辽宁省大连市枫叶国际学校七年级数学上册 第二章 第4课时 整式的加减导学案

合集下载

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。

本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。

通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。

二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。

但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。

三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。

四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。

通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。

六. 教学准备教师准备教案、PPT、练习题等教学资源。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。

2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。

例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。

同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。

3.操练(15分钟)教师布置一些练习题,让学生独立完成。

例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。

初中数学《整式的加减》单元教学设计以及思维导图

初中数学《整式的加减》单元教学设计以及思维导图

整式的加减单元教学设计
主题单元学习目标
知识与技能
1.理解整式、单项式、多项式、同类项的概念;
2.熟练指出单项式的系数、次数和多项式的项数、次数,把一个多项式写成按某个字母的降幂或升幂排列;
3.掌握合并同类项法则;
4.能灵活应用去括号法则,进行整式加减运算.
过程与方法
1.通过回忆和交流,经历对已有知识的归纳;对本章内容的认识更全面、更系统化
2.通过应用与实践,提高分析问题、解决问题的能力;培养学生主动分
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。

(3)什么叫整式?
在学生回答的基础上,进行归纳、总结:
整式
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
整式的加减
活动2:自主学习,合作交流
出示相关练习:1.计算:―2y3+(3xy2―x2y)―2(xy2―y3)
化简求值:(2x3―xyz)―2(x3―y3+xyz)+(xyz―2y3),其中x=1,y=2,z=―3
小组之间,师生之间交流,共同总结整式的加减运算的步骤
活动3:巩固提升
布置适当的练习,巩固所学知识。

初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇

初中七年级数学《整式的加减》教案3篇学问与技能:1、在现实情境中理解整式的加减实际就是合并同类项,有意识地培育他们有条理的思索和语言表达力量。

2、了解同类项的定义及合并法则,且会运用此法则进展整式加减运算。

3、知道在求多项式的值时,一般先合并同类项再代入数值进展计算。

过程与方法:通过详细情境的观看、思索、类比、探究、沟通和反思等数学活动培育学生创新意识和分类思想,使学生把握讨论问题的方法,从而学会学习。

情感与态度与价值观:通过学生自主学习探究出合并同类项的定义和法则,培育了学生的自学力量和探究精神,提高学习兴趣。

感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。

教学重点:娴熟地进展合并同类项,化简代数式。

教学难点;如何推断同类项,正确合并同类项。

教学用具:多媒体或小黑板、教学过程:一、创设情景问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余局部刷油漆,请依据图中的尺寸,算出:(1)甲乙油漆面积的和。

(2)甲比乙油漆面积大多少。

(处理方式:①学生思索片刻②找学生代表沟通自己的解答③教师汇总学生的解答)板书:(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )(2) (2ab-πr2)-(ab-πr2)(此时提问学生:这3个式子都是什么式子?在学生答复的根底上引出课题—从本节课开头来学习:2.3整式的加减。

并板书)二、探求新知教师自问:如何计算(1)和(2)两个式子呢?接着解答:本节课来学习2.2.1合并同类项(此时板书课题——1.合并同类项)1、同类项的概念观看多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点。

学生沟通、争论。

③师生总结:(这就是我们今日所要介绍的同类项,此时板书:1.同类项的概念)所含字母一样并且一样字母的指数也一样的项叫做同类项。

几个常数项也是同类项。

强调:①所含字母一样②一样字母的指数也一样简称“两同”。

整式的加减教学设计

整式的加减教学设计

《整式的加减》教学设计(4)讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

五教学过程:自主学习一、知识链接1.同类项:必须同时具备的两个条件(缺一不可):①所含的相同;②相同也相同. 合并同类项,就是把多项式中的同类项合并成一项.方法:把同类项的相加,而不变.2.去括号法则:①如果括号外的因数是,去括号后原括号内各项的符号与原来的符号;②如果括号外的因数是,去括号后原括号内各项的符号与原来的符号 .去括号法则的依据实际是 .二、新知预习做一做:小亮和小莹到希望小学去看望小同学,小亮买了10支钢笔和5本字典作为礼物;小莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a元,字典的售价为每本b元,文具盒的售价为每个c元.请你计算:(1)小亮花了________元;小莹花了__________元;2.长方形的一边长等于3a+2b,另一边比它大a-b,那么这个长方形的周长是()A.14a+6bB.7a+3bC.10a+10bD.12a+8b3.若A是一个二次二项式,B是一个五次五项式,则B-A一定是()A.二次多项式B.三次多项式C.五次三项式D. 五次多项式4.多项式32x mx x+-+的和不含二次项,则3253-+-与多项式32281x x xm为()A.2B.-2C.4D.-45.已知错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

=_______________________.6.若mn=m+3,则2mn+3m-5mn+10=__________.7.计算:8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n个小圆,又会得到什么结论?思路点拨:设大圆半径为R,小圆半径依次为r1,r2,r3,分别表示两个图形的周长,再结合r1+r2+r3=R,化简式子比较大小.参考答案自主学习一、知识链接1.字母字母的指数系数字母的指数2.正数相同负数相反分配律二、新知预习做一做:(1)(10a+5b)(6a+4b+2c)(16a+9b+2c)(2)(4a+b-2c)想一想:有括号先去括号,然后再合并同类项.【自主归纳】去括号合并同类项整式三、自学自测1.和为x²y.2.差为-x²-7xy+8.课堂探究一、要点探究探究点1:问题1:10a+b 10b+a 10a+b 10b+a 11a+11b 1111。

七年级数学《整式的加减》教案范文

七年级数学《整式的加减》教案范文

七年级数学《整式的加减》教案范⽂ 整式的加减就是单项式和多项式的加减,可利⽤去括号法则和合并同类项来完成。

接下来是⼩编为⼤家整理的七年级数学《整式的加减》教案范⽂,希望⼤家喜欢! 七年级数学《整式的加减》教案范⽂⼀ 数学活动 ⼀、内容和内容解析 1.内容 活动1 ⽤⽕柴棍摆放图形,探究⽕柴棍的根数与图形的个数之间的对应关系; 活动2 探究⽉历中数之间所蕴含的关系和变化规律. 2.内容解析 本节课的数学活动将第⼆章“整式的加减”所学知识应⽤于实际,进⼀步⽤整式表⽰数量关系,⽤整式的加减运算进⾏化简,是整式与整式加减的应⽤. 两个数学活动综合运⽤整式和整式的加减运算,表⽰具体情境中的数量关系和变化规律.活动1中的核⼼问题是寻求三⾓形的个数与⽕柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时⼊视的⾓度不同,规律的显现⽅式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯⼀确定的.活动1先从图形的特殊情况⼊⼿,体现由特殊到⼀般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进⾏思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应⽤整式的加减探究⽉历中数之间的规律:(1)⽉历中数的排列规律;(2)由数的排列规律引出运算规律,应⽤整式的加减进⾏化简,表⽰出⼀般规律;(3)如何设字母可以简化表⽰⽅法和运算. 基于以上分析,可以确定本节课的教学重点:⽤整式表⽰实际问题中的数量关系,掌握数学活动中由特殊到⼀般的探究⽅法. ⼆、教材解析 本套教科书专门设计了“数学活动”专栏,旨在为学⽣提供探索的空间,发展学⽣的思维能⼒.本节课安排了两个有趣的数学活动.其中活动1从⼀个开放性的问题⼊⼿“如图1所⽰,⽤⽕柴棍拼成⼀排由三⾓形组成的图形.如果图形中含有n个三⾓形,需要多少根⽕柴棍?”引发学⽣的思索和探究.问题中并没有先问“图形中含有2,3,4个三⾓形,分别需要多少根⽕柴棍?”⽽是直接问“如果图形中含有n个三⾓形,需要多少根⽕柴棍?”⽬的在于让学⽣⾃⼰发现要解决⼀般性问题应先从特殊值⼊⼿,给学⽣充分的时间思考和探究,让学⽣⾃⼰寻求解决问题的策略,最终掌握从特殊到⼀般,从个体到整体地观察、分析问题的⽅法.之后⼜设计了⼀个问题“当图形中含有2012个三⾓形时,需要多少根⽕柴棍?”⽬的在于让学⽣体会由特殊⼀般特殊的分析问题的⽅法,体会⼀般性规律的实际意义.活动2设计了⼀个问题串,6个问题循序渐进地引导学⽣发现⽉历中数的排列规律,引导学⽣应⽤本章所学的整式的加减探究⽅框⾥数之间的关系.这两个活动有⼀定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学⽣能够⽤整式准确地表⽰数量关系;活动2的重点是让学⽣能够应⽤整式的加减探究⽉历中的数量关系.通过这两个数学活动检验学⽣对于第⼆章内容的掌握情况. 本节数学活动课教师要注意改进教学⽅式,充分相信学⽣,尽可能为学⽣留出探索的空间,发挥学⽣的主动性和积极性,⼒求使得数学结论的获得是通过学⽣思考、探究活动⽽得出的. 三、教学⽬标和⽬标解析 1.教学⽬标 (1)⽤整式和整式的加减运算表⽰实际问题中的数量关系; (2)掌握从特殊到⼀般,从个体到整体地观察、分析问题的⽅法.尝试从不同⾓度探究问题,培养应⽤意识和创新意识; (3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建⽴学好数学的⾃信⼼. 2.⽬标解析 达成⽬标(1)的标志:学⽣⽤整式表⽰出⽕柴棍的根数与三⾓形的个数之间的对应关系,⽤整式表⽰出⽉历中不同位置上的数字的⼀般表达式并探寻规律; ⽬标(2)是内容所蕴含的思想⽅法,学⽣需要体会在较为复杂的图形中寻找⼀般规律的⽅法,先把复杂图形分解,从其中的特殊图形⼊⼿,先就个体观察特征,再扩展到⼀般,最后由整体总结规律,感受由特殊到⼀般的探究模式.在活动2中,分析⽉历中数字之间的数量关系时,经常先将⽉历分解,分别从横、纵、对⾓线等不同的⽅向⼊⼿观察特征,再推⼴到⼀般,⽤整式表⽰出数的⼀般规律;学⽣体验解决问题策略的多样性;让学⽣尝试评价不同⽅法之间的差异,从⽽得出最优⽅案.学⽣体会进⾏数学活动的基本⽅法:提出问题动⼿实践寻求规律归纳总结.学⽣经历发现问题、独⽴思考、猜想验证,归纳总结这些数学活动,提⾼应⽤意识和创新意识; 达成⽬标(3)的标志:学⽣对数学有好奇⼼和求知欲,在⼩组合作活动中积极思考,勇于质疑,敢于发表⾃⼰的想法.在⾃主探究两个数学活动的过程中,⼩组成员合作克服困难,解决数学问题,感受成功的快乐,建⽴学好数学的信⼼. 四、教学问题诊断分析 本章学⽣已经学习⽤整式表⽰实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉⽤符号表⽰具体情境中的数量关系,对学⽣⽽⾔有⼀定难度.在拼图的过程中,学⽣⽐较容易发现⽕柴棍根数的变化情况,但要借助观察图形的变化寻找⽕柴棍的根数与三⾓形的个数n之间的对应关系,还是有⼀定困难,在总结变化量与n的对应关系时学⽣也容易出错.所以⽤整式准确地表⽰出这种对应关系是本节课的⼀个难点.在活动2中,探索⽉历中数字的排列规律⽐较容易,但要从不同⾓度,运⽤不同⽅法探究⽉历中隐含的数量关系及其规律,对学⽣来说具有⼀定的挑战性. 本节课的教学难点:利⽤整式和整式的加减运算准确表⽰出具体情境中的数量关系. 五、教学⽀持条件分析 根据活动课的特点,学⽣准备⼀盒⽕柴棍、若⼲张⼤⼩相等的正⽅形纸⽚、⼀张⽉历.教师准备⼏何画板软件供学⽣使⽤,同时采⽤多媒体课件辅助教学. 六、教学过程设计 1.数学活动1 问题1 如图1所⽰,⽤⽕柴棍拼成⼀排由三⾓形组成的图形. 图1 (1)如果图形中含有n个三⾓形,需要多少根⽕柴棍? (2)当图形中含有2012个三⾓形时,需要多少根⽕柴棍? 师⽣活动:学⽣分成⼩组,利⽤已准备好的⽕柴棍动⼿摆放图形进⾏⾃主探究.学⽣代表(利⽤⼏何画板软件)展⽰⼩组讨论的过程与结果.教师重点关注学⽣⾃主探究的步骤和⽅法. 学⽣在探究的过程中会从不同⾓度观察图形,会⽤不同的表达形式呈现规律,会从数和形两个⽅⾯进⾏探究.教师引导学⽣借助于“形”进⾏思考和推理,加强对图形变化的感受. 在活动的过程中,整理数据,观察⽕柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决⽅法很多,下⾯列出⼏种常见⽅法仅供参考. ①从第⼆个图形起,与前⼀图形⽐,每增加⼀个三⾓形,增加两根⽕柴棍,可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 3 3+2 3+2+2 3+2+2+2 … 表达式:3+2(n-1)=2n+1. ②每个三⾓形由三根⽕柴棍组成,从第⼀个图形起,⽕柴棍根数等于所含三⾓形个数乘3,再减去重复的⽕柴棍根数,可得 三⾓形个数 1 2 3 4 … ⽕柴棍根数 1×3 2×3-1 3×3-2 4×3-3 … 3×n-(n-1) 表达式:3n-(n-1)=2n+1. ③从第⼀个图形起,以⼀根⽕柴棍为基础,每增加⼀个三⾓形,增加两根⽕柴棍,可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 1+2 1+2+2 1+2+2+2 1+2+2+2+2 … 表达式:1+2n. ④从⽕柴棍的根数与三⾓形的个数的对应关系观察可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 3=1×2+1 5=2×2+1 7=3×2+1 9=4×2+1 … n×2+1 表达式:2n+1. ⑤将组成图形的⽕柴棍分为“横”放和“斜”放两类统计计数,可得 三⾓形个数 1 2 3 4 … n ⽕柴棍根数 1+2 2+3 3+4 4+5 … n+(n+1) 表达式:n+(n+1)=2n+1. 七年级数学《整式的加减》教案范⽂⼆ 教学⽬标 【知识与技能】 理解同类项的概念,在具体情景中,认识同类项. 【过程与⽅法】 通过⼩组讨论、合作学习等⽅式,经历概念的形成过程,培养学⽣⾃主探索知识和合作交流的能⼒. 【情感、态度与价值观】 初步体会数学与实际⽣活的密切联系,从⽽激发学⽣学好数学的信⼼. 教学重难点 【重点】理解同类项的概念. 【难点】根据同类项的概念在多项式中找同类项. 教学过程 ⼀、复习引⼊ 师:同学们,在上新课之前,我们先来做⼏个题⽬. 1.教师读题,指名回答. (1)5个⼈+8个⼈= ;? (2)5只⽺+8只⽺= .? 2.师:观察下列各单项式,把你认为相同类型的式⼦归为⼀类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2. 由学⽣⼩组讨论后,按不同标准进⾏多种分类,教师巡视后把不同的分类⽅法投影显⽰. 要求学⽣观察归为⼀类的式⼦,思考它们有什么共同的特征. 请学⽣说出各⾃的分类标准,并且对学⽣按不同标准进⾏的分类给予肯定. ⼆、讲授新课 1.同类项的定义: 师:在⽣活中我们常常把具有相同特征的事物归为⼀类.8x2y与-x2y可以归为⼀类,2xy2与-可以归为⼀类,-mn2、7mn2与0.4mn2可以归为⼀类,5a与9a可以归为⼀类,还有、0与也可以归为⼀类.8x2y与-x2y只有系数不同,各⾃所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各⾃所含的字母都是x、y,并且x的指数都是1,y的指数都是2. 像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.⽐如,前⾯提到的、0与也是同类项. 通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项) (教师为了让学⽣理解同类项概念,可设问同类项必须满⾜什么条件,让学⽣归纳总结) 板书由学⽣归纳总结得出的同类项概念以及所有的常数项都是同类项. 三、例题讲解 教师读题,指名回答. 【例1】 判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”. (1)3x与3mx是同类项.( ) (2)2ab与-5ab是同类项.( ) (3)3x2y与-yx2是同类项.( ) (4)5ab2与-2ab2c是同类项.( ) (5)23与32是同类项.( ) (这组判断题能使学⽣清楚地理解同类项的概念,其中第(3)题满⾜同类项的条件,只要运⽤乘法交换律即可;第(5)题两个都是常数项属于同类项.⼀部分学⽣可能会单看指数不同,误认为不是同类项) 【例2】 游戏. 规则:⼀学⽣说出⼀个单项式后,指定⼀位同学回答它的两个同类项. 要求出题同学尽可能使⾃⼰的题⽬与众不同. 可请回答正确的同学向⼤家介绍写⼀个单项式同类项的经验,从⽽揭⽰同类项的本质特征,透彻理解同类项的概念. 【例3】 指出下列多项式中的同类项: (1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2. 【答案】 (1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项. (2)3x2y与-yx2是同类项,-2xy2与xy2是同类项. 【例4】 k取何值时,3xky与-x2y是同类项? 【答案】 要使3xky与-x2y是同类项,这两项中x的次数必须相等,即k=2.所以当k=2时,3xky与-x2y是同类项. 【例5】 若把(s+t)、(s-t)分别看作⼀个整体,指出下⾯式⼦中的同类项. (1)(s+t)-(s-t)-(s+t)+(s-t); (2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t. (组织学⽣⼝头回答上⾯三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运⽤投影仪给出书⾯解答,为合并同类项做准备.例4让学⽣明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作⼀个整体) 通过变式训练,可进⼀步明晰“同类项”的意义,在⾃主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提⾼识别能⼒. 四、课堂练习 请写出2ab2c3的⼀个同类项.你能写出多少个?它本⾝是⾃⼰的同类项吗? (学⽣先在课本上解答,再回答,若有错误请其他同学及时纠正) 【答案】 改变2ab2c3的系数即可,与其本⾝也是同类项. 五、课堂⼩结 理解同类项的概念,会在多项式中找出同类项,会写出⼀个单项式的同类项,会判断同类项. 第2课时 合并同类项 教学⽬标 【知识与技能】 理解合并同类项的概念,掌握合并同类项的法则. 【过程与⽅法】 经历概念的形成过程和法则的探究过程,渗透分类和类⽐的思想⽅法.培养观察、归纳、概括能⼒,发展应⽤意识. 【情感、态度与价值观】 在独⽴思考的基础上,积极参与讨论,敢于发表⾃⼰的观点,从交流中获益. 教学重难点 【重点】正确合并同类项. 【难点】找出同类项并正确的合并. 教学过程 ⼀、情境引⼊ 师:为了搞好班会活动,李明和张强去购买⼀些⽔笔和软⾯抄作为奖品.他们⾸先购买了15本软⾯抄和20⽀⽔笔,经过预算,发现这么多奖品不够⽤,然后他们⼜去购买了6本软⾯抄和5⽀⽔笔.问: (1)他们两次共买了多少本软⾯抄和多少⽀⽔笔? (2)若设软⾯抄的单价为每本x元,⽔笔的单价为每⽀y元,则这次活动他们⽀出的总⾦额是多少元? 学⽣完成,教师点评. ⼆、讲授新课 合并同类项的定义. 学⽣讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运⽤加法的交换律与结合律将同类项结合在⼀起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元. 由此可得:把多项式中的同类项合并成⼀项,叫做合并同类项. 三、例题讲解 【例1】 找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项. 【答案】 原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+2. 根据以上合并同类项的实例,让学⽣讨论归纳,得出合并同类项的法则: 把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变. 【例2】 下列各题合并同类项的结果对不对?若不对,请改正. (1)2x2+3x2=5x4; (2)3x+2y=5xy; (3)7x2-3x2=4; (4)9a2b-9ba2=0. (通过这⼀组题的训练,进⼀步熟悉法则) 【例3】 求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3. 【答案】 3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)2-1=17. 试⼀试:把x=-3直接代⼊例4这个多项式,可以求出它的值吗?与上⾯的解法⽐较⼀下,哪个解法更简便? (通过⽐较两种⽅法,使学⽣认识到在求多项式的值时,常常先合并同类项,再求值,这样⽐较简便) 课堂练习. 课本P71练习第1~4题. 【答案】 略 四、课堂⼩结 1.要牢记法则,熟练正确的合并同类项,以防⽌2x2+3x2=5x4的错误. 2.从实际问题中类⽐概括得出合并同类项法则并能运⽤法则正确地合并同类项. 第3课时 去括号、添括号 教学⽬标 【知识与技能】 去括号与添括号法则及其应⽤. 【过程与⽅法】 在具体情境中体会去括号和添括号的必要性,能运⽤运算律去括号和添括号. 【情感、态度与价值观】 让学⽣接受“⽭盾的对⽴双⽅能在⼀定条件下互相转化”的辩证思想和概念. 教学重难点 【重点】去括号和添括号法则. 【难点】当括号前是“-”号时的去括号和添括号. 教学过程 ⼀、创设情境,引⼊新课 还记得我们前⾯⽤⽕柴棒摆的正⽅形吗?记录正⽅形的个数与所⽤⽕柴棒的根数. 1.若第⼀个正⽅形摆4根,以后每个摆3根,则n个正⽅形所⽤的⽕柴棒的根数为 4+3(n-1) .? 2.若每个正⽅形上⽅摆1根,下⽅摆1根,中间摆1根,还需加1根,则n个正⽅形所⽤的⽕柴棒的根数为 n+n+(n+1) .? 3.若每个正⽅形都摆4根,除第1个外,其余的都多1根,则n个正⽅形所⽤的⽕柴棒的根数为 4n-(n-1) .? 4.若先摆1根,再每个正⽅形摆3根,则n个正⽅形所⽤的⽕柴棒的根数为 1+3n .? 搭n个正⽅形所需要的⽕柴棒的根数,⽤的计算⽅法不⼀样,所⽤⽕柴棒的根数相等吗? ⽣:相等. 师:那么我们怎样说明它们相等呢? 学⽣讨论、回答. 师评:4+3(n-1)⽤乘法的分配律把3乘到括号⾥,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,⽽-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+1. 活动⼀ 去括号 师:在代数式⾥,如果遇到括号,那么该如何去括号呢? 我们再看看以前做过的习题. 七年级数学《整式的加减》教案范⽂三 ⼀、教学内容解析:1.本节课选⾃:新⼈教版数学七年级上册§2.2.1节,是学⽣进⼊初中阶段后,在学习了⽤字母表⽰数,单项式、多项式以及有理数运算的基础上,对同类项进⾏合并、探索、研究的⼀个课题。

新人教版初中数学七年级上册《第二章整式的加减:小结》赛课导学案_0

新人教版初中数学七年级上册《第二章整式的加减:小结》赛课导学案_0

)
= 3a+ 6a-6( =9a-6(
) )
左边的运算合填完并后了总几结次怎同样类进项行整?式的加减运算: 它的计算过程犹如倒立的直角三角形:
怎样才能做到这一点?
4.用你今天学到的知识解决:
化简求值: 1 x 2(x 1 y 2 ) ( 3 x 1 y 2 )的值,其中x 2,y 2
2.讲授新课: 一.整式加减的应用 问题 1:一种笔记本的单价是 x 元,圆珠笔的单价是 y 元,小红买这种笔记本 3 本,买圆珠笔 2 支;小明买这种笔记本 4 本,圆珠笔 3 支,买这些笔记本和圆珠笔,小红和小明一共花了多少钱? (注意:这里要鼓励学生用两种方法解决这个问题)
一.去括号、合并同类项练习
解: 3a- 2[4a- (7a-3)]
有括号就先去括号,然后再合并
= 3a- 2[4a- 7a+ 3] (
)
同类项。
= 3a- 2[- 3a+3] (
)
(注意:去一层括号合并一次同
= 3a- [ - 6a+ 6] (
)
类项,不要只去括号,到最好一
= 3a+ 6a-6(
)
次合并同类项,那样式子做起来
(2) 2x2 3[3x 2(x2 2x 1) 4]
5. 先化简,再求值: 3[ y (3x2 3xy)] [y 2(4x2 4xy)] ,其中 x 3 , y 1 .
2
3
23
3
A. 2x 9y2
B. 3xy2 14xy 6y2 C. 3x2 14xy 6y2 D. 3x2 14xy 4y2
2. 若 P 和 Q 都是关于 x 的五次多项式,则 P+Q 是( )

第二章整式的加减(教案)2023-2024学年人教版七年级上册数学

第二章整式的加减(教案)2023-2024学年人教版七年级上册数学
另外,今天的课堂总结环节,学生们的反馈让我了解到他们在整式加减学习中的困惑和问题。我会在课后对这些问题进行整理,并在下一节课上给予解答。同时,我也会鼓励学生在课堂上积极提问,养成及时解决问题的好习惯。
在教学过程中,教师应重点关注学生对整式概念的理解和整式加减法则的应用,通过直观的例子和反复的练习,帮助学生克服难点,确保学生对核心知识的掌握。同时,教师应引导学生将整式知识应用于解决实际问题,提升学生的数学建模能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的加减》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个物品价格总和的情况?”(举例说明)这个问题与我们将要学习的整式加减密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式加减的奥秘。
3.培养学生数学运算能力,熟练进行整式的加减运算,提高数学运算速度和准确性,强化数学运算素养。
4.培养学生空间想象和直观想象能力,通过解决实际问题时对整式的简化与变形,激发学生数学直观想象素养。
5.培养学生团队合作意识,通过小组讨论与练习,提高学生交流协作能力,培养数学建模和数据分析素养。
三、教学难点与重点
-难点解释:在处理复杂整式时,学生可能会在合并同类项时出现错误,如错误地将不同类的项合并。
(3)在实际问题中,将情境转化为整式并进行简化。
-难点解释:学生可能难以将现实问题抽象为整式,或者不知道如何将复杂的整式简化,从而解决问题。
(4)理解整式加减在实际问题中的意义和作用,培养学生的数学建模意识。
-难点解释:学生需要理解整式加减不仅仅是一个数学运算,而是解决实际问题的有力工具。
(二)新课讲授(用时10分钟)

七年级数学上册第二章《整式的加减》导学案1(新版)新人教版

七年级数学上册第二章《整式的加减》导学案1(新版)新人教版

2.2.4 整式的加减(课时7) 班级: 座号: 姓名: 【学习目标】灵活运用整式的加减的步骤进行运算 【学习重点】整式的加减 【学习难点】总结出整式的加减的一般步骤.【学前准备】认真阅读课本P67---P69复习:1.计算: (1))5.0(12-x (2))511(5x -- (3))5(28b a b a --++ (4))2()35(b a b a ---思考:计算(1))45()32(y x y x ++-的实质是计算多项式 与 的和;(2))54()78(b a b a ---的实质是计算多项式 与 的差.归纳:(1)整式的加减实际上就是去括号,合并同类项;(2)一般步骤是先_____________,再__________________;(3)整式加减的结果还是______________.2.已知某多项式与5632+-x x 的差是6742-+x x ,求此多项式.3归纳整式加减步骤:几个整式相加减,通常用 把每一个整式括起来,再用加号(或减号)连接;然后 , .【课堂探究】例1计算: (1))724()73(22++--+-ab a ab a (2)]2)2(27[322x x x x ----例2化简求值:)3()3(52222y x xy xy y x +--,其中21=x ,31=y .学习小组长评价和签字完成 订正签字例3一种笔记本的单价是x 元,圆珠笔的单价是y 元,小红买这种笔记本3个,买圆珠笔2支;小明买这种笔记本4个,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少元?【随堂练习】1.化简求值: )2(3)(62222222b a b a b a ---+-,其中31=a ,3=b .2.长方形的一边长为b a 32+,另一边比它小a b -, 求这个长方形的周长.3.已知23+=x A ,5-=x B ,求(1)B A -; (2)B A 23-.【归纳总结】几个整式相加减,通常用 把每一个整式括起来,再用加号(或减号)连接;然后 , .【课后作业】1.若一个整式减去22y x -的结果是22y x +,则这个整式是( )A.22yB.22y -C. 22xD.22x -2.下列运算正确的是( )A .ab b a 523=+B .03322=-ba b aC .532523x x x =+D . 14522=-y y3.若214y x m --与1+-n xy 是同类项,则n m +的值为( )A .1B . 2C .3D .44.化简:(1))2(43xy xy xy ---; (2))32(31413122ab a a ab --+--;(3))634()52(22x x x x --+++-; (4)ab b a a ab 3)3()2(3+--+-;(5))]3(4[)32(2b a a b a -+--.5.化简求值:)4123()43(32522y x y x x ++---,其中3-=x ,21-=y .6.已知代数式x x -2的值为3,则代数式7222--x x 的值为 . 7.已知,求(1)B A +; (2)B A -3.225x 3x 4B 62++=-+-=,x x A8.某村小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻种植面积、玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?9.有这样一道题“已知222322c b a A -+=,22223c b a B --=,22232b a c C -+=,当1=a ,2=b ,3=c 时,求C B A +-的值.”有一学生说题中给出2=b ,3=c 是多余的,他说的有道理吗?为什么?【学后记】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第二章 第4课时 整式的加减(2)导学案(无答案)

②会解括号前有数字的加减混合运算;
【学习重点】:会解括号前有数字的加减混合运算;
【学习难点】:会解括号前有数字的加减混合运算题;
【学习内容】:65、66、67页
学习过程
【活动一】: 阅读65页、66页,直到例4之前-------------5分钟
去括号时符号的变化规律:
如果括号外的因数是正数, ;
如果括号外的因数是负数, 。

1、+3x可以看作 乘以3x,即+3x=

2、-3x可以看作 乘以3x,即-3x=
3、+23x可以看作 乘以3x,即+23x=
4、-33x可以看作 乘以3x,即-33x=
5、-41x可以看作 乘以1x,即-41x=
【活动二】:自主探究----------------10分钟
6、、学习例4, 化简下列各式:
(1)8a+2b+(5a-3b) (2) (5a-2b)-3(a2-2b)

7、训练:化简:(1) 12(x-0.5) (2) x5315

(3) -5a+(3a-2)-(3a-7) (4) 31(9y-3)+2(y+1)
2

(5)(8a-7b)-(4a-5b)
8、xxxx6345222; 9、63452322xyxxyx

10、2144521222xxxx
11、kkkkk42212842412323
【活动三】
12、ababaabbaba22224223

1、
3




x6113

2、)53()22(xxx 3、)3()22(32222aaaaaa

4、abcbca635745 5、xyyxyxxy882222

相关文档
最新文档