Influence of illumination conditions on the design of thin-film modules

合集下载

让榜样之光照亮前行之路作文800字

让榜样之光照亮前行之路作文800字

让榜样之光照亮前行之路作文800字1.榜样之光可以为我们指引前行之路。

The light of example can guide us on the path forward.2.学习榜样的行为和品德是我们的责任和使命。

It is our responsibility and mission to learn from the behavior and character of examples.3.榜样之光可以给我们带来启发和力量。

The light of example can bring us inspiration and strength.4.榜样的作用就像是一盏明灯,照亮我们前行的方向。

The role of example is like a beacon, lighting the way forward for us.5.榜样的力量在于其坚定的信念和不懈的努力。

The power of example lies in its firm beliefs and relentless efforts.6.我们应该努力成为他人眼中的榜样,而不是虚有其表。

We should strive to be an example in the eyes of others, rather than just superficial.7.对于年轻一代来说,优秀的榜样是他们成长道路上最宝贵的财富。

For the younger generation, excellent examples are the most valuable wealth on their path to growth.8.良好的榜样可以影响我们的价值观和行为习惯。

Good examples can influence our values and behavior habits.9.我们应该珍惜身边的榜样,从中汲取智慧和力量。

在阳光下绽放英文作文

在阳光下绽放英文作文

在阳光下绽放英文作文回答例子1:Blossoming Under the Sun: A Celebration of LifeThe sun is a symbol of life, warmth, and growth. It is a source of light and energy that sustains all living things on earth. As we bask in its glow, we can't help but feel renewed, rejuvenated, and inspired. In this article, we will explore the beauty of life that blossoms under the sun.The sun is a powerful force that has shaped the world we live in. It has influenced the growth of plants, the migration of animals, and the evolution of human societies. For centuries, people have worshiped the sun as a deity, a symbol of power and fertility. In many cultures, the sun is associated with life, rebirth, and renewal.When we think of the sun, we often think of summer, the season of warmth and growth. It is a time when flowers bloom, fruits ripen, and crops flourish. The sun's energy is essential for photosynthesis, the process by which plants convert sunlightinto food. Without the sun, life on earth would not exist.But the sun is not just a source of physical energy. It also has a profound effect on our emotional and mental well-being. Studies have shown that exposure to sunlight can improve mood, reduce stress, and boost cognitive function. It is no wonder that people flock to sunny destinations for vacations and relaxation.The sun also plays a role in our social and cultural lives. It is a symbol of happiness and celebration. We gather together to enjoy outdoor activities, festivals, and parties. The sun's warmth and light create a sense of community and connection among people.In literature and art, the sun has been a source of inspiration for centuries. Poets, painters, and musicians have captured the beauty and power of the sun in their works. From William Shakespeare's "Shall I compare thee to a summer's day" to Vincent van Gogh's "Starry Night," the sun has been a recurring theme in creative expression.In conclusion, the sun is a powerful force that brings life, energy, and inspiration to our world. It is a symbol of warmth, growth, and celebration. As we bask in its glow, we are reminded of the beauty and fragility of life. Let us cherish every moment that we have under the sun and celebrate the miracle of existence.回答例子2:Title: Flourishing Under the Sun: Embracing the Radiance of LifeIn the grand tapestry of existence, there exists a force that infuses life with vibrancy and vitality: the warm embrace of sunlight. As its golden rays cascade upon the Earth, they bestow upon us a gift of immense significance—a gift not merely of illumination, but of inspiration, renewal, and growth. In this essay, we shall embark on a journey to explore the profound impact of sunlight on our lives, both tangible and metaphorical, and delve into the ways in which we can blossom and flourish under its benevolent glow.Firstly, let us unravel the physical manifestations of sunlight's influence. From the moment dawn breaks and thefirst beams of light pierce the horizon, a cascade of biological reactions is set into motion. Sunlight, with its rich spectrum of wavelengths, serves as the primary source of energy for all life on Earth through the process of photosynthesis. Plants, the green guardians of our planet, harness this radiant energy to synthesize organic compounds, thereby sustaining the intricate web of ecosystems upon which all living beings depend.Furthermore, sunlight plays a pivotal role in regulating our circadian rhythms, the internal clocks that govern oursleep-wake cycles. Exposure to natural sunlight during the day helps synchronize these rhythms, promoting restful sleep at night and enhancing overall well-being. Indeed, studies have shown that individuals who spend ample time outdoors in sunlight exhibit improved mood, increased productivity, and reduced risk of various health ailments.Yet, beyond its tangible effects on the physical realm, sunlight holds a profound metaphorical significance—a beacon of hope, resilience, and growth amidst life's myriad challenges. Like a tender sapling reaching towards the sky, wetoo yearn to bask in the warmth of encouragement and support, to find solace in the belief that brighter days lie ahead.In times of adversity, it is often the metaphorical "sunlight" of human kindness and compassion that illuminates our path forward. Whether extended through a simple gesture of empathy or a heartfelt word of encouragement, these rays of light have the power to uplift spirits, instill courage, and foster a sense of community and belonging.Moreover, just as sunlight nurtures the growth of flora, so too does it nurture the growth of the human spirit. It is amidst life's trials and tribulations that we are presented with opportunities for self-discovery, personal growth, and transformation. Like delicate petals unfurling in the dawn's embrace, we learn to embrace our vulnerabilities, cultivate resilience, and emerge stronger and more radiant than before.In the realm of creativity and innovation, sunlight serves as a wellspring of inspiration, igniting the flames of imagination and ingenuity within us. Whether in the form of a breathtakingsunrise painting the sky with hues of crimson and gold, or the gentle dance of shadows cast by swaying branches, nature's artistry kindles a sense of wonder and awe that fuels our creative endeavors.In conclusion, to flourish under the sun is to embrace the fullness of life in all its beauty and complexity. It is to draw strength from the warmth of human connection, to find solace in the rhythms of nature, and to seize each day as an opportunity for growth and renewal. As we navigate the winding paths of existence, may we always remember to turn our faces towards the sun, allowing its radiance to illuminate our souls and guide us on our journey towards fulfillment and self-discovery.。

《黑暗之心》中“心”的象征意义

《黑暗之心》中“心”的象征意义

华中师范大学硕士学位论文《黑暗之心》中“心”的象征意义姓名:***申请学位级别:硕士专业:英语语言文学指导教师:***20050501内容摘要约瑟夫·康拉德(1857.1924)是英国十九世纪末二十世纪初一位很有影响力的现代主义作家,生于当时在俄国统治下的波兰东南部。

1862康拉德全家被流放到俄罗斯北部,以致他八岁丧母、十二岁丧父,幸好被叔叔收养才免遭衣食无着的命运。

后来他迷上了航海,经过近十年的摸爬滚打,终于在1888年成了一艘三桅船的船长。

然而,正是儿时的不幸和青年时期的冒险经历给他的写作提供了丰富的素材,《黑暗之心》就是一个很好的例子。

这部以他1890年的刚果之旅为依据创作的作品,讲述的是一个名叫查尔斯-马洛的年轻入沿刚果河进入黑暗的非洲腹地去找寻儿时梦想的故事。

途中马洛被库尔兹的传奇经历所吸引,并将拯救这位垂危的象牙代理人视为此行的另一重要目的。

然而沿途所见的种种“黑暗”以及库尔兹的悲剧使他的梦想彻底破灭,也使得这次寻找“真我”的“心路历程”以失败而告终。

本文的目的在于通过分析“黑暗”之发祥地“心”的象征意义,同时列举小说发表一个多世纪以来种种由“黑暗”之“心”所引发的罪恶与悲剧,说明库尔兹悲剧的必然性,以揭示《黑暗之心》的深刻含义及其对于现代的启示意义。

本文开篇简要介绍了康拉德及其作品在英国文学乃至世界文学史上的重要地位,及其对于20世纪之初一些重要作家的影响。

同时作者介绍了康拉德的艺术观,并大致点评了他的十部最重要的作品:《“白水仙”号上的黑家伙》、《黑暗之心》、《吉姆爷》、《青春》、《台风》、《诺斯特罗莫》、《特务》、《秘密的共命运者》、《在西方的注视下》和《机会》。

部分评论家认为,在康拉德的诸多作品当中,单凭《黑暗之心》或《诺斯特罗莫》就足以赋予他“文坛巨匠”的美誉。

而本文作者尤为欣赏其前一部作品。

原因之一在于故事所包含的深刻蕴意。

另一个重要的原因则在于它从各个层面体现了康拉德的特殊身份和生活经历对其作品内容及主题的重大影响。

基于双目视觉机器人自定位与动态目标定位

基于双目视觉机器人自定位与动态目标定位

基于双目视觉机器人自定位与动态目标定位卢洪军【摘要】Aiming at the fact that, the mobile robot based on binocular vision is very easy to be disturbed by the complex environment, such as the influence of noise, illumination change and the occlusion of the robot, which will seriously affect the positioning accuracy of the self localization and the moving objects, the color feature of the HSV model is proposed to accurately segment the artificial landmarks, and the robot position is determined according to the principle of parallax.A method was proposed based on Harris operator which is accurate to the position of a moving object in a complex environment.The dynamic object is detected by the frame difference method.Harris operator was used to extract the feature points on the moving objects, so as to obtain the disparity value, and then to calculate the position of the moving objects.The experimental results show that the self localization and target localization can overcome the external disturbance and have strong adaptability by using this method.The algorithm has good real-time performance.%针对基于双目视觉自定位与动态目标定位极易受复杂环境(如噪声、机器人发生遮挡、光照变化等)的干扰导致移动机器人定位精度低的问题,提出基于HSV颜色模型特征准确分割出人工路标,根据视差原理确定机器人位置.同时提出一种双目机器人基于Harris算子实现在复杂环境下对动态目标精确定位的方法,利用帧间差分法将运动目标检测出来,采用Harris算子在该运动目标上提取特征点,并获得视差值,从而精确的计算出运动目标的位置.实验结果表明,利用该方法进行自定位与目标定位能够克服外界干扰,具有较强的适应性,且算法的实时性好.【期刊名称】《沈阳大学学报》【年(卷),期】2017(029)001【总页数】6页(P37-42)【关键词】双目视觉;目标定位;Harris算子;帧间差分法;HSV模型【作者】卢洪军【作者单位】沈阳工业大学信息科学与工程学院, 辽宁沈阳 110870【正文语种】中文【中图分类】TP391.420世纪末,对目标定位技术主要有基于红外线的定位技术、基于超声波的定位技术和基于频射识别技术等[1].近年来,由于图像处理和计算机视觉的飞速发展,机器视觉的研究越来越受到广大专家和学者的青睐[2].双目立体视觉是机器视觉的一个重要分支,能够直接模仿人类双眼处理外界环境[3],可以代替人类完成危险的工作(如深海探测、火灾救援、核泄漏监测等)[4].而基于双目立体视觉对动态目标检测与定位也是机器视觉领域备受关注的前沿课题之一[5].双目立体视觉定位主要分为六个步骤[6]:①图像获取;②图像预处理;③摄像机标定;④特征点提取;⑤特征点的立体匹配获取视差值;⑥基于视差原理实现机器人定位.特征点提取和立体匹配是实现机器人定位的关键环节.通常的方法是依靠目标的形状、颜色等特征检测目标,并以运动物体的形心或中心作为特征点[7].该方法虽然计算简单,但极易受噪声干扰,只选择一个点作为特征点,一旦该特征点发生遮挡或光照变化等,都会严重影响定位精度.1977年,Moravec提出根据图像的灰度变化来提取图像角点,称为Moravec角点[8].该方法计算相对简单,但对于处于边缘上的点会存在误检,也极易受光照变化的影响.SIFT特征点[9]和CenSurE特征点[10]虽然对尺度、亮度变化不敏感,但在弱纹理等复杂情况下难以提取稳定的特征点,算法复杂度高,计算时间较长.不满足移动机器人对实时性的要求.针对以上缺陷,本文首先利用帧间差分法检测出运动目标,然后在运动目标上基于Harris算法提取多个特征点来实现移动机器人在复杂环境下实时的对运动目标精确定位.机器人整体定位流程如图1所示,移动机器人首先基于HSV颜色模型空间分割出人工路标,实现机器人自定位.然后利用帧间差分法检测出运动目标,根据Harris算法在左右两幅图像上提取特征点,根据区域匹配原理获取视差值,利用视差原理即可求出运动目标的世界坐标,即完成了对运动目标的定位.1.1 人工路标检测(1) HSV颜色模型.RGB色彩空间分别以红色、绿色、蓝色为三原色,通过适当的搭配可以合成成千上万种颜色,是一种常见的颜色表示法.但是RGB色彩空间与人眼的感知差异大,其空间的相似不代表实际颜色的相似.为了能够更准确分割出人工路标,本文采用HSV色彩空间颜色模型,如图2所示.RGB颜色空间转化到HSV色彩空间只是一个简单的非线性变换,计算简单.HSV模型中H代表色调,S代表饱和度,并且独立于亮度信息V.色调H代表颜色信息,取值范围为0~180°,对其设定阈值可以区分不同颜色的路标;饱和度S表示颜色中掺杂白色的程度,取值范围为0~1,S 越大,颜色越深;亮度V表示颜色的明暗程度,取值范围为0~1,V越大,物体亮度越高.(2) 基于颜色特征提取人工路标.由于本文是在室内环境下对移动机器人定位,所以本文设计的人工路标是由红黄蓝三种颜色组成的矩形纸板.如图3a所示为左摄像机拍摄到的带有人工路标的室内环境.根据HSV颜色模型对H、S、V三个分量进行阈值设置即可分割出人工路标,如图3b所示.然后利用图像处理中的形态学操作对分割出的路标进行完善使其效果最佳,如图3c所示.图3d为获取人工路标的中心点,利用视差原理即可得到当前帧机器人的位置.1.2 帧间差分法帧间差分法[11]的思想是对一段连续视频的相邻两帧进行差分运算,从差分运算的结果中得到运动目标的轮廓.该算法的优点是实现简单,对光照变化不敏感,稳定性好.适用于多目标或背景变化较快的场合.图4为在室内环境下用帧间差分法检测到运动物体.结果显示,帧间差分法能够有效的将运动目标检测出来.2.1 双目立体视觉测距原理双目立体视觉的视差原理[12]是利用两台摄像机从两个视点观察同一景物,以获取在不同视角下的感知图像,通过计算空间点在两幅图像中的视差来获取目标物体的三维坐标.2.2 Harris角点检测Harris角点[13]是在Moravec角点的基础进行改进的算法. Harris算子是用高斯函数代替二值窗口函数, 对离中心点越远的像素赋予越小的权重, 以减少噪声的影响. 高斯函数如式(1)所示.Moravec算子只考虑了四个方向的像素值,Harris算子则用Taylor展开式去近似任意方向.图像I(x,y)平移(Δx,Δy)可以一阶近似为在图像I(u,v)中,像点(u,v)平移(Δx,Δy)后的自相关函数为将式(2)代入式(3)可得:其中M如下所示:根据式(5)中矩阵M的特征值可以近似的表示函数C(x,y)的变化特征.矩阵M的特征值需要考虑以下三种情况,如图5所示.(1) 如果矩阵M的两个特征值都比较小,则表征图像灰度变化函数C(x,y)的值也较小,就说明该像素点的邻域内灰度差值不大,图像较平滑,无角点.(2) 如果矩阵M的两个特征值一个较大,一个较小,说明该像素点的曲率也是如此,则该点的窗口区域处于一条边界,无角点.(3) 如果矩阵M的两个特征值都比较大,则图像灰度变化的自相关函数值也较大,该点的窗函数沿任意方向都将引起灰度的剧烈变化,该点即为角点.根据这一准则,只要计算行列式的特征值就可以检测图像中的哪些点是角点.Harris 提出角点的响应函数:det(M)为行列式的值,trace(M)为行列式的迹.而k根据Harris的建议一般取0.04~0.06之间.若Harris角点响应大于阈值,则被认为是角点.Harris角点的生成只涉及到一阶导数,所以该角点对噪声影响、光照变化引起的灰度值变化都不敏感,是一种比较稳定的特征提取算子.3.1 实验环境本文使用的机器人是由北京博创兴盛技术有限公司开发的自主移动机器人旅行家Ⅱ号,如图6所示.该机器人上安装了由加拿大Point Grey Research公司生产的Bumblebee2双目摄像机,其性能参数如表1所示.3.2 传统移动机器人对运动目标定位实验环境为一间办公室,装有双目摄像机Bumblebee2的移动机器人为工作机器人,用于检测运动目标.将另一台机器人视为运动目标,运动速度为0.1 m/s.传统的方法是提取运动目标的中心点,获取视差值,从而给运动目标定位.传统方法仅获取图像中的一个点作为立体匹配的特征点,当该点受到环境的干扰时定位精度会受到极大的影响,图7为传统方法提取运动目标中心点.表2为传统方法对运动目标定位的实验数据,表3为改变光照后传统方法移动机器人对运动目标定位的实验数据.可以得出传统方法机器人定位误差相对较大,一旦光照发生改变,对运动物体定位误差会更加严重.3.3 基于Harris算子机器人对运动目标定位针对传统方法定位精度不足,极易受外界环境的干扰的问题,决定采用基于Harris角点特征提取,即在相机获得的左右两幅图像上基于Harris算子提取多对特征点,如图8所示.表4、表5为基于Harris方法机器人对运动目标定位的实验数据,可以得出基于该方法对运动目标定位误差很小,相对误差降低到1%左右,当光照发生变化时也能实现对运动目标精确定位.最后将每一帧的两幅图像根据区域匹配原理[14]和极限束准则找到正确的匹配点,排出易受噪声干扰的点,从而得到视差值,即可准确的对运动目标定位.(1) 本文研究了机器人基于双目立体视觉实现自定位与对运动目标定位,充分利用双目视差原理,并结合Harris算法和帧间差分法来实现运动目标的精确定位.从仿真结果可以看出,提取多个特征点可以避免只用一个点易受干扰的不足,实现更精确的运动目标定位.(2) 虽然本文在运动目标上提取多个特征点,有效的克服了传统方法的不足.但还存在问题需要改进.首先,需要找到一种更快更准确的特征点立体匹配算法;其次,本文只是将每一帧图像得到的多个视差值做平均值处理,如何有效的将多个视差值融合也是对运动目标精确定位的关键.【相关文献】[1] 李艳. 双视频目标定位技术[J]. 沈阳大学学报(自然科学版), 2016,28(4):302-305. (LI Y. Dual video target location technology[J]. Journal of Shenyang University(Natural Science), 2016,28(4):302-305.)[2] 李天健. 基于机器人视觉的汽车零配件表面缺陷检测算法研究与实现[J]. 沈阳大学学报(自然科学版), 2013,25(6):476-480. (LI T J. Research and implementation of auto parts surface defect detection algorithm bases on robot visio[J]. Journal of Shenyang University (Natural Science), 2013,25(6):476-480.)[3] 杜宇. 三维重建中双目立体视觉关键技术的研究[D]. 哈尔滨:哈尔滨理工大学, 2014:1-5. (DU Y. Research on key technology of binocular stereo vision in three-dimensional reconstruction[D]. Harbin:Harbin University of Science and Technology, 2004:1-5.)[4] 余俊. 基于双目视觉的机器人目标检测与控制研究[D]. 北京:北京交通大学, 2011:1-4. (YU J. Research on target detection and robot control based on binocular vision[D]. Beijing: Beijing Jiaotong University, 2011:1-4.)[5] DESOUZA G N, KAK A C. Vision for mobile robot navigation: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(2): 237-267.[6] 高栋栋. 基于双目立体视觉定位和识别技术的研究[D]. 秦皇岛:燕山大学, 2013:9-11. (GAO D D. Research on recognizing and locating binocular stereo vision technology[D]. Qinhuangdao:Yanshan University, 2013:9-11)[7] 崔宝侠,栾婷婷,张弛,等. 基于双目视觉的移动机器人运动目标检测与定位[J]. 沈阳工业大学学报, 2016,38(4):421-427. (CUI B X, LUAN T T, ZHANG C, et al. Moving object detection and positioning of robot based on binocular vision[J]. Journal of Shenyang University of Technology, 2016,38(4):421-427.)[8] 邓国栋. 基于多尺度特征的双目立体视觉目标定位[D]. 哈尔滨:哈尔滨工业大学, 2012: 21-22. (DENG G D. Object location of binocular stereo vision base on multi-scale feature[D]. Harbin: Harbin Institute of Technology, 2012:21-22.)[9] LOWE D G. Distinctive image feature from scale-invariant key point[J]. International Journal of Computer Vision, 2004,60(2):91-110.[10] KONOLIGE K, AGRAWAL M, SOLA J. Large-scale visual odometry for roughterrain[C]∥Robotics Research: The 13thInternational Symposium ISRR, 2011,66:201-212.[11] 熊英. 基于背景和帧间差分法的运动目标提取[J]. 计算机时代, 2014(3):38-41. (XIONG Y. Moving object extraction based on background difference and frame differencemethod[J]. Computer Era, 2014(3):38-41.)[12] 林琳. 机器人双目视觉定位技术研究[D]. 西安:西安电子科技大学, 2009:8-10. (LIN L. The research of visual positioning technology on the binocular robot[D]. Xi’an: Xi'an Electronic and Science University, 2009:8-10.)[13] 张从鹏,魏学光. 基于Harris角点的矩形检测[J]. 光学精密工程, 2014,22(8):2259-2266. (ZHANG C P, WEI X G. Rectangle detection base on Harris corner[J]. Optics and Precision Engineering, 2014,22(8):2259-2266.)[14] 罗桂娥. 双目立体视觉深度感知与三维重建若干问题研究[D]. 长沙:中南大学, 2012:48-53. (LUO G E. Some issues of depth perception and three dimension reconstruction from binocular stereo vision[D]. Changsha: Central South University, 2012:48-53.)。

利用梯度掺杂获得高量子效率的GaAs光电阴极

利用梯度掺杂获得高量子效率的GaAs光电阴极

文章编号:025322239(2005)102141124利用梯度掺杂获得高量子效率的Ga As 光电阴极3杜晓晴 常本康 邹继军 李 敏(南京理工大学电子工程与光电技术学院,南京210094)摘要: 获得高量子效率且稳定性良好的阴极一直是近年来发展GaAs 光电阴极的重要方向。

对晶面为(100),掺杂Be ,厚度为1μm 分子束外延生长的反射式G aAs 发射层,设计了一种从体内到表面掺杂浓度由高到低分布的新型梯度掺杂结构。

掺杂浓度的范围从1×1019cm -3到1×1018cm -3,并利用(Cs ,O )激活技术制备了GaAs 光电阴极。

光谱响应测试曲线显示,与传统均匀掺杂的G aAs 光电阴极相比,梯度掺杂的GaAs 光电阴极的量子效率在整个波段都有提高,积分灵敏度可达1580μA/lm ,且具有更好的稳定性。

讨论了这种新型GaAs 光电阴极获得更高量子效率的内在机理。

该设计结构是现实可行的,且具有很大发展潜力,它为国内发展高性能GaAs 光电阴极提供了一条重要途径。

关键词: 光电子学;GaAs 光电阴极;量子效率;梯度掺杂;激活;光谱响应;积分灵敏度中图分类号:TN214 文献标识码:A 3十五国防科技预研重点项目(404050501D )资助课题。

作者简介:杜晓晴(1978~),重庆人,南京理工大学博士研究生,主要从事高性能G aAs 光电阴极方面的研究。

E 2mail :muyuandu @收稿日期:2004211229;收到修改稿日期:2005203212Hi g h Q u a nt u m Ef f icie ncy Ga As P h ot oca t hode by Gr a die nt Dop i n gDu Xiaoqing Chang Benkang Zou J ijun Li Min(I nstit ute of Elect ronic Engi neeri ng a n d Op toelect ronics Tech nology ,Na nji ng U niversit y of Sciencea n d Tech nology ,Na nji ng 210094)Abs t r act : To achieve high quantum efficiency and good stability has been a main direction to develop GaAsphotocathode recently.For a molecular beam epitaxy grown ,(100)wafer ,Be doping and 1μm thickness reflection 2mode GaAs emission layer ,a new 2type gradient doping st ructure ,in which f rom GaAs bulk to surface doping concent rations are dist ributed gradiently f rom 1×1019cm -3to 1×1018cm -3,was designed.And t he new 2type GaAs emission layer was p repared into photocathode by (Cs ,O )activation technique.The spect ral response curves show that compared to common uniform doping GaAs photocathode ,the quantum efficiency of gradient doping GaAs photocathode is increased within whole response waveband ,with integral sensitivity of 1580μA/lm ,and the photocathode also behaves more stable ,which p roved that the new 2type gradient doping st ructure is executable and p ractical ,has great potential ,and the develop ment of it p rovides an important app roach to development of the national GaAs p hotocathode with high performance.The inherent reasons why the new 2type GaAs photocathode obtained higher quantum efficiency were also discussed.Key w or ds : optoelect ronics ;GaAs photocathode ;quantum efficiency ;gradient doping ;activation ;spect ral response ;integral sensitivity1 引 言GaAs 光电阴极是一种负电子亲和势(N EA )光电阴极,具有高量子效率、低暗噪声、光谱响应范围宽、光电发射电子能量和角度分布集中等众多优点,在光电探测器件、半导体敏感器件以及高能物理电子源等众多领域得到了广泛应用。

不同光照条件对几种类型蔬菜呼吸强度变化的影响

不同光照条件对几种类型蔬菜呼吸强度变化的影响

中图分类号: S63
文献标识码:A
文章编号:1009-6221(2010)06-0029-04
呼吸是维持果蔬正常生命代谢的前提条件,也是 采后一个最基本的生理过程,它与果蔬的成熟、品质
的变化以及贮藏寿命有密切关系,是影响贮运效果的 重要因素[2]。呼吸强度是评价果蔬呼吸作用和新陈代
基 金 项 目 :天 津 市 农 业 科 学 院 院 长 基 金 项 目 (09015) 作 者 简 介 :陈 存 坤 (1981— ),男 ,汉 族 ,山 东 人 ,硕 士 ,主 要 从 事 农 产 品 低 温 物 流 与 保 鲜 技 术 研 究 工 作 。 *通讯作者:王文生,博士,研究员,主要从事农产品运输保鲜理论与技术研究工作。
Effect of Different Illumination Condition on Respiration Rate of Vegetables
CHEN Cun-kun, JIA Ning, WANG Wen-sheng*
(National Engineering And Technology Research Center of Preservation of Agriculture Products(Tianjin), Tianjin Key Laboratory of Postharvest Physiology And Storage of Agricultural Products, Tianjin 300384, China)
Abstract: In order to verify whether the light has the influence on the respiration of tomatoes, broccoli, cauliflower, asparagus in vitro, adopt the following temperatures to each testing material respectively, near room temperature: 15 ℃, mild hypothermia: 8 ℃, appropriate storage temperature: storage temperature of 0 ℃, measure the respiration of vegetables at the same temperature in the light and dark, and respectively do the comparative study to the respiration rate of tomatoes, broccoli, cauliflower, asparagus in the dark and light. The results show that the light has greater influence on the respiration of vegetables, under the set temperature gradient, and compared to the dark, the illumination can reduce the respiration rate of tomatoes, asparagus and broccoli, but the influence on cauliflower is not significant, lightness control breathing intensity no significant, while the influence of illumination on respiration rate of isolated vegetables is also related with the storage temperature, normally, the lower the storage temperature is, the smaller influence of illumination on the vegetable respiration rate is. Key words: respiration rate; lightness; darkness; temperature; vegetable

晒农作物英语作文

晒农作物英语作文

晒农作物英语作文Title: The Significance of Sunlight in Crop Growth。

Sunlight plays a pivotal role in the growth and development of agricultural crops. Its influence extendsfar beyond mere illumination, as it is essential for various physiological and biochemical processes crucial for plant growth. In this essay, we will explore the significance of sunlight in crop cultivation.First and foremost, sunlight is the primary source of energy for photosynthesis, the process by which plants convert carbon dioxide and water into glucose and oxygen. This glucose serves as the primary source of energy for the plant, fueling its growth and development. Without an adequate supply of sunlight, photosynthesis cannot occur efficiently, leading to stunted growth and reduced yields.Moreover, sunlight regulates various physiological processes in plants, including photomorphogenesis,photoperiodism, and phototropism. Photomorphogenesis refers to the light-induced changes in plant morphology, such as the development of leaves, stems, and flowers. Photoperiodism controls the timing of flowering and other developmental events based on the duration of light and darkness. Phototropism, on the other hand, is the plant's ability to grow towards or away from light stimuli. These processes are crucial for optimizing plant growth and ensuring reproductive success.Furthermore, sunlight influences the synthesis of secondary metabolites in plants, including vitamins, antioxidants, and phytochemicals. These compounds not only enhance the nutritional value of crops but also confer various health benefits to consumers. For example, exposure to sunlight stimulates the production of vitamin D in certain crops, which is essential for bone health and immune function in humans.In addition to its direct effects on plants, sunlight also influences soil temperature and moisture levels, which in turn impact crop growth. Sunlight warms the soil,accelerating microbial activity and nutrient cycling, thereby promoting nutrient availability to plants. Furthermore, sunlight facilitates the evaporation of water from the soil surface, maintaining optimal moisture levels for plant growth. However, excessive sunlight can also lead to water stress and soil dehydration, especially in arid regions.Moreover, sunlight plays a crucial role in shaping the microclimate within agricultural ecosystems. It affects temperature gradients, air circulation, and humidity levels, creating favorable conditions for crop growth. Proper management of sunlight exposure through techniques such as crop spacing, shading, and mulching can help mitigate the adverse effects of extreme temperatures and fluctuations in weather patterns.In conclusion, sunlight is indispensable for the growth, development, and productivity of agricultural crops. Its influence extends beyond mere illumination, encompassingvital physiological, biochemical, and ecological processes essential for plant health and vitality. Therefore, farmersmust prioritize optimizing sunlight exposure in their agricultural practices to ensure sustainable crop production and food security for future generations.。

建筑专业英语词汇(I-K)_建筑英语词汇

建筑专业英语词汇(I-K)_建筑英语词汇

i beam 工字梁i beam column 工字梁柱i girder 工字形大梁i iron 工字钢i section 字形剖面ice 冰ice admixture 冰掺料ice apron 桥墩的破冰构造ice cellar 冰窖ice concrete 冰混凝土ice dam 冰坝ice drift 淌凌ice gate 排冰门ice house 冰库ice load 冰荷载ice loading 冰荷载ice pressure 冰压力ice regime 冰况ice rink 溜冰场ice run 淌凌illuminating engineering 照盲程学illumination 照明illuminator 照明illustration 图解说明imaginary hinge 虚铰imhoff tank 双层沉淀池immature concrete 未凝结的混凝土immediate deformation 瞬时变形immersed tunnel 沉埋式隧道immersion needle 振动针immersion vibrator 插入式振捣器impact 冲击碰撞impact bending strength 冲挥曲强度impact compacter 冲换具impact crusher 冲唤破碎机impact damage 冲火坏impact driven pile 冲划impact electric wrench 冲唤电气板钳impact factor 冲坏数impact load 冲簧载impact loss 冲火失impact noise 冲浑音impact pile driver 冲唤打桩机impact pressure 冲还力impact resistance 冲豢度impact screen 撞桓impact strength 冲豢度impact stresses 冲沪力impact test 冲辉验impact wrench 冲唤板手impactor 冲黄碎机impeller pump 叶轮泵impending slough 稠度imperfect frame 不完全框架imperfect well 不完全井impermeability factor 不透水系数impermeable rock 不透水岩impervious blanket 不透水面层impervious core 不透水心墙impervious course 不透水层impervious diaphragm 不透水性隔膜impervious layer 不透水层impervious soils 不透水土壤implementation of program 计划执行imposed load 酌荷载imposition of the prestress 预应力的强加impost 窗框的竖框impounded water 积滞水impounding dam 滞水坝impounding reservoir 蓄水池impoundment 汇水impregnation 浸透improved alignment 改善的线路improved grass 改良草坪improved land 改良地improved wood 改良木材improvement area 改建区impurity 杂质in built furniture 嵌墙式家具in place slump test 现场坍落度试验in situ concrete 就地浇混凝土in situ concrete pile 就地浇筑混凝土桩in situ construction 现场浇筑构造in situ overhaul 现场检修in situ test 就地试验inaccuracies of fabrication 建造不准确度inch 英寸incidental load 偶然荷载incinerator 焚化炉inclination 倾斜inclination of roof 屋顶斜度inclined axis mixer 斜轴拌和机inclined cableway 倾斜死inclined end post 桁架的末端支撑inclined gallery 倾斜走廊inclined intake 倾斜进水口inclined links 倾斜箍筋inclined plane 斜面inclinometer 测斜仪inclosure wall 围墙incombustible construction 耐火结构incomplete well 未完成井incompletely compacted concrete 捣实不足的混凝土increaser 异径接管increments of settlement 沉陷的增大incrustation 嵌入装饰;结壳;水垢indelible pencil 消不去的铅笔indented bars 螺纹钢筋indented wire 刻痕钢丝indenting roller 凹纹压路机independent foundation 独立基础independent modern industry 自立的现代工业indeterminate structure 超静定结构index 指数index of cementation 粘结性指数index of construction cost 建筑费指数index of liquidity 怜性指数index of plasticity 塑性指数index properties 指标特性indian ink 墨indicator 指示器indicator paper 试纸indirect evaporation air conditioner 间接蒸发空气第机indirect expansion system 间接蒸发冷却式空气第系统indirect heating 间接加热indirect hot water supply 间接热水供给indirect illumination 间接照明indirect type fixture 间接照描备individual base 独立基础individual batcher 分批计量计individual construction 个体建筑indoor climate 室内微气候indoor lighting 户内照明indoor piping 室内管道indoor stadium 体育馆indoor swimming pool 室内游泳池indoor temperature 室内温度induced draft 诱导通风induced draft fan 排气式通风机induction air conditioning system 吸气式空气第系统induction flowmeter 感应量计induction furnace 感应电炉induction welding 感应焊接industrial air conditioning 工业空第industrial architecture 工业建筑industrial building 工厂厂房industrial construction 工业建筑industrial development area 工业发展区industrial housing 工业化房屋建筑industrial noise 工业噪声industrial occupancy 工业区industrial sewage 工业污水industrial town 工业城镇industrial waste water 工业污水industrial water 工业用水industrialization of construction industry 建筑工业化industrialized building 工业化建筑industrialized building system 工业化建筑系统industrialized production of houses 房屋的工业化建造industry 工业inelastic behavior 非弹性行为inelastic buckling 非弹性弯曲inelastic deformation 非弹性变形inelastic range 非弹性范围inelastic strain 非弹性变形inertia 惯性inertia effect 惯性效果inferior concrete 蛮石混凝土infilled wall 填充墙infiller panel 内镶嵌板infilling 填充infilling masonry 填实空隙圬工infiltration 渗透infiltration area 渗透区infiltration coefficient 渗滤系数infiltration head 渗滤压头infiltration heat loss 渗入热耗infiltration routing 渗透计算inflammation 发火inflatable structures 充气式结构inflatable void formers 充气多孔形成机inflating medium 膨胀介质inflation system 充气系统inflected arch 倒拱inflexion 弯曲inflow 岭influence area 影响区influence basin 影响范围influence line 影响线influence line for reaction 反力影响线influence line of reactions 支座反力影响线influent 岭infrared drying 红外线干燥infrared element 红外线加热器infrared heating 红外线取暖infrared pavement heater 红外线铺面加热器infrared radiation 红外辐射infrared radiator 红外线辐射器infrared ray curing 红外线养护infrared rays 红外线infrastructure 下部结构ingredient 组成部分ingredients of concrete 混凝土成分ingress of ground water 地下水侵入inherent moisture of aggregates 骨料的水分含量inherent settlement 固有沉陷inhibiting agent 抑制剂inhibiting pigment 防蚀颜料initial condition 起始条件initial cost 初投资initial data 原始数据initial design 原设计initial drying shrinkage 原始干缩initial investment 初期投资initial prestress 初预应力initial rate of absorption 吸收初速率initial set 初凝initial setting time 初凝时间initial strength 初始强度initial stress 初应力injected foundation 注入式基础injecting grout 注入灌浆injection 注入injection gallery 灌入通道injection hole 注入孔injection lance 喷枪injection mortar 注入灰浆injection of grout 水泥薄浆灌入injector 注入器ink drafting 墨水绘制inland harbour 河港inland waterway 内陆水路inlet 进口inlet grating 进水口帘格inlet opening 岭口inlet sill 进口底槛inlet structure 进口建筑物inlet well 集水井;注浆钻孔inner door 内针门inner face 内表面inner forces 内力inner garden 内院inner slope 内坡inner span 内跨度input data 输入数据insect damage 虫害inside casing 内框inside door 内门inside wall 内侧壁insolation 日射inspection 检查inspection cap 检查口盖inspection certificate 技术检查报告inspection chamber 检查人孔inspection cock 检查阀inspection cover 检查盖inspection door 检查口inspection eye 检查孔inspection gallery 检查廊道inspection hole 检查口inspection list 检查单inspection manhole 检查人孔inspector 验收员instability 不稳定性installation 安装;装置installation drawing 安装图installation work 安装工作installed capacity 设备容量installed power 设备容量instant lock 自动锁instantaneous center of rotation 瞬时旋转中心instantaneous deformation 瞬时变形instantaneous elevator safeties 瞬间电梯保险锁instantaneous load 瞬间载荷instantaneous water heater 瞬时水加热器instrument 工具instrument panel 仪表板insulated column 独立柱insulated hot water heater 保温式水加热器insulating board 隔热板insulating brick 绝热砖insulating concrete 绝缘混凝土insulating fire brick 耐火砖insulating form board 保温木模板insulating glass unit 绝缘玻璃垫块insulating jacket 绝缘夹套insulating layer 绝缘层insulating paint 绝缘漆insulating paper 绝热纸insulating refractory 绝热耐火材料insulating slab 绝缘板insulating wall 绝缘墙insulating work 隔热工程insulation 绝缘insulation materials 绝缘材料insulation quilt 保温毡insulation sleeve 绝缘套管insulator 绝缝体insulator string 绝缘子串intake 吸入口intake construction 进水建筑物intake duct 吸入管道integral coloring 完全着色integral control 整体控制integral waterproofing 整体防水integrated ceiling 吊顶integrated distribution floor system 布置技术设施网的楼板integrated power grid 综合电力网intensity 强度intensity of illumination 照度intensity of light 光度intensity of load 荷载强度intensity of sound 声强度intensity parameter 强度参数interchange of air 空气交换interchange of energy 能量交换interchange of heat 热交换intercolumniation 柱间距intercupola 圆屋顶的中间隔层interdome 圆屋顶的中间隔层interfenestration 窗间墙宽度interference 干涉interference of light 光干涉interference of sound 声干涉interference settlement 干扰沉陷intergrating flow meter 累计量表intergrating heat meter 积算热量计interground addition 磨碎时的加入物interior 内部装饰interior architecture 室内建筑interior bridge support 桥墩interior casing 内框interior climate 室内微气候interior column 内柱interior designer 屋内设计者interior finish 室内装修interior glazed window 室内装玻璃的外墙窗interior illumination 户内照明interior lighting 户内照明interior of building 房屋内景interior span 内跨度interior support 内部支承interior temperature 室内温度interior type plywood 内部饰面胶合板interior wall 内墙interior wiring 户内布线interior works 室内工作interior zone 内部区域interjoist 搁栅间interlayer 隔层interlocking concrete blocks 嵌锁混凝土砖interlocking piles 联锁桩interlocking tile 联结的大型屋面槽瓦intermediate gate post 大门中间柱intermediate product 中间产物intermediate rafter 中间椽intermediate support 中间支点intermittent filter 间歇式滤器intermittent freezing 间歇冻结intermittent heating 周期式供热intermittent operation 间歇运行intermittent sand filter 周期式滤砂器intermittent type settling basin 间歇式沉淀池intermixing 混合intermixture 混合internal conditions 内部条件internal construction 内部结构internal diameter 内径internal forces 内力internal friction 内摩擦internal glazing 内部装配玻璃internal leaf 内部竖壁internal moment 内力矩internal skin 内部竖壁internal span 内跨度internal strain 内应变internal stress 内部应力internal vibrator 插入式振捣器internal wiring 内部线路internally indeterminate construction 内部超静定结构international friendship exhibition 国际友谊展览馆intersection 交叉intersection angle 转角intersection point 转交点interstices 间隙interval 区间intrados 拱的内表面inundation 侵水inundation zone 泛滥地区invert 倒拱inverted arch 倒拱inverted capacity 吸收容量inverted filter 反滤层inverted flat roof 倒置的平屋顶inverted siphon 倒虹吸管inverted t shaped footing 倒型基脚inverted u shaped precast concrete unit 倒u型预制钢筋混凝土部件investment 投资irish bridge 淹没桥iron 铁iron alumina ratio 铁矾土比iron bridge 铁桥iron cement 含铁水泥iron column 铁柱iron construction 铁结构iron core 铁心iron covering 铁盖iron paving 铸铁板铺面iron portland cement 矿渣硅酸盐水泥iron wire 铁线irregular aggregate 不均匀粒度骨料irregular curve 云形曲线规irregularly distributed load 不均匀分布荷载irrigation 灌溉irrigation canal 灌溉渠irrigation network 灌溉网irrigation requirement 灌溉需水量irrigation works 灌溉结构物island 岛isohypse 等高线isolated foundation 单独基础isolated pier 独立桥墩isolation 绝缘isolation joint 隔离接缝isolator 绝缘体isometric drawing 等距图isometric view 等视轴图isotherm 等温线italian roof 四坡屋顶jack 千斤顶;支柱jack arch 平拱jack horse 台架jack pile 用千斤顶压入桩jack plane 大刨jack rafter 小椽jack rib 短肋jack roll 手绞盘jack shore 千斤顶支柱jack truss 小桁架jack up rig 活动工捉台jackhammer 轻型凿岩机jacking 顶托jacking device 液压顶撑设备jacking force 千斤顶举升力jacking plate 举升垫板jackscrew 螺旋千斤顶jaw breaker 鄂式破机jaw crusher 鄂式破机jedding axe 鹤嘴斧jemmy 短橇棍jenny 移动起重机jesting beam 装饰梁jet action trencher 射两挖沟机jet pump 喷射泵jetcrete 喷浆混凝土jetted pile 水冲桩jettied construction 悬挑式建筑jetting 水力喷射jetting gear 水力开齿机jetty 建筑物的突出部分;堤防jib 起重机臂jib crab 吊杆车jib door 隐门jibcrane 动臂起重机jig 夹具jigger saw 线锯jigging chute 振动滑槽jigsaw 线锯jimmy 短橇棍jinnie wheel 单轮滑车job 工作工地job cleanup 建筑工地清理job mix 现场拌合混合料job mix concrete 现场搅拌混凝土job mix formula 现场拌合配方job plan 工组计划job practices 施工方法job site 施工现场job superintendent 建筑工地负责人job workshop 现场加工车间joiner 细木工人joiner's chisel 细木线规joiner's gauge 划线规joiner's glue 木工胶joinery 细木工工作细木工制成品joining balk 联系木梁joining means 连接措施joint 接缝joint angle 接合角钢joint box 接线盒joint cement 填缝水泥joint coupling 接头套管joint cutter 切缝机joint filler 填缝料joint free 无缝的joint grouting 接缝灌浆joint load 节点荷载joint mortar 接缝灰浆joint rigidity 节点刚性joint ring 密封环joint sawing 接缝锯开joint sealant 填缝料joint sealing compound 封缝止水合成物joint sealing machine 封缝机joint strip 嵌缝胶条joint tape 合缝带jointer plane 槽刨jointing 接缝jointing compound 油灰抹子jointing medium 勾缝填料jointing tool 缝抹子jointless flooring 无接缝地板jointless structure 无接缝结构joist 小梁joist ceiling 搁栅顶棚joisted floor 搁栅搂盖jolting table 振动台jolting vibrator 摇摆振动器jubilee wagon 翻斗车jumbo 凿岩台车jump 阶差jump forms 爬升模板jumping formwork 爬升模板junction box 接线盒junction plate 连接板just gap 间隙jut window 突出窗jute rope 黄麻绳k truss k 形桁架kangaroo tower crane 袋鼠型塔式起重机keel arch 波斯拱keene's cement 硬石膏胶结料keeping room 起居室kelly ball 凯氏球体贯入七kelly ball test 凯氏球体贯入试验kerb 路缘石kerb roof 顶搂屋顶kerf 锯缝key 楔key block 拱顶块石key bolt 键螺栓key brick 楔砖key for plaster 抹灰底层key hole saw 钢丝锯key joint pointing 凹形勾缝key plate 钥匙孔板key valve 楔阀keyed beam 键接梁keyed joint 键接keyed pointing 凹形勾缝keyhole saw 钢丝锯keying in 用石楔咬紧keystone 拱顶石kick atomizing pile hammer 打管形桩用柴油引擎锤kickplate 门脚护板kid 柴捆kieselguhr 硅藻土kieselguhr brick 硅藻土砖kiln 窑kiln brick 窑烘砖kindergarten 幼儿园kinematic viscosity 运动粘度kinetic head 动压头kinetics 动力学king closer 砍角砖king pile 之king post 桁架中柱kink 纽结kitchen 厨房kitchen building block unit 装配式厨房单元kitchen cabinet 厨房绸kitchen dining room 厨房餐室kitchen door 厨房门kitchen fittings 厨房设备kitchen furniture 厨房家具kitchenette 小厨房kite winder 转向斜踏步knapping machine 碎石机knapsack duster 背负式喷粉机knapsack sprayer 背负式喷粉机knee 弯管knee brace 角拉条knee piece 斜撑knee rafter 斜撑knee roof 变坡屋面knife edge loading 线荷载knife switch 刀形开关knob 球形把手;球形突出物knobbing 锤石knobbling 锤石knocked down building components 可拆卸的房屋构件knocked down frame 可拆卸的门框knocker 门环knot 结kraft 牛皮纸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Solar Energy Materials&Solar Cells57(1999)85—95Influence of illumination conditions onthe design of thin-film modulesM.Burgelman*,A.NiemegeersVakgroep Elektronica en Informatiesystemen(ELIS),Uni v ersiteit Gent,Informatiesystemen Pietersnieuwstraat41,B-9000Gent,BelgiumReceived16January1998;accepted10July1998AbstractThe most important,and most accessible design parameter of a series integrated thin-film photovoltaic module is the cell length l.Its optimal value l is a trade offbetween area loss, and series and shunt losses.If the design is performed at standard reporting conditions(i.e. constant one sun illumination),too low a value of lresults.When the design is done for a realistic histogram of the incoming sun power P ,a larger value of l follows,and an efficiency gain of a few tenths of a percent(absolute)is obtained.A climate model,enabling to calculate the histogram of Pfor given cloud conditions is presented here.A model to calculate the module parameters was presented before(Burgelman and Niemegeers,Sol.Energy Mater. Sol.Cells,June1998).Both models are then applied together.As a result,the optimal value land the efficiency gain are calculated as a function of the location(geographical latitude)of the panel,both in clear sky and in clouded conditions. 1999Elsevier Science B.V.All rights reserved.Keywords:Thin-films modules;Climate model;Illumination condition1.IntroductionMonolithic series integration of single solar cells into a thin-film module generally introduces extra contributions to series resistance and shunt conductance;also,some area needed to isolate and to interconnect the layers is lost.An example of a common*Corresponding author.E-mail:burgelman@elis.rug.ac.be0927-0248/99/$—See front matter 1999Elsevier Science B.V.All rights reserved.PII:S0927-0248(98)00177-986M.Burgelman,A.Niemegeers/Solar Energy Materials&Solar Cells57(1999)85—95Fig.1.A common geometry used for isolation and series integration of adjacent cells in a submodule, shown for the case of CuInSe cells.The electrical series resistances and shunt conductances are indicated.geometry for series integration is shown in Fig.1.In designing the module,various loss mechanisms have to be traded offagainst each other:taking a large unit cell length l will minimize the area loss and shunt loss,whilst a small cell length will minimize the series resistance loss;also,the electrical resistivity Rᮀ8 -of the window layer(ZnO in the case of Fig.1)is to be traded offagainst its transmission[1].In practical designs,the total lost length g(Fig.1)is imposed by technological con-straints,and only l and Rᮀ8 -have to be optimized.Such an optimization almost always is done for standard reporting conditions i.e. illumination with the AM1.5G spectrum,an incident power of1000W/m ,and an operating temperature of25°C.However,real modules are illuminated with an intensity varying between0W/m and a maximum value which is less than or equal to 1000W/m ,and an operating temperature which may be subject to large variations [2,3].In this article,we will propose a module design which is optimized for the real operating conditions of the modules.This design depends on the geographic location of the module,on its orientation,and on the climate conditions of the location.To this purpose,we have extended a calculation model for module efficiencies,presented before[1],with an empirical climate model.2.Calculation of the module efficiencyAn exact calculation of the I—V curve of a module necessitates the solution of a non-linear differential equation[1,4,5].The result can be obtained at any accuracy required,but at the cost of computing time and programming effort.In the previous work,we have proposed a quick and accurate model[1]based on a Taylor expansion of the exact solution.This expansion is three dimensional,the variables being normalized(dimensionless)discrete series resistance r ,normalized distributed series resistance r and normalized shunt conductance g .The Taylor expansion is of third order in r ,r and g .The coefficients of the expansion themselves depend on the normalized open circuit voltage v "q» /nk¹,where n is the diode ideality factor. The series expansion of all coefficients as a function of1/v was given.Also,the algorithm was implemented in a user program,available with the authors.M.Burgelman,A.Niemegeers/Solar Energy Materials&Solar Cells57(1999)85—9587 3.Climate modelThe purpose of the climate model in this work is to establish the histogram of incident power on a solar panel during a given period,e.g.a year.We start from a model presented in the literature[6];it is based on standard formulae of the spherical astronomy to describe the position of the sun relative to the panel,and on some simple assumptions about scattering and reflection of sunlight.The model is summarized here.The subscript p refers to the panel,and s to the sun.The panel orientation is given by its zenith distance z (z "0for a horizontal panel),its azimuth A (A "0means north;A is measured in the direction N P E P S P W),and the geographical latitude ( "0at the equator, "# /2at the north pole).The sun’s declination (here expressed in degrees)is given by a series development[7]:"0.33281!22.984cos t!0.34990cos2 t!0.13980cos3 t,#3.7872sin t#0.03025sin2 t#0.07187sin3 t,(1) where t is the day of the year,and "2 /365.When is the solar time( "0at solar noon),the sun’s position(z ,A )is calculated from and from:cos z "sin sin #cos cos cos ,sin z cos A "!cos sin #sin cos cos ,sin z sin A "cos sin .(2) This formulation is more elegant than that given,e.g.in Refs.[6—8],since it easily allows to determine A uniquely by means of the C or Fortran routine atan2(e.g. Ref.[9]).The angle of incidence of the sunlight,i,is then calculated ascos i"cos z cos z #sin z sin z cos(A !A )(3) Illumination not normal to the panel introduces a correction factor c: c" cos i for cos i*0,(4)0for cos i)0.The direct solar radiation P is given byP "cP f(t)w exp(!km).(5) Here m is the airmass(m"sec z ),and f(t)is a correction factor taking in account the yearly variation of the distance sun—earth[7]:f(t)"1!0.0335cos t!6.505;10\ cos2 t!3.4;10\ cos3 t#1.333;10\ sin t#7.20;10\ sin2 t#1.3608;10\ sin3 t.(6)88M.Burgelman,A.Niemegeers/Solar Energy Materials&Solar Cells57(1999)85—95The parameters P and k are two climatological parameters;estimations are given in the literature for various conditions[7].For an urban to industrial region in a cool-temperate climate zone(the author’s site),appropriate values are P "1050W/m and k"0.3[6].The cloud factor w in Eq.(5)is another climatologi-cal factor,which will be further treated below.The diffuse sky radiation is given byP " (1#cos Z )sP f(t)cos z [1!w exp(!km)],(7) where s is the sky parameter(0)s)1)[6].Finally,the reflected radiation P is given byP " (1!cos z )rP f(t)cos z [s#(1!s)w exp(!km)],(8) where r is the albedo or the reflection coefficient of the area surrounding the solar panel.Typical values of s and r for various conditions are given in Ref.[7].We take s"0.4and r"0.3.The total incoming radiation P is thenP "P #P #P .(9) The climatological model now proceeds as follows:the parameters P ,k,s and r are chosen from literature data for typical climate conditions.Then,the cloud parameter w is assumed to have a simple variation over the year:w"w (t)"w #w cos t(10) or a third-order Fourrier expansion as in Eq.(1)and(6)(then seven coefficients w through w are needed).For each month,the total incoming energyE " P (t)d tis calculated;the coefficients w then are chosen such that the calculated E valuesfit the data for a typical year,as published by the local meteorological institutes.In the calculation,the solar time is varied between sunrise and sunset in sufficiently small time increments( )10min).The solar time of sunrise(! )and sunset( )follows from Eq.(2)by putting z " /2:cos "!tan tan .(11) During calculation,a histogram of the incoming power P is built up:P is discretized in equidistant intervals P,and the energy content of radiation with power in the range P $ P/2is recorded.With the model presented in Ref.[1],the output energy of the panel is computed for each incoming power P ,weighed with the energy content,and summed.Typically we use P"0.02sun"50W/m .To obtain a realistic histogram of P ,the climate model has to be refined.Afirst refinement is to allow a seasonal statistical variation of the cloud factor:the year is divided in short reference periods(one or a few days),and in each reference period statistical guess is made for the cloud factor,subject to the following restrictions:the expectation value of w is w (t)as given by Eq.(10);always0)w)1;and theFig.2.Module efficiency and optimal cell length l of the integrated series connection,as a function of a constant illumination intensity P .The full lines are for a cell temperature ¹ "25°C,the dashed lines for ¹"70°C.standard deviation is a given parameter.We used the beta distribution to obtain this (see Appendix A).A second refinement was to impose a deterministic daily variation of w around its day average:this models the normal occurrence of morning and/or evening haze,or noon clouding at the panel’s location (see Appendix B).The third refinement is to allow a daily statistical variation of w ,in a reference period typical for the climate (e.g.a fraction of an hour to some hours).The three refinements can be applied separately or together.4.Results and discussionThe geographical and climatological location of the panel influences its electrical output mainly through variation of the illumination intensity P and the solar cell temperature ¹ .At each value of P and ¹ the trade-offbetween area loss,shunt loss and series loss gives rise to a different optimal value l of the cell length l .This is shown in Fig.2for the cell and module parameters relevant for CIGS modules we used in previous work (Table 2of Ref.[1]).The optimization was done for a fixed value of R ᮀ8 -"12 ,and not for an optimized value of R ᮀ8 -.The underlying idea is that it is feasible that a manufacturer adapts the scribing geometry (thus the cell length l)to the planned location of the panel,but that it is not probable that he will M.Burgelman,A.Niemegeers /Solar Energy Materials &Solar Cells 57(1999)85—9589Fig.3.Histogram of the illumination intensity P ,for three geographical locations of the panel: "0°, "30°,and "60°.The full lines are for the clear sky condition,the dashed lines for the clouding conditions of Table 1.adapt the ZnO deposition process.It is clear from Fig.2that a lower level illumina-tion necessitates a higher cell length (this holds if the losses due to distributed series resistance are dominating shunt losses).It is also clear that,while the operating temperature of the cells strongly influences the panels output,it has only a minor influence on the optimal value l .The histogram of incoming sunpower depends on the geographical position of the panel.In Fig.3,we calculated the histogram as a function of the latitude for two climate conditions:clear sky (w "1),and a statistical cloud model suited to describe the author’s site [10].The parameters of this climate model are listed in Table 1.It is no surprise to see that the average illumination intensity,weighed over the incoming energy,is substantially higher at equatorial sites.The shape of the histogram of P however is sensitive to the parameter values of the cloud model.The parameters of Table 1yield a good agreement with a measured histogram [11].We will use the histograms calculated for Belgian cloud conditions to obtain a rough idea of the influence of geographical latitude on the module design.For better calculations,a measured P histogram,or carefully chosen cloud parameters should be used.Fig.4shows the calculated module efficiency versus cell length l for various illumination conditions:constant illumination with P "1sun,with P "0.338sun (the average illumination intensity in Belgium),with P "0.25,and with a histogram of Pcalculated for a panel situated in Belgium.It is clear that a module design 90M.Burgelman,A.Niemegeers /Solar Energy Materials &Solar Cells 57(1999)85—95Table 1Input data for the climatological model.The parameters are relevant to the author’s site (Belgium)Latitude51°Panel orientationZenith distancez 0(horizontal)AzimuthA0Extinction law P 1050W/m k0.3Sky parameter s0.4Albedo r0.3Clouding:Seasonal average w 0.345w!0.136Seasonal statisticsNew statistical value each 2days0.8 Daily statisticsNew statistical value each 30min 0.8 Daily deterministic Sunrisew "0.5w Noonw "w #0.5(1!w )Sunset w "0.5wFig.4.Module efficiency as a function of the cell length l of the integrated series connection.The calculation is for a constant illumination P "1,0.338and 0.25sun,and for a histogram of P calculated for the geographical location of Belgium and with the clouding conditions of Table 1.M.Burgelman,A.Niemegeers /Solar Energy Materials &Solar Cells 57(1999)85—9591Fig.5.Module efficiency gain and optimal cell length l of the integrated series connection,as a function of the geographical latitude ,calculated with the clouding conditions of Table 1.The efficiency gain is defined in the text.performed at standard reporting conditions (1sun)will definitely result in too low a value of l "4mm.The efficiency gain in choosing a cell length l "6.2mm,appropriate to Belgian illumination conditions,is about 0.4%absolute: (l "4mm)"12.95%and (l "6.2mm)"13.33%.It is also clear that a design carried out with a constant averaged or effective illumination intensity is not appro-priate.In Fig.5,the optimal cell length l and the efficiency gain are calculated as a function of the geographical latitude ,for clear sky and for Belgian clouding conditions.Here, is defined as " (l )! (l "4mm).It is seen that an efficiency gain of a few tenths of a percent (absolute)can be obtained by adapting the design of the module to the geographical and climate conditions.This efficiency gain increases as the site is further away from the equator.5.ConclusionsThe most important,and most accessible design parameter of a series integrated thin film photovoltaic module is the cell length l :often it can be adapted simply and accurately by changing the computer driven settings of the laserscriber.If the design is performed at standard reporting conditions (i.e.constant one sun illumination),too92M.Burgelman,A.Niemegeers /Solar Energy Materials &Solar Cells 57(1999)85—95low a value of l results.When the design is done for a realistic histogram of the incoming sunpower P ,a larger value of l follows,and an efficiency gain of a few tenths of a percent (absolute)is obtained.This gain might seem low at first sight,but it is obtained at virtually no cost:one just has to adapt the settings of the laser scriber to the destination of the panel,and this constitutes an organizational problem rather than a technical problem.A climate model,enabling to calculate the histogram of P at given cloud conditions is presented here.A model to calculate the module parameters was presented before [1].Both models are implemented together in one Windows-based user program,which is available with the authors.AcknowledgementsWe acknowledge the support of the Fund for Scientific Research,FWO Vlaanderen (M.B.,research associate)and of the IWT-Institute,Vlaanderen (A.N.,research assistant).Appendix A.Statistical variations of the cloud factor wA statistical distribution which fulfills the conditions outlined in Section 3is the beta-distribution.The distribution function is the incomplete beta function I U (a ,b ):I U (a ,b )" U t ?\ (1!t )@\ d t t ?\ (1!t )@\ d t ,0)w )1,a ,b '1.(A.1)The limitation a ,b '1ensures that the probability is peaked around the mean value,and not around the two boundaries w "0and w "1.The mean value and the variance of this distribution are1w 2"w "a a #b and "ab (a #b )(a #b #1).(A.2)The conditions a ,b '1impose a maximal value of the variance:"min w (1!w )1#w ,w (1!w ) 2!w (A.3)The average value w of the clouding factor is set by the seasonal variation (Eq.(10)),and the variance is chosen as a parameter,as a fraction of .The parameters a and b of the beta-distribution then follow from Eq.(A.2):a "w (w!w ! ),b "1!w (w !w ! ).(A.4)M.Burgelman,A.Niemegeers /Solar Energy Materials &Solar Cells 57(1999)85—9593The incomplete beta function I V (a ,b )was evaluated according to the Numerical Recipes [12].To make a statistical guess of the cloud factor,the inverse of the distribution function is needed.This was implemented from I V (a ,b )with a simple Newton —Raphson algorithm.This statistical guess of w was used as a new average w ,for calculation of deterministic (see below)or statistical variations of w during the day.Appendix B.Deterministic variation of the cloud factor w during the dayThe climate model incorporates the possibility to set a deterministic variation of the cloud factor w ( )during the day.One can choose a cloud factor w in the morning (solar time "! ),w at solar noon ( "0)and w in the evening ( " ).The day average of the cloud factor w "1w ( )2is imposed by the seasonal variation (deter-ministic (Eq.(10)),with optional statistical variations (Appendix A)).We used a simple w ( )-law:m "w #w !2w 2(w !w )!1,w ( )"w #(w !w) ! for (0(forenoon),w ( )"w #(w !w ) for '0(afternoon),(A.5)with suitable precautions to ensure 0)w )1,and to avoid an inconsistent choice of (w ,w ,w ,w).References[1]M.Burgelman,A.Niemegeers,Calculation of CIS and CdTe module efficiencies,Sol.Energy Mater.Sol.Cells 51(1998)129.[2]A.Raicu,H.Wilson,H.Fischer,K.Heidler,Realistic reporting conditions efficiency:new algorithmfor the assessment of solar cells,Proc.9th European Photovoltaic Solar Energy Conf.,Freiburg (D),October 1989,Kluwer Academic publishers,Dordrecht,1990,pp.644—647.[3]A.Raicu,K.Heidler,G.Kleiss,K.Bu cher,Realistic reporting conditions (RRC)for site-dependentenergy rating of PV devices,Proc.12th European Photovoltaic Solar Energy Conf.,Montreux (CH),October 1992,Kluwer Academic publishers,Dordrecht,1993,pp.1323—1326.[4]A.De Vos,P.De Visschere,Sol.Cells 10(1983)69.[5]Sokolic,Approximate expressions for distributed sheet resistance modelling,Proc.12th EuropeanPhotovoltaic Solar Energy Conf.,Amsterdam (Nl),April 1994,Kluwer Academic publishers,Dordrecht,1994,pp.1327—1330.[6]A.De Vos,G.De Mey,The solar energy incident on a plane at the earth surface:sitiation in Belgium,Archiv fu r Metereologie,Geophysik und Bioklimatologie,Serie B B 25(1977)135.[7]R.Dogniaux,Variations ge ographiques et climatiques des expositions e nerge tiques solaires sur dessurfaces re ceptrices horizontales et verticales,Miscellanea Serie B,B-38,Royal Metereological Institute,Brussels,Belgium,1975.94M.Burgelman,A.Niemegeers /Solar Energy Materials &Solar Cells 57(1999)85—95M.Burgelman,A.Niemegeers/Solar Energy Materials&Solar Cells57(1999)85—9595[8]E.Coffari,in:A.Sayigh(Ed.),in:Solar Energy Engineering,Ch.2.Academic Press,New York,1977.[9]S.Harbison,G.Steele,C—a Reference Manual4th ed.,1995,p.395,Prentice-Hall,Englewood Cliffs,NJ.[10]D.Baert,A.De Vos,G.Van Hoogenbemt,Influence of metereological conditions on the design ofsolar energy DC—AC converters,Proc.2nd European Photovoltaic Solar Energy Conf.,Berlin(D), 1979,Reidel,Dordrecht,1979,pp.1065—1073.[11]W.Maranda,M.Dheere,B.Cortvriendt,A4.4kW photovoltaic demonstration project in Melle(Belgium),Proc.13th European Photovoltaic Solar Energy Conf.,Nice(F),October1995,Stephens &Associates,Bristol,1996,pp.668—671.[12]W.Press,S.Teukolsky,W.Vetterling,B.Flanery,Numerical Recipes in C,2nd ed.,CambridgeUniversity Press,Cambridge,1995,p.226.。

相关文档
最新文档