max{f (1),f (2)}=f (2),所以f (1)≤f (2),即12a -32≤2a -3,所以a ≥1.综上所述,实数a 的取值范围是[1,+∞).(2)a =1时,F (x )=12x 2-2x sin 2α+ln x 的定义域为(0,+∞),F ′(x )=x +1x-2sin 2α≥2-2sin 2α=2cos 2 α≥0.①当cos α≠0时,F ′(x )>0,F (x )在(0,+∞)上单调递增,从而F (x )在其定义域内没有极值; ②当cos α=0时,F ′(x )=x +1x -2=(x -1)2x ,令F ′(x )=0,有x =1,但是x ∈(0,1)时,F ′(x )>0,F (x )单调递增,x ∈(1,+∞)时,F ′(x )>0,F (x )也单调递增,所以F (x )在其定义域内也没有极值.综上,F (x )在其定义域内没有极值.(3)据题意可知,令F ′(x )=ax +1x-2sin 2α=0,即方程ax 2-2x sin 2α+1=0在(0,+∞)上恒有两个不相等的实数根.即⎩⎪⎨⎪⎧Δ=4sin 4α-4a >0,a >0恒成立,因为α∈⎣⎡⎭⎫π6,23π,sin α∈⎣⎡⎦⎤12,1,所以0<a <116. 所以a 的取值范围为⎝⎛⎭⎫0,116 变式题:已知F (x )=F (x )=x 2-mx +1-m 2,若|F (x )|在[0,1]上单调递增,则实数m 的取值范围是 ▲ .[解] 由题设得F (x )=x 2-mx +1-m 2,对称轴方程为x =m 2,Δ=m 2-4()1-m 2=5m 2-4.由于|F (x )|在[0,1]上单调递增,则有①当Δ≤0即-255≤m ≤255时,有⎩⎨⎧m2≤0,-255≤m ≤255,解得-255≤m ≤0.②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),(ⅰ)若m >255,则m 2>55,有⎩⎪⎨⎪⎧m 2≥1,x 1<0⇔F (0)=1-m 2<0.解得m ≥2;(ⅱ)若m <-255,即m 2<-55,有x 1<0,x 2≤0;∴⎩⎪⎨⎪⎧x 1+x 2<0⇒m <0,x 1x 2≥0⇒1-m 2≥0⇒-1≤m ≤1,m <-255,解得-1≤m <-255.由(ⅰ)(ⅱ)得-1≤m <-255或m ≥2.综合①②有-1≤m ≤0或m ≥2.例题4已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆其中O 为坐标原点.(Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值; (I )解:(1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称,所以2121,.x x y y ==-因为11(,)P x y 在椭圆上,因此2211132x y +=①又因为OPQ S ∆=所以11||||x y ⋅=②由①、②得11||| 1.x y ==此时222212123,2,x x y y +=+= (2)当直线l 的斜率存在时,设直线l 的方程为,y kx m =+由题意知m 0≠,将其代入22132x y +=,得222(23)63(2)0k x kmx m +++-=,其中22223612(23)(2)0,k m k m ∆=-+->即2232k m +>…………(*)又212122263(2),,2323km m x x x x k k-+=-=++所以||PQ ==因为点O 到直线l 的距离为d = 所以1||2OPQ S PQ d ∆=⋅==又OPQ S ∆=整理得22322,k m +=且符合(*)式,此时222221212122263(2)()2()23,2323km m x x x x x x k k-+=+-=--⨯=++ 222222121212222(3)(3)4() 2.333y y x x x x +=-+-=-+=综上所述,222212123;2,x x y y +=+=结论成立.(II )解法一:(1)当直线l 的斜率不存在时,由(I )知11|||||2||2,OM x PQ y ====因此||||22OM PQ ⋅== (2)当直线l 的斜率存在时,由(I )知123,22x x km+= 22212122222212122222222222222332(),2222916211||()()(3),2244224(32)2(21)1||(1)2(2),(23)y y x x k k m k m m m m mx x y y k m OM m m m m k m m PQ k k m m ++-+1=+=-+==++-=+=+==-+-+=+==++所以2222111||||(3)2(2)2OM PQ m m ⋅=⨯-⨯⨯+2222211(3)(2)113225().24m mm m =-+-++≤= 所以5||||2OM PQ ⋅≤,当且仅当221132,m m m-=+=即. 综合(1)(2)得|OM|·|PQ|的最大值为5.2解法二:因为222222121221214||||()()()()OM PQ x x y y x x y y +=++++-+-222212122[()()]10.x x y y =+++=所以224||||102|||| 5.25OM PQ OM PQ +⋅≤==即5||||,2OM PQ⋅≤当且仅当2||||OM PQ == |OM|·|PQ|的最大值为5.2点评:处理直线与圆锥曲线的位置关系时,待定直线方程需要考虑斜率不存在这种情况,需分类讨论.【方法技巧】分类讨论是一种重要的数学思想,也是一种重要的解题策略,它可以将整体化为局部,将复杂问题化为单一问题,以便于“各个击破”.但由于分类讨论一般过程较为冗长,叙述较为烦琐,且极易在完备上造成失误,因此它并非一定是解决问题的上策或良策,我们提倡在熟悉和掌握分类思想的同时,要注意克服思维定势,处理好“分”与“合”,“局部”与“整体”之间的辨证统一关系,充分挖掘求解问题中潜在的特殊性与简单性,尽可能地简化或避免分类讨论.简化分类讨论的常用策略通常有:消去参数、整体换元、反客为主、补集分析、整体变形、借助图解.【专题训练】一、填空题1. 不等式(a -2)x 2+2(a -2)x -4< 0对于x ∈R 恒成立,那么a 的取值范围是____________.(-2,2]2. 在△ABC 中,已知A =30°,a =8,b =83,则S △ABC =__________.323或16 33. 设一双曲线的两条渐近线方程为2x -y =0,2x +y =0,则双曲线的离心率是________.5或524. 正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为____________.43或8335. 设常数a >0,椭圆x 2-a 2+a 2y 2=0的长轴长是短轴长的2倍,则a =________.12或26. 已知等比数列{a n }的前n 项和为S n ,若a 3=32,S 3=92,则a 1的值为__________.32或67. 若函数y =mx 2+x +5在[-2,+∞)上是增函数,则m 的取值范围是__________.⎣⎡⎦⎤0,14 8. 若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a 、b 的取值范围为__________.a >0且b ≤0 9. 设圆锥曲线C 的两个焦点分别为F 1,F 2.若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于________.由题意可设:|PF 1|=4m ,|F 1F 2|=3m ,|PF 2|=2m ,当圆锥曲线是椭圆时,长轴长为2a =|PF 1|+|PF 2|=4m +2m =6m ,焦距为2c =|F 1F 2|=3m , 所以离心率e =c a =2c 2a =3m 6m =12;当圆锥曲线是双曲线时,实轴长为2a =|PF 1|-|PF 2|=4m -2m =2m ,焦距为2c =|F 1F 2|=3m ,所以离心率e =c a =2c 2a =3m 2m =32.10. 函数f (x )=x 2+ax +3-a ,对于任意的x ∈[-2,2]总有f (x )≥0成立,则a 的取值范围是 .[解] 法一:设f (x )的最小值为g (a ),则只需要g (a )≥0.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73,又a >4,故不存在;(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f ⎝⎛⎭⎫-a 2=3-a -a 24≥0,得-6≤a ≤2,又-4≤a ≤4,故-4≤a ≤2;(3)当-a2>2,即a <-4,g (a )=f (2)=7+a ≥0,得a ≥-7,又a <-4,故-7≤a <-4. 综上所述a 的取值范围为[-7,2].法二:原题可等价转化为x 2+3≥(1-x )a 对于任意的x ∈[-2,2]恒成立. (1)若1-x =0即x =1时,显然成立,此时a ∈R .(2)若1-x >0即-2≤x <1,不等式a ≤x 2+31-x 恒成立,设g (x )=x 2+31-x ,利用求导的方法得到g (x )min =2,得到a ≤2,(3)若1-x <0即1<x ≤2,不等式a ≥x 2+31-x 恒成立,设g (x )=x 2+31-x ,利用求导的方法得到g (x )max =-7,得到a ≥-7.综上所述a 的取值范围为[-7,2]. 二、解答题11. 已知函数f (x )=x 2+2ax +1(a ∈R ),f ′(x )是f (x )的导函数.(1)若x ∈[-2,-1],不等式f (x )≤f ′(x )恒成立,求a 的取值范围;(2)解关于x 的方程f (x )=|f ′(x )|;(3)设函数g (x )=⎩⎪⎨⎪⎧f ′(x ),f (x )≥f ′(x )f (x ),f (x )<f ′(x ),求g (x )在x ∈[2,4]时的最小值.解:(1)因为f (x )≤f ′(x ),所以x 2-2x +1≤2a (1-x ).又因为-2≤x ≤-1,所以a ≥x 2-2x +12(1-x )在x ∈[-2,-1]时恒成立.因为x 2-2x +12(1-x )=1-x 2≤32,所以a ≥32.(2)因为f (x )=|f ′(x )|,所以x 2+2ax +1=2|x +a |,所以(x +a )2-2|x +a |+1-a 2=0, 则|x +a |=1+a 或|x +a |=1-a .①当a <-1时,|x +a |=1-a ,所以x =-1或x =1-2a ; ②当-1≤a ≤1时,|x +a |=1-a 或|x +a |=1+a , 所以x =±1或x =1-2a 或x =-(1+2a );③当a >1时,|x +a |=1+a ,所以x =1或x =-(1+2a ).(3)因为f (x )-f ′(x )=(x -1)[x -(1-2a )],g (x )=⎩⎪⎨⎪⎧f ′(x ),f (x )≥f ′(x ),f (x ),f (x )<f ′(x ).①若a ≥-12,则x ∈[2,4]时,f (x )≥f ′(x ),所以g (x )=f ′(x )=2x +2a .从而g (x )的最小值为g (2)=2a +4;②若a <-32,则x ∈[2,4]时,f (x )<f ′(x ),所以g (x )=f (x )=x 2+2ax +1,当-2≤a <-32时,g (x )的最小值为g (2)=4a +5;当-4<a <-2时,g (x )的最小值为g (-a )=1-a 2; 当a ≤-4时,g (x )的最小值为g (4)=8a +17.③若-32≤a <-12,则x ∈[2,4]时,g (x )=⎩⎪⎨⎪⎧x 2+2ax +1,x ∈[2,1-2a ),2x +2a ,x ∈[1-2a ,4],当x ∈[2,1-2a )时,g (x )最小值为g (2)=4a +5; 当x ∈[1-2a,4]时,g (x )最小值为g (1-2a )=2-2a .因为-32≤a <-12,(4a +5)-(2-2a )=6a +3<0,所以g (x )最小值为4a +5.综上所述,[g (x )]min=⎩⎪⎨⎪⎧8a +17,a ≤-4,1-a 2,-4<a <-2,4a +5,-2≤a <-12,2a +4,a ≥-12.12. 已知函数f (x )=2a sin 2x -2 3a sin x cos x +a +b (a ≠0)的定义域是⎣⎡⎦⎤0,π2,值域是[-5,1],求常数a ,b 的值.解 f (x )=2a ·12(1-cos 2x )- 3a sin 2x +a +b=-2a ⎝⎛⎭⎫12cos 2x +32sin 2x +2a +b =-2a sin ⎝⎛⎫2x +π6+2a +b , 又∵0≤x ≤π2,∴π6≤2x +π6≤76π,∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. 因此,由f (x )的值域为[-5,1]可得⎩⎪⎨⎪⎧a >0,-2a ×(-12)+2a +b =1,-2a ×1+2a +b =-5,或⎩⎪⎨⎪⎧a <0,-2a ×1+2a +b =1,-2a ×(-12)+2a +b =-5,解得⎩⎪⎨⎪⎧ a =2b =-5或⎩⎪⎨⎪⎧a =-2b =1.13. 已知椭圆C 的离心率e =22,一条准线方程为x =4,P 为准线上一动点,直线PF 1、PF 2分别与以原点为圆心、椭圆的焦距F 1F 2为直径的圆O 交于点M 、N . (1)求椭圆的标准方程;(2)探究是否存在一定点恒在直线MN 上?若存在,求出该点坐标;若不存在,请说明理由. 解:(1)由题意得c a =22,a 2c =4,解得c =2,a =22,则b 2=a 2-c 2=4,所以椭圆的标准方程为x 28+y 24=1.(2)由(1)易知F 1F 2=4,所以圆O 的方程为x 2+y 2=4.设P (4,t ),则直线PF 1方程为y =t6(x +2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =t 6(x +2),得(t 2+36)x 2+4t 2x +4(t 2-36)=0, 解得x 1=-2,x 2=-2(t 2-36)t 2+36,所以M ⎝ ⎛⎭⎪⎫-2(t 2-36)t 2+36,24t t 2+36,同理可得N ⎝ ⎛⎭⎪⎫2(t 2-4)t 2+4,-8t t 2+4.①若MN ⊥x 轴,则-2(t 2-36)t 2+36=2(t 2-4)t 2+4,解得t 2=12,此时点M ,N 的横坐标都为1,故直线MN 过定点(1,0);②若MN 与x 轴不垂直,即t 2≠12,此时k MN =-8t t 2+4-24tt 2+362(t 2-4)t 2+4+2(t 2-36)t 2+36=-8tt 2-12, 所以直线MN 的方程为y --8t t 2+4=-8t t 2-12⎝ ⎛⎭⎪⎫x -2(t 2-4)t 2+4,即y =-8tt 2-12(x -1),所以直线MN 过定点(1,0).综上,直线MN 过定点(1,0).14. 已知函数f (x )=|ax 2-2x +1|,0≤x ≤4.(1)a <0时,求f (x )≥12的解集;(2)求f (x )的最大值.解:(1)a <0时,f (x )草图如下,由f (0)=1,f (4)=7-16a >1, 可令⎩⎪⎨⎪⎧ax 2-2x +1=12,x >0,解得x 1=2-4-2a2a.又令⎩⎪⎨⎪⎧ax 2-2x +1=-12,x >0,解得x 2=2-4-6a2a,由图可知f (x )≥12的解集为⎣⎢⎡⎦⎥⎤0,2-4-2a 2a ∪⎣⎢⎡⎦⎥⎤2-4-6a 2a ,4. (2)a <0时,f (x )=|ax 2-2x +1|,记g (x )=ax 2-2x +1,0≤x ≤4, g (x )图象对称轴x =1a ,1a <0,∴g (x )在[0,4]上单调递减.∴f (x )max =max{f (0),f (4)}=max{1,|16a -7|}=7-16a ; a =0时,f (x )=|-2x +1|,f (x )max =7; a >0时,如果0<1a ≤4,即a ≥14时,f (x )max =max ⎩⎨⎧⎭⎬⎫f (0),f ⎝⎛⎭⎫1a ,f (4)=max ⎩⎨⎧⎭⎬⎫1,⎪⎪⎪⎪1a -1,|16a -7|, ①14≤a ≤716,即167≤1a≤4时, f (x )max =max ⎩⎨⎧⎭⎬⎫1,1a -1,7-16a =max ⎩⎨⎧⎭⎬⎫1a -1,7-16a ,由于⎝⎛⎭⎫1a -1-(7-16a )=1a +16a -8≥0, ∴f (x )max =1a -1.②716<a ≤1时,f (x )max =max ⎩⎨⎧⎭⎬⎫1,1a -1,16a -7, 12<a ≤1时,⎝⎛⎭⎫1a -1-1=1a -2=1-2a a<0, (16a -7)-1=16a -8=8(2a -1)>0,∴f (x )max =16a -7. 716<a ≤12时,⎝⎛⎭⎫1a -1-1=1a -2=1-2a a ≥0, (16a -7)-1=16a -8=8(2a -1)≤0,∴f (x )max =1a -1.③a >1时,f (x )max =max ⎩⎨⎧⎭⎬⎫1,1-1a ,16a -7=16a -7,又0<a <14时,1a>4,f (x )max ={f (0),f (4)}={1,|16a -7|}=7-16a .综上所述f (x )max=⎩⎪⎨⎪⎧7-16a ,a ≤14,1a -1,14<a ≤12,16a -7,a >12.。
分类与整合的思想——数学思想方法系列讲座(4)

,
顺应核心 素养发展
从文 化基础
,
、
自
主 发 展 、 社 会 参 与 三 方 面 造 就 全 “ 面 发 展 的
人” 。
二 是采 取鼓 励 、 表 扬 和 赞美 为 主 的 交 互
方 式 努 力 培 养 人 的 积 极 心 态 、 进 取精 神 以 及 ,
博雅 情怀 。 三 是 发挥 教 师的 榜样 力 量 , 增 强 教
其 次 “ 颂歌教 学 法 ” 在实 践上 具有 突 出 的 ,
操作 性 特征 。 它 迎 合 当 下 人才 培 养 ห้องสมุดไป่ตู้ 价值 追
求 , 遵 循有 效 实施 的 基本 原 则 , 同 时 也 需要 处 理好教育 过 程 中 的几 对 关 系 。
明
确
三点价值追求
:
是 一
立
足学生
的
独 立
担当 能力
时 眼 中 只 有 个 体 , 而 无全 牛 ( 目 无 全牛 ) 。 这 个 故 事 告
诉我 们 :
当我们掌握事物
的规 律后
,
办起事 来就 会得心
应 手 , 运 用 自 如 。 “ 目 无 全牛 ” 对 数 学 学 习 的 启 示 是 当 我 们 对 一 个
,
问 题 的 整 体无法 下 手 时 , 可 以 通 过 研究 问 题 的组 成结
师 的 教学 能 力 真 正 实现高 品 质 的 公 民教 育 。 ,
坚 持 四 个 基 本 原 则 : 一 是 专 注 性 , 即 要 求
主体 对课堂 的热 情 参 与 和 高 度专 注 , 让教师 和
学生 沉浸其中 。
二 是 诱导 性 即 要 求 发 挥教 师 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类整合的数学思想方法探讨
作者:张汉博
来源:《科学与财富》2018年第32期
摘要:高考毋庸置疑是一场很重要的考试。
更有一部分家长直接把高考当成改变命运的途径。
其中数学甚至会成为区分不同学生的一门学科。
然而笔者在观察过后发现这样一种现象,很多人不知道该怎样学数学。
这里笔者认为要想学好数学就必须要掌握数学中的基本方法——分类整合法。
只有很好的掌握了这种方法才能更好的学好数学。
关键词:分类整合;数学思想方法;探讨
1.对数学思想方法的认识
数学思想方法顾名思义可以分为两块——数学思想和数学方法。
这种数学思想是从对外界事物的不断认识中逐渐提取出来的基本观点和想法。
这种数学思想才是引导我们分析问题解决问题的关键。
其中一个数学问题的解决不仅依靠数学思想还依靠数学方法。
当然还有解决一个数学问题所需要的材料——数学知识。
从类别上,划分数学思想和方法可以分成两类:第一类是数学特有的思想方法,这种思想方法不依赖于其他的学科,是数学独有的。
例如:数形结合等。
另一类方法则是从其他科学中概括过来的方法,例如:归纳、类比。
2.分类整合思想分析
高考作为一场选拔性考试,目的就是为了选拔出优秀的人才。
数学作为了能判断学生逻辑思维、理性思维的一门的学科自然也是选拔标准之一。
数学这门学科不仅对我们的理性思维有着较高的要求而且它还拥有较多的知识点,也能考察学生对于相关知识点的掌握程度。
作为数学核心思想的分类整合法可想而知也是高考的重点考察对象之一。
分类整合法的关键思想是:根据事物的一个或多个属性,对对象进行分类。
通过分类能够很好的认识到事物在各个方面不同的分支。
而整合的思想能够帮助我们更加系统的认识整个事物,防止片面的认识一个事物。
分类的思想能够保证我们想清楚一个事物的各个方面,整合的思想能够保证我们认识的更加全面。
高考的考点之一就是考学生对于分类整合法的掌握情况。
在进入高考复习的后期时,如何能够更好的应用分类整合法,如何应用分类整合法是每一个学生都会遇到的问题。
例如:几乎每一个考生都遇到过这样的一种问题,即当一个题目做到一定步骤后,无法继续做下去了必须要进行分类讨论。
因为在那个步骤过后出现了不同的情况,考生必须要对不同的情况进行不同讨论,然后在把全部的情况整合起来。
想要在高考中脱颖而出我们必须要掌握好分类整合法。
为此我们必须要思考这么几个问题:为什么要用分类整合?在什么情况下应该用分类整合?这种分类整合的思想能不能用在别的类似的题目上?必须要想清这些问题才能用好分类整合的方法。
3.引起分类的原因分析
1)由数学运算引起的分类讨论
例如:当变量在分母的时候不能为零,这个时候就需要分类考虑。
指数函数的值一定是大于零的。
对数函数自变量的取值范围。
在遇到一些比较特殊的函数时,都要耐心考虑一下,看看是不是需要分类讨论的情况。
还有一些性质比较特殊的函数也同样需要读者勤加记忆。
2)由于函数性质引起的分类讨论
有些函数在不同的区间会拥有不同的性质,对于这一类函数在涉及到跨区间讨论时,也需要进行分类讨论。
例如:y=|sinx|在0到2的区间内,就要分为0到和到2两种情况。
但是这种情况也不是绝对的,具体问题需要具体分析。
3)由于参数是一个未知量而不是确定的值导致的分类讨论。
例如:高考中的一个典型问题f=ax2+bx+c就需要根据a的不同取值情况进行判断,a 大于零、小于零、等于零三种不同的情况。
这种分类讨论的思想极为常见。
例如在ln函数中如果ln位于分母的位置上,则要注意自变量不能为0。
例如:0、1这种分界点。
4)在数形结合问题中,由于所给的函数和点都是抽象的,很容易就必须要进行分类讨论。
例如:当知道两点距某条线的位置是多少时,求这两点间的距离。
这就会产生一个分类讨论,讨论这个点是在这条线的同侧还是不同侧两种情况。
在椭圆和双曲线问题上,由于参数在不同区间上的变化会导致图形的变化所以也需要分类讨论。
5)参数在不同区间内取不同的数值也会导致分类讨论,一个典型的问题就是对于分段函数的处理问题。
当分段函数和其他函数进行嵌套处理时,由于分段函数在不同的取值范围值不一样,所以尤其需要分类讨论。
分段函数如果函数值的取值不是连续的,而是间断的那么这个函数在作为另一个函数的内部函数时要格外小心。
分段函数和连续函数的嵌套问题也需要注意,对于一个连续函数而言虽然他本身是连续的,但是由于和分段函数进行了嵌套,所以及其可能最后的函数也变成分段函数,这种情况还需读者特别留意。
6)其他情况的分类讨论。
笔者不可能对每一种情况都有涉及。
在这里笔者只是列举了一些在高考中可能经常出现的需要分类讨论的问题。
至于其他的一些需要分类讨论的问题还需要读者在遇到的时候留心注意,碰到特别的情况加以特别的记忆即可。
然后尝试着把这种特殊的情况举一反三,下次再遇到类似的问题时就能够做出来避免再次出错。
4.小结
在高考数学中,之所以经常考察分类整合法,是因为分类整合法要求一个人必须要足够全面的认识一个问题。
需要学生勤加练习,但是高考考察的分类问题也不是很多。
在勤加练习过后一定可以游刃有余。
参考文献:
[1]王凯.分类与整合思想方法的常见应用[J].理科考试研究,2015,22(15):2-3.
[2]杨海宁.高中数学常用数学思想方法的应用[J].考试周刊,2011(71):67-68.
[3]纪苏恒.高中数学思想方法及其应用[J].学园,2017(9).
[4]华敬海.分类与整合思想在解题中的应用[J].中学生理科应试:高中,2010(5):25-27.
[5]段长顺.浅谈分类整合思想方法[J].中学生数理化:学研版,2013(6):27-27。